未验证 提交 9fe3edd4 编写于 作者: J Jason 提交者: GitHub

Merge pull request #81 from Channingss/develop

add onnx2paddle support
......@@ -15,7 +15,6 @@
from six import text_type as _text_type
import argparse
import sys
import x2paddle
def arg_parser():
......@@ -100,9 +99,32 @@ def caffe2paddle(proto, weight, save_dir, caffe_proto):
mapper.save_inference_model(save_dir)
def onnx2paddle(model_path, save_dir):
# check onnx installation and version
try:
import onnx
version = onnx.version.version
if version != '1.5.0':
print("onnx==1.5.0 is required")
return
except:
print("onnx is not installed, use \"pip install onnx==1.5.0\".")
return
from x2paddle.decoder.onnx_decoder import ONNXDecoder
from x2paddle.op_mapper.onnx_op_mapper import ONNXOpMapper
from x2paddle.optimizer.onnx_optimizer import ONNXOptimizer
print("Now translating model from onnx to paddle.")
model = ONNXDecoder(model_path)
mapper = ONNXOpMapper(model)
optimizer = ONNXOptimizer(mapper)
optimizer.delete_redundance_code()
mapper.save_inference_model(save_dir)
def main():
if len(sys.argv) < 2:
print("Use \"x2paddle -h\" to print the help information\n")
print("Use \"x2paddle -h\" to print the help information")
return
parser = arg_parser()
......@@ -120,7 +142,6 @@ def main():
return
except:
print("paddlepaddle not installed, use \"pip install paddlepaddle\"")
assert args.framework is not None, "--from is not defined(tensorflow/caffe)"
assert args.save_dir is not None, "--save_dir is not defined"
......@@ -132,9 +153,11 @@ def main():
assert args.prototxt is not None and args.weight is not None, "--prototxt and --weight should be defined while translating caffe model"
caffe2paddle(args.prototxt, args.weight, args.save_dir,
args.caffe_proto)
elif args.framework == "onnx":
assert args.model is not None, "--model should be defined while translating onnx model"
onnx2paddle(args.model, args.save_dir)
else:
raise Exception("--framework only support tensorflow/caffe now")
raise Exception("--framework only support tensorflow/caffe/onnx now")
if __name__ == "__main__":
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.core.graph import GraphNode, Graph
from x2paddle.core.fluid_code import FluidCode
from onnx.checker import ValidationError
from onnx.checker import check_model
from onnx.utils import polish_model
from onnx.version_converter import convert_version
from onnx import helper
from onnx.helper import get_attribute_value, make_attribute
from onnx.shape_inference import infer_shapes
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
from onnx.numpy_helper import to_array
from collections import OrderedDict as Dict
import onnx
import numpy as np
from copy import deepcopy
import logging as _logging
default_op_domain = 'ai.onnx'
_logger = _logging.getLogger(__name__)
class ONNXGraphNode(GraphNode):
def __init__(self, layer, layer_name=None):
if layer_name is None:
super(ONNXGraphNode, self).__init__(layer, layer.name)
else:
super(ONNXGraphNode, self).__init__(layer, layer_name)
self.layer_type = layer.op_type
self.fluid_code = FluidCode()
self.attr_map = self.get_attr_map()
self.dtype_map = {1: "float32", 3: "int32", 9: "int64"}
self.weight_inputs = list()
self.out_shapes = None
self.dtype = None
def get_attr_map(self):
"""
convert ONNX node attributes to dict
"""
return {
attr.name: self.get_attribute_value2(attr)
for attr in self.layer.attribute
}
@property
def value(self):
assert 'Constant' in self.layer_type, "Only Constant node has value."
attr = self.layer.attr['value']
if 'value' in self.attr_map:
return default
return self.attr_map[name]
def get_attribute_value2(self, attr):
"""
get_attribute_value enhanced
"""
if attr.type == onnx.AttributeProto.TENSOR:
dtype = np.dtype(TENSOR_TYPE_TO_NP_TYPE[attr.t.data_type])
data = attr.t.raw_data
value = np.frombuffer(data,
dtype=dtype,
count=(len(data) // dtype.itemsize))
elif attr.type == onnx.AttributeProto.STRING:
value = attr.s
value = value.decode() if isinstance(value, bytes) else value
else:
value = get_attribute_value(attr)
return value
def get_attr(self, name, default=None):
"""
get_attribute_value from attr_map
"""
if name not in self.attr_map:
return default
return self.attr_map[name]
class ONNXGraphDataNode(GraphNode):
def __init__(self, layer, layer_name=None, is_global_input=False):
if layer_name is None:
super(ONNXGraphDataNode, self).__init__(layer, layer.name)
else:
super(ONNXGraphDataNode, self).__init__(layer, layer_name)
if is_global_input:
self.layer_type = 'place_holder'
else:
self.layer_type = 'create_parameter'
self.layer_name = layer_name
self.fluid_code = FluidCode()
self.weight = None
self.embeded_as = None
@property
def out_shapes(self):
values = self.layer.type.tensor_type.shape.dim
out_shapes = list()
out_shapes = [dim.dim_value for dim in values]
return out_shapes
@property
def dtype(self):
dtype = self.layer.type.tensor_type.elem_type
return TENSOR_TYPE_TO_NP_TYPE[dtype]
class ONNXGraph(Graph):
def __init__(self, model):
super(ONNXGraph, self).__init__(model)
self.initializer = {}
self.place_holder_nodes = list()
self.get_place_holder_nodes()
def get_inner_nodes(self):
"""
generate inner node of ONNX model
"""
inner_nodes = []
if not isinstance(self.model, onnx.GraphProto):
logger.error('graph is not a GraphProto instance')
return
for initializer in self.model.initializer:
name = initializer.name
inner_nodes.append(name)
return inner_nodes
def get_place_holder_nodes(self):
"""
generate place_holder node of ONNX model
"""
inner_nodes = self.get_inner_nodes()
input_nodes = [value.name for value in self.model.input]
for ipt_data in input_nodes:
if ipt_data not in inner_nodes:
self.place_holder_nodes.append(ipt_data)
def is_place_holder_nodes(self, layer):
"""
return layer is or not place_holder node
"""
if layer in self.place_holder_nodes:
return True
return False
def build(self):
"""
build topo_sort of ONNX model
"""
for layer in self.model.node:
self.node_map[layer.name] = ONNXGraphNode(layer)
#set op node's dtype and out_shapes
for item in self.model.value_info:
if item.name in self.node_map:
self.node_map[item.name].dtype = TENSOR_TYPE_TO_NP_TYPE[
item.type.tensor_type.elem_type]
self.node_map[item.name].out_shapes = [
dim.dim_value for dim in item.type.tensor_type.shape.dim
]
for layer in self.model.input:
if layer.name not in self.node_map:
is_place_holder = self.is_place_holder_nodes(layer.name)
self.node_map[layer.name] = ONNXGraphDataNode(
layer,
layer_name=layer.name,
is_global_input=is_place_holder)
#set data node's weight
for name, weight in self.graph_weights(self.model):
if name in self.node_map:
if isinstance(self.node_map[name], ONNXGraphDataNode):
self.node_map[name].weight = weight
self.node_map[name].embeded_as = []
#generate connection between nodes for topo
for layer_name, node in self.node_map.items():
if isinstance(node, ONNXGraphNode):
for idx, in_node in enumerate(node.layer.input):
if in_node not in self.node_map:
raise Exception(
'input[{}] of node[{}] does not exist in node_map'.
format(in_node, layer_name))
else:
self.connect(in_node, layer_name)
#generate topo
super(ONNXGraph, self).build()
self.input_nodes = self.place_holder_nodes
def get_nodes(self, names, copy=False):
"""
get nodes by more than one name
"""
nodes = []
for name in names:
nodes.add(self.get_node(name, copy=copy))
def graph_weights(self, graph):
"""
generator for weights
"""
if not isinstance(graph, onnx.GraphProto):
logger.error('graph is not a GraphProto instance')
return
for initializer in graph.initializer:
name = initializer.name
weight = to_array(initializer)
yield name, weight
class ONNXDecoder(object):
def __init__(self, onnx_model):
model = onnx.load(onnx_model)
print('model ir_version: {}, op version: {}'.format(
model.ir_version, model.opset_import[0].version))
if model.opset_import[0].version < 9:
_logger.warning(
'Now, onnx2paddle main support convert onnx model opset_verison == 9,'
'opset_verison of your onnx model is %d < 9,'
'some operator may cannot convert.',
model.opset_import[0].version)
check_model(model)
model = polish_model(model)
model = self.optimize_model_skip_op_for_inference(model)
model = self.optimize_model_strip_initializer(model)
self.standardize_variable_name(model.graph)
self.model = model
graph_def = model.graph
self.onnx_graph = ONNXGraph(graph_def)
self.onnx_graph.build()
def build_value_refs(self, nodes):
"""
build op reference of inputs and outputs
"""
input_refs = Dict()
output_refs = Dict()
for idx, node in enumerate(nodes):
for val_name in node.input:
input_refs.setdefault(val_name, set()).add(idx)
for val_name in node.output:
output_refs.setdefault(val_name, set()).add(idx)
return input_refs, output_refs
def skip_node_forward(self, nodes, src_output_name, dst_input_name,
input_refs):
"""
skip nodes between src_output_name -> dst_input_name and connect this pair
"""
processed = 0
for next_idx in input_refs[src_output_name]:
next_node = nodes[next_idx]
for val_idx, next_input_name in enumerate(next_node.input):
if next_input_name == src_output_name:
next_node.input[val_idx] = dst_input_name
processed += 1
return processed
def skip_node_backward(self, nodes, src_input_name, dst_output_name,
output_refs):
"""
skip nodes between dst_output_name -> src_input_name and connect this pair
"""
processed = 0
for prev_idx in output_refs[src_input_name]:
prev_node = nodes[prev_idx]
for val_idx, prev_output_name in enumerate(prev_node.output):
if prev_output_name == src_input_name:
prev_node.output[val_idx] = dst_output_name
processed += 1
return processed
def optimize_model_skip_op_for_inference(self, model, op_list=None):
"""
skip ops can be bypassed for inference
"""
if op_list is None:
op_list = ['Dropout']
nodes = model.graph.node
input_refs, output_refs = self.build_value_refs(nodes)
ret = type(model)()
ret.CopyFrom(model)
ret_nodes = ret.graph.node
nodes_to_remove = []
for node_idx, node in enumerate(nodes):
if not (node.domain == default_op_domain or node.domain == ''):
continue
op_type = node.op_type
if not (op_type in op_list):
continue
if op_type in ['Dropout']:
input_name = node.input[0]
output_name = node.output[0]
elif not (len(node.input) == 1 and len(node.output) == 1):
print(
'currently only 1-input-1-output op supported, skip required %d: %s',
node_idx, node.op_type)
continue
else:
input_name = node.input[0]
output_name = node.output[0]
if output_name in input_refs:
processed = self.skip_node_forward(ret_nodes, output_name,
input_name, input_refs)
elif input_name in output_refs:
processed = self.skip_node_backward(ret_nodes, input_name,
output_name, output_refs)
else:
processed = -1
if processed > 0:
nodes_to_remove.append(node_idx)
print('skip op {}: {} -> {} -> {}'.format(
node_idx, input_name, node.op_type, output_name))
elif processed == 0:
print('weird, no node processed')
else:
print('standalone op {}: {} -> {} -> {} not skipped'.format(
node_idx, input_name, node.op_type, output_name))
nodes_to_remove.sort(reverse=True)
for node_idx in nodes_to_remove:
ret_nodes.pop(node_idx)
return ret
def optimize_model_strip_initializer(self, model, keep_input_only=True):
"""
strip weights for inference
"""
nodes = model.graph.node
input_refs, output_refs = self.build_value_refs(nodes)
out_names = [val.name for val in model.graph.output]
ret = type(model)()
ret.CopyFrom(model)
# strip initializers
ret.graph.ClearField('initializer')
ret_initializers = ret.graph.initializer
for initializer in model.graph.initializer:
name = initializer.name
if name in input_refs:
ret_initializers.add().CopyFrom(initializer)
elif not keep_input_only and name in output_refs:
ret_initializers.add().CopyFrom(initializer)
else:
dtype = TENSOR_TYPE_TO_NP_TYPE[initializer.data_type]
# strip inputs
ret.graph.ClearField('input')
ret_inputs = ret.graph.input
for item in model.graph.input:
name = item.name
if name in input_refs or name in out_names:
ret_inputs.add().CopyFrom(item)
return ret
def make_variable_name(self, name):
"""
make a valid code name for ParamAttr
"""
if name == '':
raise ValueError('name should not be empty')
for s in ' .*?\\/-:': #
name = name.replace(s, '_')
return '_' + name
def standardize_variable_name(self, graph):
"""
standardize variable name for paddle's code
"""
for initializer in graph.initializer:
initializer.name = self.make_variable_name(initializer.name)
for ipt in graph.input:
ipt.name = self.make_variable_name(ipt.name)
for output in graph.output:
output.name = self.make_variable_name(output.name)
for item in graph.value_info:
item.name = self.make_variable_name(item.name)
for node in graph.node:
if node.name == '':
node.name = node.output[0]
node.name = self.make_variable_name(node.name)
for i in range(len(node.input)):
node.input[i] = self.make_variable_name(node.input[i])
for i in range(len(node.output)):
node.output[i] = self.make_variable_name(node.output[i])
def split_model(self, model, outputs=None):
"""
Takes a model and changes its outputs.
"""
if outputs is None:
raise RuntimeError("outputs is None")
if outputs == model.graph.output[0].name:
return model
nodes = model.graph.node
keep_nodes = []
# all the nodes we need to keep.
for node in nodes:
if outputs in node.output:
keep_nodes.append(node)
break
keep_nodes.append(node)
infer_shapes = onnx.shape_inference.infer_shapes(model)
var_out = []
for value_info in infer_shapes.graph.value_info:
if value_info.name == outputs:
var_out.append(value_info)
break
graph = helper.make_graph(keep_nodes, model.graph.name,
model.graph.input, var_out,
model.graph.initializer)
onnx_model = helper.make_model(graph)
onnx_model.ir_version = model.ir_version
onnx_model.producer_name = model.producer_name
onnx_model.producer_version = model.producer_version
onnx_model.domain = model.domain
onnx_model.model_version = model.model_version
onnx_model.doc_string = model.doc_string
if len(onnx_model.graph.input) != len(model.graph.input):
raise RuntimeError("Input mismatch {} != {}".format(
len(onnx_model.input), len(model.input)))
return onnx_model
def get_dynamic_shape_from_caffe2(self, layer, input_shapes):
"""
get dynamic shape from caffe2.backend
"""
try:
import torch
version = torch.__version__
if '1.1.0' not in version:
print("your model have dynamic graph, torch==1.1.0 is required")
return
except:
print(
"your model have dynamic graph, we use caff2 to inference graph, please use \"pip install torch==1.1.0\"."
)
return
from caffe2.python.onnx.backend import prepare
shape = input_shapes[0]
np_images = np.random.rand(shape[0], shape[1], shape[2],
shape[3]).astype('float32')
num_onnx = self.split_model(self.model, layer)
prepared_backend = prepare(num_onnx, device='CPU')
output = prepared_backend.run(inputs=np_images)
return output[0].tolist()
def get_dynamic_shape_from_onnx(self, layer, input_shapes):
"""
get dynamic shape from onnxruntime
"""
import onnxruntime as rt
from onnxruntime.backend import prepare
import numpy as np
num_onnx = self.split_model(self.model, layer)
sess = prepare(num_onnx)
shape = input_shapes[0]
print(shape)
np_images = np.random.rand(shape[0], shape[1], shape[2],
shape[3]).astype('float32')
output = sess.run(model=sess, inputs=np_images)
return output[0].tolist()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict as _dict
default_op_mapping_field_values = _dict()
default_op_mapping_field_values['FLUID_OP'] = ''
default_op_mapping_field_values['FLUID_INPUT_ARGS'] = None
default_op_mapping_field_values['FLUID_OUTPUT_ARGS'] = None
default_op_mapping_field_values['ATTR_MAPPING'] = dict()
default_op_mapping_field_values['DEFAULTS'] = dict()
default_op_mapping_field_values['INPUT_PERM'] = None
default_op_mapping_field_values['OUTPUT_PERM'] = None
default_op_mapping_field_values['FILL_NAME_FIELD'] = True
default_op_mapping = {
'Gather': ['gather', ['X'], ['Out'],
dict(axis='')],
'Shape': ['shape', ['X'], ['Out']],
'Mul': ['elementwise_mul', ['X', 'Y'], ['Out'],
dict(),
dict(axis=-1)],
}
default_ioa_constraint = {
'Gather':
[(lambda i, o, a: a.get('axis', 0) == 0, 'only axis = 0 is supported')],
}
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.core.graph import GraphNode
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping_field_values
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping
from x2paddle.op_mapper.onnx_directly_map import default_ioa_constraint
import numpy as np
import logging as _logging
from collections import OrderedDict as _dict
_logger = _logging.getLogger(__name__)
def _const_weight_or_none(node):
if 'Constant' in node.layer_name:
return val.value
if isinstance(node, ONNXGraphDataNode):
return node.weight
return None
class ONNXOpMapper(OpMapper):
def __init__(self, decoder):
super(ONNXOpMapper, self).__init__()
self.decoder = decoder
self.graph = decoder.onnx_graph
self.input_shapes = []
self.weights = dict()
self.omit_nodes = list()
if not self.op_checker():
raise Exception("Model are not supported yet.")
#mapping op
print("Total nodes: {}".format(
sum([
isinstance(node, ONNXGraphNode)
for name, node in self.graph.node_map.items()
])))
for node_name in self.graph.topo_sort:
node = self.graph.get_node(node_name)
op = node.layer_type
if hasattr(self, op):
func = getattr(self, op)
func(node)
elif op in default_op_mapping:
self._default(node)
def op_checker(self):
unsupported_ops = set()
for node_name in self.graph.topo_sort:
node = self.graph.get_node(node_name)
op = node.layer_type
if not hasattr(self, op) and op not in default_op_mapping:
unsupported_ops.add(op)
if len(unsupported_ops) == 0:
return True
else:
print("There are {} ops not supported yet, list as below".format(
len(unsupported_ops)))
for op in unsupported_ops:
print(op)
return False
def _default(self, node, *args, name='', **kwargs):
inputs = node.layer.input
outputs = node.layer.output
op_type = node.layer_type
attrs = node.attr_map
info = default_op_mapping[op_type]
info.extend(list(default_op_mapping_field_values.values())[len(info):])
(
fluid_op,
fluid_input_args,
fluid_output_args,
attr_mapping,
default_attrs,
input_perm,
output_perm,
fill_name_field,
) = info
if fluid_op in default_ioa_constraint:
for predicate, message in default_ioa_constraint[fluid_op]:
assert predicate(inputs, outputs, attrs), message
mapped_attrs = {
attr_mapping.get(key, key): value
for key, value in attrs.items()
}
if '' in mapped_attrs:
mapped_attrs.pop('')
if '_' in mapped_attrs:
mapped_attrs.pop('_')
fluid_attrs = default_attrs.copy()
fluid_attrs.update(mapped_attrs)
val_inps = inputs if input_perm is None else list(
map(lambda i: inputs[i], input_perm))
val_outs = outputs if output_perm is None else list(
map(lambda i: outputs[i], output_perm))
attr = fluid_attrs
if fluid_op not in ['shape', 'gather']:
attr['name'] = string(node.layer_name)
node.fluid_code.add_layer(fluid_op,
inputs=', '.join(val_inps),
output=val_outs[0],
param_attr=attr)
def place_holder(self, node):
self.input_shapes.append(node.out_shapes)
attr = {
"dtype": string(node.dtype),
"shape": node.out_shapes,
"name": string(node.layer_name),
"append_batch_size": 'False'
}
node.fluid_code.add_layer("data",
inputs=None,
output=node,
param_attr=attr)
def create_parameter(self, node, parameter=None):
if parameter is not None:
node = parameter
dtype = node.dtype
shape = node.out_shapes
self.weights[node.layer_name] = node.weight
attr = {
'dtype': string(dtype),
'shape': shape,
'name': string(node.layer_name),
'attr': string(node.layer_name),
'default_initializer': 'Constant(0.0)'
}
node.fluid_code.add_layer("create_parameter",
inputs=None,
output=node,
param_attr=attr)
def _pad_if_asymmetric(self, node, pads, val_name): # pads: SSEE
assert len(pads) & 1 == 0
symmetric = True
ndims = len(pads) // 2
for idx_dim in range(ndims):
if pads[idx_dim] != pads[ndims + idx_dim]:
symmetric = False
break
if symmetric:
return pads[:ndims], val_name
val_padded = self.Pad(node, op_independent=False)
return [0] * ndims, val_padded
def Pad(self, node, op_independent=True):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
pads = node.get_attr('pads')
mode = node.get_attr('mode', 'constant')
value = node.get_attr('value', 0.)
data_shape = val_x.out_shapes
output_shape = node.out_shapes
assume_pad2d = False
attr = {}
if len(pads) == 4:
assume_pad2d |= mode != 'constant'
if data_shape:
assume_pad2d |= data_shape and len(data_shape) == 4 # NCHW
if output_shape:
assume_pad2d |= output_shape and len(output_shape) == 4 # NCHW
if assume_pad2d:
fluid_op = 'pad2d'
attr['data_format'] = string('NCHW')
attr['mode'] = string(mode)
else:
attr = {'pad_value': value}
assert mode == 'constant', 'mode {} is supported only in pad2d'.format(
mode)
fluid_op = 'pad'
if len(pads) == 4:
paddings = np.array(pads).reshape(
(-1, 2)).transpose().flatten().tolist() # SSEE -> SESE
elif len(pads) == 8:
paddings = np.array(pads).reshape(
(-1, 4)).transpose().flatten().tolist() # SSEE -> SESE
attr['paddings'] = paddings
if op_independent:
attr['name'] = string(node.layer_name)
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
else:
attr['name'] = string(node.layer_name + '_paded')
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node.layer_name + '_paded',
param_attr=attr)
return node.layer_name + '_paded'
def Unsqueeze(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
axes = node.get_attr('axes')
attr = {'axes': axes, 'name': string(node.layer_name)}
node.fluid_code.add_layer('unsqueeze',
inputs=val_x,
output=node,
param_attr=attr)
def Constant(self, node):
val_output = self.graph.get_node(node.layer.output[0], copy=True)
value = node.get_attr('value')
dtype = np.dtype(value.dtype)
output_dtype = val_output.dtype
if output_dtype:
assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
shape = node.get_attr('shape', None)
if shape is None:
shape = val_output.out_shapes
if shape is None:
shape = list(value.shape)
_logger.warning(
'in (Constant -> %s): '
'attribute "shape" of %s not inferred, '
'using value as 1-D tensor may lead to fails',
val_output.layer_name, val_output.layer_name)
value = value.tolist()
if len(value) == 1: # scalar
shape = [1]
value = value[0]
if dtype.name == 'int64':
dtype = 'int32'
attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
node.fluid_code.add_layer('fill_constant',
inputs=None,
output=node,
param_attr=attr)
def Resize(self, node):
# I/O
val_x = self.graph.get_node(node.layer.input[0], copy=True)
val_scales = self.graph.get_node(node.layer.input[1], copy=True)
val_y, = self.graph.get_node(node.layer.output[0], copy=True)
out_shape_ = val_y.out_shapes
if out_shape_ is not None:
assert len(out_shape_) == 4, 'only 4-D Tensor as X and Y supported'
out_shape_ = out_shape_[2:]
scales = _const_weight_or_none(val_scales)
if scales is not None:
assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
assert scales[0] == 1 and scales[
1] == 1, 'only scale on (NC)HW supported'
assert scales[2] == scales[
3], 'only aspect-ratio-invariant scale supported'
scale = scales[2] if scales else None
if scale is None:
assert out_shape_, 'neither scales nor output shape is available'
out_shape = out_shape_
else:
out_shape = None
if out_shape_ is None:
in_shape = val_x.out_shapes
assert in_shape is not None, 'out_shape required but not inferrable'
assert len(
in_shape) == 4, 'only 4-D Tensor as X and Y supported'
out_shape_ = [in_shape[2] * scale, in_shape[3] * scale]
mode = node.get_attr('mode', 'nearest')
fluid_op = 'resize_{}'.format(mode)
name_attr = ', name={}'.format(repr(name)) if name else ''
attr = {
'scale': scale,
'out_shape': out_shape,
'name': string(node.layer_name)
}
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
def ConstantOfShape(self, node):
val_shape = self.graph.get_node(node.layer.input[0], copy=True)
shape = _const_weight_or_none(val_shape)
if shape is None:
shape = node.out_shapes
assert shape is not None, (
'given shape is neither const value nor deductible from output, '
'this is not supported')
value = node.get_attr('value')
dtype = value.dtype
value = value.tolist()
if len(value) == 1:
shape = [1]
value = value[0]
if dtype.name == 'int64':
dtype = 'int32'
attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
node.fluid_code.add_layer('fill_constant',
inputs=None,
output=node,
param_attr=attr)
def Split(self, node):
val_input = self.graph.get_node(node.layer.input[0], copy=True)
var_outs = [val for val in node.layer.input]
fluid_op = 'split'
split = node.get_attr['split']
axis = node.get_attr('axis', 0)
attr = {'split': split, 'axis': axis, 'name': string(node.layer_name)}
# generation
node.fluid_code.add_layer('split',
inputs=val_input,
output=var_outs,
param_attr=attr)
def Reshape(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
val_shape = self.graph.get_node(node.layer.input[1], copy=True)
val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
shape = None
if isinstance(val_shape, ONNXGraphDataNode):
self.omit_nodes.append(val_shape.layer_name)
# catch dynamic graph shape
if isinstance(val_shape, ONNXGraphNode):
shape = self.decoder.get_dynamic_shape_from_caffe2(
val_shape.layer_name, self.input_shapes)
if shape is None:
shape = val_reshaped.out_shapes
shape_dtype = val_shape.dtype
if shape_dtype is None:
_logger.warning(
'in op %s(%s -> Reshape -> %s): '
'dtype of input "shape" not inferred, int32 assumed',
node.layer_name, val_x.layer_name, val_reshaped.layer_name)
shape_dtype = _np.dtype('int32')
if shape is None:
shape = [1, -1]
_logger.warning(
'in %s(%s -> Reshape -> %s): '
'input "shape" not inferred, use [1, -1] as dummy value, '
'the behavior of Paddle fluid maybe undefined', node.layer_name,
val_x.layer_name, val_reshaped.layer_name)
attr = {'shape': shape, 'name': string(node.layer_name)}
node.fluid_code.add_layer('reshape',
inputs=val_x,
output=node,
param_attr=attr)
def Cast(self, node):
val_input = self.graph.get_node(node.layer.input[0], copy=True)
val_output = self.graph.get_node(node.layer.output[0], copy=True)
dtype = node.get_attr('to')
if not isinstance(dtype, np.dtype):
dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]
output_dtype = val_output.dtype
if output_dtype:
assert dtype == output_dtype, 'dtype of to unmatches output'
attr = {'dtype': string(dtype)}
node.fluid_code.add_layer('cast',
inputs=val_input,
output=node,
param_attr=attr)
def AveragePool(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
assert node.get_attr(
'auto_pad',
'NOTSET') == 'NOTSET', 'only auto_pad = NOTSET is supported'
kernel_shape = node.get_attr("kernel_shape")
poolnd = len(kernel_shape)
strides = node.get_attr("strides")
pad_mode = node.get_attr("pads")
ceil_mode = bool(node.get_attr('ceil_mode', 0))
pads = node.get_attr('pads', [0] * (poolnd * 2))
fluid_op = 'pool{}d'.format(poolnd)
assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)
attr = {
"pool_size": kernel_shape,
"pool_type": string('avg'),
"pool_stride": strides,
"pool_padding": paddings,
"ceil_mode": ceil_mode,
"exclusive": 'True',
"name": string(node.layer_name)
}
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
def Concat(self, node):
inputs = []
for i in range(len(node.layer.input)):
ipt = self.graph.get_node(node.layer.input[i], copy=True)
if isinstance(ipt, str):
inputs.append(ipt)
else:
inputs.append(ipt.layer_name)
axis = node.get_attr('axis')
attr = {'axis': axis}
node.fluid_code.add_layer('concat',
inputs='[' + ', '.join(inputs) + ']',
output=node,
param_attr=attr)
def Flatten(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
axis = node.get_attr('axis', 1)
attr = {"axis": str(axis), "name": string(node.layer_name)}
node.fluid_code.add_layer('flatten',
inputs=val_x,
output=node,
param_attr=attr)
def Gemm(self, node):
val_a = self.graph.get_node(node.layer.input[0], copy=True)
val_b = self.graph.get_node(node.layer.input[1], copy=True)
val_c = self.graph.get_node(node.layer.input[2], copy=True)
alpha = node.get_attr('alpha', 1.) # optional
beta = node.get_attr('beta', 1.) # optional
trans_a = bool(node.get_attr('transA', 0)) # optional
trans_b = bool(node.get_attr('transB', 0)) # optional
val_mm = node.layer_name + '_mm'
matmul_inputs = {"x": val_a, "y": val_b}
attr_matmul = {
"transpose_x": trans_a,
"transpose_y": trans_b,
"alpha": alpha,
"name": string(val_mm)
}
node.fluid_code.add_layer('matmul',
inputs=matmul_inputs,
output=val_mm,
param_attr=attr_matmul)
if beta != 0:
if beta == 1.:
add_inputs = {"x": val_mm, "y": val_c}
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer("elementwise_add",
inputs=add_inputs,
output=node,
param_attr=attr)
else:
var_beta = node.layer_name + '_beta'
matmul_beta_inputs = {"x": val_c, "y": var_beta}
node.fluid_code.add_layer("Constant",
inputs=matmul_beta_inputs,
output=var_beta,
param_attr={'value': beta})
add_inputs = {"x": val_mm, "y": var_beta}
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer("elementwise_add",
inputs=add_inputs,
output=node,
param_attr=attr)
def Add(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
val_y = self.graph.get_node(node.layer.input[1], copy=True)
inputs = {
"x": val_x,
"y": val_y,
}
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer("elementwise_add",
inputs=inputs,
output=node,
param_attr=attr)
def Sum(self, node):
var_inps = [val for val in node.layer.input]
node.fluid_code.add_layer("sum",
inputs='[' + ', '.join(var_inps) + ']',
output=node)
def MatMul(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
val_y = self.graph.get_node(node.layer.input[1], copy=True)
inputs = {"x": val_x, "y": val_y}
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer("matmul",
inputs=inputs,
output=node,
param_attr=attr)
def BatchNormalization(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
val_scale = self.graph.get_node(node.layer.input[1], copy=True)
val_b = self.graph.get_node(node.layer.input[2], copy=True)
val_mean = self.graph.get_node(node.layer.input[3], copy=True)
val_var = self.graph.get_node(node.layer.input[4], copy=True)
self.omit_nodes.append(val_scale.layer_name)
self.omit_nodes.append(val_b.layer_name)
self.omit_nodes.append(val_mean.layer_name)
self.omit_nodes.append(val_var.layer_name)
momentum = node.get_attr('momentum', .9)
epsilon = node.get_attr('epsilon', 1e-5)
# Attribute: spatial is used in BatchNormalization-1,6,7
spatial = bool(node.get_attr('spatial'))
attr = {
"momentum": momentum,
"epsilon": epsilon,
"data_layout": string('NCHW'),
"is_test": 'True',
"param_attr": string(val_scale.layer_name),
"bias_attr": string(val_b.layer_name),
"moving_mean_name": string(val_mean.layer_name),
"moving_variance_name": string(val_var.layer_name),
"use_global_stats": spatial,
"name": string(node.layer_name)
}
node.fluid_code.add_layer("batch_norm",
inputs=val_x,
output=node,
param_attr=attr)
def Softmax(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer("softmax",
inputs=val_x,
output=node,
param_attr=attr)
def Transpose(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
perm = node.get_attr('perm')
attr = {'perm': perm, "name": string(node.layer_name)}
node.fluid_code.add_layer("transpose",
inputs=val_x,
output=node,
param_attr=attr)
def Div(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
val_y = self.graph.get_node(node.layer.input[1], copy=True)
inputs = {'x': val_x, 'y': val_y}
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer("elementwise_div",
inputs=inputs,
output=node,
param_attr=attr)
def Relu(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer("relu",
inputs=val_x,
output=node,
param_attr=attr)
def PRelu(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
val_slope = self.graph.get_node(node.layer.input[1], copy=True)
attr = {"name": string(node.layer_name), "mode": string('channel')}
if isinstance(val_slope, str):
attr["param_attr"] = string(val_slope.layer_name)
else:
attr["param_attr"] = string(val_slope.layer_name)
node.fluid_code.add_layer("prelu",
inputs=val_x,
output=node,
param_attr=attr)
def Squeeze(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
squeeze_dims = node.get_attr('squeeze_dims')
attr = {'axes': squeeze_dims, "name": string(node.layer_name)}
node.fluid_code.add_layer("squeeze",
inputs=val_x,
output=node,
param_attr=attr)
def Identity(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
node.fluid_code.add_layer("assign", inputs=val_x, output=node)
def MaxPool(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
assert node.get_attr(
'auto_pad', 'NOTSET'
) == 'NOTSET', 'only auto_pad = NOTSET is supported' # optional
assert node.get_attr(
"dilations") is None, 'only dilations = 0 is supported' # optional
kernel_shape = node.get_attr("kernel_shape")
poolnd = len(kernel_shape)
strides = node.get_attr("strides")
pad_mode = node.get_attr("pads")
ceil_mode = bool(node.get_attr('ceil_mode', 0)) # optional
pads = node.get_attr('pads', [0] * (poolnd * 2)) # optional
fluid_op = 'pool{}d'.format(poolnd)
assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)
attr = {
"pool_size": kernel_shape,
"pool_type": string("max"),
"pool_stride": strides,
"pool_padding": paddings,
"ceil_mode": ceil_mode,
"name": string(node.layer_name),
"exclusive": False
}
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
def GlobalAveragePool(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
val_y = self.graph.get_node(node.layer.output[0], copy=True)
input_shape = val_x.out_shapes
output_shape = val_y.out_shapes
assert input_shape is not None or output_shape is not None, 'poolnd not inferred' # N
if input_shape:
poolnd = len(input_shape) - 2 # NC...
elif output_shape:
poolnd = len(output_shape) - 2 # NC...
assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
fluid_op = 'pool{}d'.format(poolnd)
attr = {
"pool_type": string("avg"),
"global_pooling": True,
"name": string(node.layer_name)
}
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
def Conv(self, node):
val_x = self.graph.get_node(node.layer.input[0], copy=True)
val_w = self.graph.get_node(node.layer.input[1], copy=True)
val_y = self.graph.get_node(node.layer.output[0], copy=True)
self.omit_nodes.append(val_w.layer_name)
input_shape = val_x.out_shapes
has_bias = len(node.layer.input) == 3
if has_bias:
val_b = self.graph.get_node(node.layer.input[2], copy=True)
self.omit_nodes.append(val_b.layer_name)
auto_pad = node.get_attr('auto_pad', 'NOTSET')
kernel_shape = val_w.out_shapes[2:] # OI...
assert kernel_shape == node.get_attr(
'kernel_shape'), 'kernel_shape in attr unmatches value_info' # HW
convnd = len(kernel_shape)
assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
num_out_channels = val_w.out_shapes[0] # OI...
fluid_op = 'conv{}d'.format(convnd)
num_groups = node.get_attr('group', 1)
strides = node.get_attr('strides', [1] * convnd) # optional
dilations = node.get_attr('dilations', [1] * convnd) # optional
pads = node.get_attr('pads', [0] * (convnd * 2)) # optional
paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)
if auto_pad == "SAME_UPPER" or auto_pad == "SAME_UPPER":
pad_h = get_same_padding(input_shape[2], kernel_shape[0],
strides[0])
pad_w = get_same_padding(input_shape[3], kernel_shape[1],
strides[1])
attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
attr = {
"num_filters": num_out_channels,
"filter_size": kernel_shape,
"stride": strides,
"padding": paddings,
"dilation": dilations,
"groups": num_groups,
'param_attr': string(val_w.layer_name),
"name": string(node.layer_name)
}
if has_bias:
attr["bias_attr"] = string(val_b.layer_name)
else:
attr["bias_attr"] = False
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO useless node remove
from x2paddle.op_mapper.onnx_op_mapper import ONNXOpMapper
from x2paddle.core.util import *
class ONNXOptimizer(object):
def __init__(self, op_mapper):
self.op_mapper = op_mapper
self.graph = op_mapper.graph
def delete_redundance_code(self):
for node_name in self.graph.topo_sort:
if node_name in self.op_mapper.omit_nodes:
node = self.graph.get_node(node_name)
omit_freq = self.op_mapper.omit_nodes.count(node_name)
if len(node.outputs) <= omit_freq:
node.fluid_code.clear()
......@@ -26,3 +26,29 @@
| ShuffleNet | [code](https://github.com/miaow1988/ShuffleNet_V2_pytorch_caffe/releases/tag/v0.1.0) |
| mNASNet | [code](https://github.com/LiJianfei06/MnasNet-caffe) |
| MTCNN | [code](https://github.com/kpzhang93/MTCNN_face_detection_alignment/tree/master/code/codes/MTCNNv1/model) |
# ONNX
| 模型 | 来源 | operator version|
|-------|--------|---------|
| Resnet18 | [torchvison.model.resnet18](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9|
| Resnet34 | [torchvison.model.resnet34](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9|
| Resnet50 | [torchvison.model.resnet50](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9|
| Resnet101 | [torchvison.model.resnet101](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9|
| Vgg11 | [torchvison.model.vgg11](https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py) |9|
| Vgg11_bn | [torchvison.model.vgg11_bn](https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py) |9|
| Vgg19| [torchvison.model.vgg19](https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py) |9|
| Densenet121 | [torchvison.model.densenet121](https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py) |9|
| Alexnet | [torchvison.model.alexnet](https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py) |9|
| Shufflenet | [onnx official](https://github.com/onnx/models/tree/master/vision/classification/shufflenet) |9|
| Inception_v2 | [onnx official](https://github.com/onnx/models/tree/master/vision/classification/inception_and_googlenet/inception_v2) |9|
目前onnx2paddle主要支持onnx operator version 9,关于如何使用torchvison的model:
```
import torch
import torchvision
dummy_input = torch.randn(1, 3, 224, 224) #根据不同模型调整shape
resnet18 = torchvision.models.resnet18(pretrained=True)
torch.onnx.export(resnet18, dummy_input, "resnet18.onnx",verbose=True)#"resnet18.onnx"为onnx model的存储路径
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册