Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
98b8c410
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
98b8c410
编写于
7月 16, 2020
作者:
C
Channingss
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize paddle custom layer, multiclass reorder of result
上级
c1f65a10
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
48 addition
and
1743 deletion
+48
-1743
x2paddle/op_mapper/paddle2onnx/opset10/paddle_custom_layer/im2sequence.py
...er/paddle2onnx/opset10/paddle_custom_layer/im2sequence.py
+2
-74
x2paddle/op_mapper/paddle2onnx/opset10/paddle_custom_layer/multiclass_nms.py
...paddle2onnx/opset10/paddle_custom_layer/multiclass_nms.py
+2
-386
x2paddle/op_mapper/paddle2onnx/opset10/paddle_custom_layer/yolo_box.py
...apper/paddle2onnx/opset10/paddle_custom_layer/yolo_box.py
+2
-816
x2paddle/op_mapper/paddle2onnx/opset11/paddle_custom_layer/im2sequence.py
...er/paddle2onnx/opset11/paddle_custom_layer/im2sequence.py
+2
-74
x2paddle/op_mapper/paddle2onnx/opset11/paddle_custom_layer/multiclass_nms.py
...paddle2onnx/opset11/paddle_custom_layer/multiclass_nms.py
+2
-386
x2paddle/op_mapper/paddle2onnx/opset9/opset.py
x2paddle/op_mapper/paddle2onnx/opset9/opset.py
+2
-2
x2paddle/op_mapper/paddle2onnx/opset9/paddle_custom_layer/multiclass_nms.py
.../paddle2onnx/opset9/paddle_custom_layer/multiclass_nms.py
+36
-5
未找到文件。
x2paddle/op_mapper/paddle2onnx/opset10/paddle_custom_layer/im2sequence.py
浏览文件 @
98b8c410
import
onnx
import
onnx
import
numpy
as
np
import
numpy
as
np
from
onnx
import
onnx_pb
,
helper
from
onnx
import
onnx_pb
,
helper
from
x2paddle.op_mapper.paddle2onnx.opset9.paddle_custom_layer.im2sequence
import
im2sequence
as
im2sequence9
im2seq_counter
=
0
def
im2sequence
(
op
,
block
):
def
im2sequence
(
op
,
block
):
global
im2sequence_counter
return
im2sequence9
(
op
,
block
)
n
,
c
,
h
,
w
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
assert
h
>
0
and
w
>
0
,
"Only supported fixed input shape for im2sequence operator."
stride_h
,
stride_w
=
op
.
attr
(
'strides'
)
paddings
=
op
.
attr
(
'paddings'
)
assert
op
.
attr
(
'out_stride'
)
!=
1
,
"Only out_stride==1 is supported for im2sequence operator."
h
=
h
+
paddings
[
0
]
+
paddings
[
1
]
w
=
w
+
paddings
[
1
]
+
paddings
[
2
]
kernel_h
,
kernel_w
=
op
.
attr
(
'kernels'
)
out_h
=
1
+
(
h
-
kernel_h
+
stride_h
-
1
)
//
stride_h
out_w
=
1
+
(
w
-
kernel_w
+
stride_w
-
1
)
//
stride_w
h_steps
=
list
()
for
i
in
range
(
out_h
):
h_steps
.
append
([
i
*
stride_h
,
i
*
stride_h
+
kernel_h
])
w_steps
=
list
()
for
i
in
range
(
out_w
):
w_steps
.
append
([
i
*
stride_w
,
i
*
stride_w
+
kernel_w
])
nodes
=
list
()
slice_blocks
=
list
()
for
i
in
range
(
out_h
):
for
j
in
range
(
out_w
):
starts_name
=
"im2sequence.starts.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
starts_tensor
=
helper
.
make_tensor
(
name
=
starts_name
,
data_type
=
onnx_pb
.
TensorProto
.
INT64
,
dims
=
[
4
],
vals
=
[
0
,
0
,
h_steps
[
i
][
0
],
w_steps
[
j
][
0
]])
ends_name
=
"im2sequence.ends.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
ends_tensor
=
helper
.
make_tensor
(
name
=
ends_name
,
data_type
=
onnx_pb
.
TensorProto
.
INT64
,
dims
=
[
4
],
vals
=
[
999999
,
999999
,
h_steps
[
i
][
1
],
w_steps
[
j
][
1
]])
starts_node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
starts_name
],
value
=
starts_tensor
)
ends_node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
ends_name
],
value
=
ends_tensor
)
nodes
.
extend
([
starts_node
,
ends_node
])
slice_block_name
=
"im2sequence.slice.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
slice_block_node
=
helper
.
make_node
(
'Slice'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
starts_name
,
ends_name
],
outputs
=
[
slice_block_name
])
flatten_block_name
=
"im2sequence.flatten.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
flatten_block_node
=
helper
.
make_node
(
"Flatten"
,
inputs
=
[
slice_block_name
],
outputs
=
[
flatten_block_name
],
axis
=
0
)
nodes
.
extend
([
slice_block_node
,
flatten_block_node
])
slice_blocks
.
append
(
flatten_block_name
)
concat_block_name
=
"im2sequence.concat_block.{}"
.
format
(
im2seq_counter
)
# concat_block_node = helper.make_node("Concat", inputs=slice_blocks, outputs=[concat_block_name], axis=0)
concat_block_node
=
helper
.
make_node
(
"Concat"
,
inputs
=
slice_blocks
,
outputs
=
op
.
output
(
'Out'
),
axis
=
0
)
nodes
.
append
(
concat_block_node
)
print
(
"
\n\n
==========Importance Notice==========="
)
print
(
"Since im2sequence operator is used in your paddlepaddle model, the translated onnx model only support input data with batch_size=1."
)
print
(
"======================================
\n
"
)
return
nodes
x2paddle/op_mapper/paddle2onnx/opset10/paddle_custom_layer/multiclass_nms.py
浏览文件 @
98b8c410
...
@@ -21,6 +21,7 @@ import paddle.fluid as fluid
...
@@ -21,6 +21,7 @@ import paddle.fluid as fluid
import
onnx
import
onnx
import
warnings
import
warnings
from
onnx
import
helper
,
onnx_pb
from
onnx
import
helper
,
onnx_pb
from
x2paddle.op_mapper.paddle2onnx.opset9.paddle_custom_layer.multiclass_nms
import
multiclass_nms
as
multiclass_nms9
def
multiclass_nms
(
op
,
block
):
def
multiclass_nms
(
op
,
block
):
...
@@ -28,389 +29,4 @@ def multiclass_nms(op, block):
...
@@ -28,389 +29,4 @@ def multiclass_nms(op, block):
Convert the paddle multiclass_nms to onnx op.
Convert the paddle multiclass_nms to onnx op.
This op is get the select boxes from origin boxes.
This op is get the select boxes from origin boxes.
"""
"""
inputs
=
dict
()
return
multiclass_nms9
(
op
,
block
)
outputs
=
dict
()
attrs
=
dict
()
for
name
in
op
.
input_names
:
inputs
[
name
]
=
op
.
input
(
name
)
for
name
in
op
.
output_names
:
outputs
[
name
]
=
op
.
output
(
name
)
for
name
in
op
.
attr_names
:
attrs
[
name
]
=
op
.
attr
(
name
)
result_name
=
outputs
[
'Out'
][
0
]
background
=
attrs
[
'background_label'
]
normalized
=
attrs
[
'normalized'
]
if
normalized
==
False
:
warnings
.
warn
(
'The parameter normalized of multiclass_nms OP of Paddle is False, which has diff with ONNX.
\
Please set normalized=True in multiclass_nms of Paddle'
)
#convert the paddle attribute to onnx tensor
name_score_threshold
=
[
outputs
[
'Out'
][
0
]
+
"@score_threshold"
]
name_iou_threshold
=
[
outputs
[
'Out'
][
0
]
+
"@iou_threshold"
]
name_keep_top_k
=
[
outputs
[
'Out'
][
0
]
+
'@keep_top_k'
]
name_keep_top_k_2D
=
[
outputs
[
'Out'
][
0
]
+
'@keep_top_k_1D'
]
node_score_threshold
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_score_threshold
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_score_threshold
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
float
(
attrs
[
'score_threshold'
])]))
node_iou_threshold
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_iou_threshold
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_iou_threshold
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
float
(
attrs
[
'nms_threshold'
])]))
node_keep_top_k
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_keep_top_k
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_keep_top_k
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
(),
vals
=
[
np
.
int64
(
attrs
[
'keep_top_k'
])]))
node_keep_top_k_2D
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_keep_top_k_2D
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_keep_top_k_2D
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
1
,
1
],
vals
=
[
np
.
int64
(
attrs
[
'keep_top_k'
])]))
# the paddle data format is x1,y1,x2,y2
kwargs
=
{
'center_point_box'
:
0
}
name_select_nms
=
[
outputs
[
'Out'
][
0
]
+
"@select_index"
]
node_select_nms
=
onnx
.
helper
.
make_node
(
'NonMaxSuppression'
,
inputs
=
inputs
[
'BBoxes'
]
+
inputs
[
'Scores'
]
+
name_keep_top_k
+
\
name_iou_threshold
+
name_score_threshold
,
outputs
=
name_select_nms
)
# step 1 nodes select the nms class
node_list
=
[
node_score_threshold
,
node_iou_threshold
,
node_keep_top_k
,
node_keep_top_k_2D
,
node_select_nms
]
# create some const value to use
name_const_value
=
[
result_name
+
"@const_0"
,
result_name
+
"@const_1"
,
\
result_name
+
"@const_2"
,
\
result_name
+
"@const_-1"
]
value_const_value
=
[
0
,
1
,
2
,
-
1
]
for
name
,
value
in
zip
(
name_const_value
,
value_const_value
):
node
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
name
],
value
=
onnx
.
helper
.
make_tensor
(
name
=
name
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
1
],
vals
=
[
value
]))
node_list
.
append
(
node
)
# Ine this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# and the same time, decode the select indices to 1 * D, gather the select_indices
outputs_gather_1
=
[
result_name
+
"@gather_1"
]
node_gather_1
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
name_select_nms
+
[
result_name
+
"@const_1"
],
outputs
=
outputs_gather_1
,
axis
=
1
)
node_list
.
append
(
node_gather_1
)
outputs_squeeze_gather_1
=
[
result_name
+
"@sequeeze_gather_1"
]
node_squeeze_gather_1
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_gather_1
,
outputs
=
outputs_squeeze_gather_1
,
axes
=
[
1
])
node_list
.
append
(
node_squeeze_gather_1
)
outputs_gather_2
=
[
result_name
+
"@gather_2"
]
node_gather_2
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
name_select_nms
+
[
result_name
+
"@const_2"
],
outputs
=
outputs_gather_2
,
axis
=
1
)
node_list
.
append
(
node_gather_2
)
#slice the class is not 0
if
background
==
0
:
outputs_nonzero
=
[
result_name
+
"@nonzero"
]
node_nonzero
=
onnx
.
helper
.
make_node
(
'NonZero'
,
inputs
=
outputs_squeeze_gather_1
,
outputs
=
outputs_nonzero
)
node_list
.
append
(
node_nonzero
)
else
:
name_thresh
=
[
result_name
+
"@thresh"
]
node_thresh
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_thresh
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_thresh
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT32
,
dims
=
[
1
],
vals
=
[
-
1
]))
node_list
.
append
(
node_thresh
)
outputs_cast
=
[
result_name
+
"@cast"
]
node_cast
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_squeeze_gather_1
,
outputs
=
outputs_cast
,
to
=
6
)
node_list
.
append
(
node_cast
)
outputs_greater
=
[
result_name
+
"@greater"
]
node_greater
=
onnx
.
helper
.
make_node
(
'Greater'
,
inputs
=
outputs_cast
+
name_thresh
,
outputs
=
outputs_greater
)
node_list
.
append
(
node_greater
)
outputs_nonzero
=
[
result_name
+
"@nonzero"
]
node_nonzero
=
onnx
.
helper
.
make_node
(
'NonZero'
,
inputs
=
outputs_greater
,
outputs
=
outputs_nonzero
)
node_list
.
append
(
node_nonzero
)
outputs_gather_1_nonzero
=
[
result_name
+
"@gather_1_nonzero"
]
node_gather_1_nonzero
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_1
+
outputs_nonzero
,
outputs
=
outputs_gather_1_nonzero
,
axis
=
0
)
node_list
.
append
(
node_gather_1_nonzero
)
outputs_gather_2_nonzero
=
[
result_name
+
"@gather_2_nonzero"
]
node_gather_2_nonzero
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_2
+
outputs_nonzero
,
outputs
=
outputs_gather_2_nonzero
,
axis
=
0
)
node_list
.
append
(
node_gather_2_nonzero
)
# reshape scores N * C * M to (N*C*M) * 1
outputs_reshape_scores_rank1
=
[
result_name
+
"@reshape_scores_rank1"
]
node_reshape_scores_rank1
=
onnx
.
helper
.
make_node
(
"Reshape"
,
inputs
=
inputs
[
'Scores'
]
+
[
result_name
+
"@const_-1"
],
outputs
=
outputs_reshape_scores_rank1
)
node_list
.
append
(
node_reshape_scores_rank1
)
# get the shape of scores
outputs_shape_scores
=
[
result_name
+
"@shape_scores"
]
node_shape_scores
=
onnx
.
helper
.
make_node
(
'Shape'
,
inputs
=
inputs
[
'Scores'
],
outputs
=
outputs_shape_scores
)
node_list
.
append
(
node_shape_scores
)
# gather the index: 2 shape of scores
outputs_gather_scores_dim1
=
[
result_name
+
"@gather_scores_dim1"
]
node_gather_scores_dim1
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_shape_scores
+
[
result_name
+
"@const_2"
],
outputs
=
outputs_gather_scores_dim1
,
axis
=
0
)
node_list
.
append
(
node_gather_scores_dim1
)
# mul class * M
outputs_mul_classnum_boxnum
=
[
result_name
+
"@mul_classnum_boxnum"
]
node_mul_classnum_boxnum
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_gather_1_nonzero
+
outputs_gather_scores_dim1
,
outputs
=
outputs_mul_classnum_boxnum
)
node_list
.
append
(
node_mul_classnum_boxnum
)
# add class * M * index
outputs_add_class_M_index
=
[
result_name
+
"@add_class_M_index"
]
node_add_class_M_index
=
onnx
.
helper
.
make_node
(
'Add'
,
inputs
=
outputs_mul_classnum_boxnum
+
outputs_gather_2_nonzero
,
outputs
=
outputs_add_class_M_index
)
node_list
.
append
(
node_add_class_M_index
)
# Squeeze the indices to 1 dim
outputs_squeeze_select_index
=
[
result_name
+
"@squeeze_select_index"
]
node_squeeze_select_index
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_add_class_M_index
,
outputs
=
outputs_squeeze_select_index
,
axes
=
[
0
,
2
])
node_list
.
append
(
node_squeeze_select_index
)
# gather the data from flatten scores
outputs_gather_select_scores
=
[
result_name
+
"@gather_select_scores"
]
node_gather_select_scores
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_reshape_scores_rank1
+
\
outputs_squeeze_select_index
,
outputs
=
outputs_gather_select_scores
,
axis
=
0
)
node_list
.
append
(
node_gather_select_scores
)
# get nums to input TopK
outputs_shape_select_num
=
[
result_name
+
"@shape_select_num"
]
node_shape_select_num
=
onnx
.
helper
.
make_node
(
'Shape'
,
inputs
=
outputs_gather_select_scores
,
outputs
=
outputs_shape_select_num
)
node_list
.
append
(
node_shape_select_num
)
outputs_gather_select_num
=
[
result_name
+
"@gather_select_num"
]
node_gather_select_num
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_shape_select_num
+
[
result_name
+
"@const_0"
],
outputs
=
outputs_gather_select_num
,
axis
=
0
)
node_list
.
append
(
node_gather_select_num
)
outputs_unsqueeze_select_num
=
[
result_name
+
"@unsqueeze_select_num"
]
node_unsqueeze_select_num
=
onnx
.
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
outputs_gather_select_num
,
outputs
=
outputs_unsqueeze_select_num
,
axes
=
[
0
])
node_list
.
append
(
node_unsqueeze_select_num
)
outputs_concat_topK_select_num
=
[
result_name
+
"@conat_topK_select_num"
]
node_conat_topK_select_num
=
onnx
.
helper
.
make_node
(
'Concat'
,
inputs
=
outputs_unsqueeze_select_num
+
name_keep_top_k_2D
,
outputs
=
outputs_concat_topK_select_num
,
axis
=
0
)
node_list
.
append
(
node_conat_topK_select_num
)
outputs_cast_concat_topK_select_num
=
[
result_name
+
"@concat_topK_select_num"
]
node_outputs_cast_concat_topK_select_num
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_concat_topK_select_num
,
outputs
=
outputs_cast_concat_topK_select_num
,
to
=
6
)
node_list
.
append
(
node_outputs_cast_concat_topK_select_num
)
# get min(topK, num_select)
outputs_compare_topk_num_select
=
[
result_name
+
"@compare_topk_num_select"
]
node_compare_topk_num_select
=
onnx
.
helper
.
make_node
(
'ReduceMin'
,
inputs
=
outputs_cast_concat_topK_select_num
,
outputs
=
outputs_compare_topk_num_select
,
keepdims
=
0
)
node_list
.
append
(
node_compare_topk_num_select
)
# unsqueeze the indices to 1D tensor
outputs_unsqueeze_topk_select_indices
=
[
result_name
+
"@unsqueeze_topk_select_indices"
]
node_unsqueeze_topk_select_indices
=
onnx
.
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
outputs_compare_topk_num_select
,
outputs
=
outputs_unsqueeze_topk_select_indices
,
axes
=
[
0
])
node_list
.
append
(
node_unsqueeze_topk_select_indices
)
# cast the indices to INT64
outputs_cast_topk_indices
=
[
result_name
+
"@cast_topk_indices"
]
node_cast_topk_indices
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_unsqueeze_topk_select_indices
,
outputs
=
outputs_cast_topk_indices
,
to
=
7
)
node_list
.
append
(
node_cast_topk_indices
)
# select topk scores indices
outputs_topk_select_topk_indices
=
[
result_name
+
"@topk_select_topk_values"
,
\
result_name
+
"@topk_select_topk_indices"
]
node_topk_select_topk_indices
=
onnx
.
helper
.
make_node
(
'TopK'
,
inputs
=
outputs_gather_select_scores
+
outputs_cast_topk_indices
,
outputs
=
outputs_topk_select_topk_indices
)
node_list
.
append
(
node_topk_select_topk_indices
)
# gather topk label, scores, boxes
outputs_gather_topk_scores
=
[
result_name
+
"@gather_topk_scores"
]
node_gather_topk_scores
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_select_scores
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_scores
,
axis
=
0
)
node_list
.
append
(
node_gather_topk_scores
)
outputs_gather_topk_class
=
[
result_name
+
"@gather_topk_class"
]
node_gather_topk_class
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_1_nonzero
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_class
,
axis
=
1
)
node_list
.
append
(
node_gather_topk_class
)
# gather the boxes need to gather the boxes id, then get boxes
outputs_gather_topk_boxes_id
=
[
result_name
+
"@gather_topk_boxes_id"
]
node_gather_topk_boxes_id
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_2_nonzero
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_boxes_id
,
axis
=
1
)
node_list
.
append
(
node_gather_topk_boxes_id
)
# squeeze the gather_topk_boxes_id to 1 dim
outputs_squeeze_topk_boxes_id
=
[
result_name
+
"@squeeze_topk_boxes_id"
]
node_squeeze_topk_boxes_id
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_gather_topk_boxes_id
,
outputs
=
outputs_squeeze_topk_boxes_id
,
axes
=
[
0
,
2
])
node_list
.
append
(
node_squeeze_topk_boxes_id
)
outputs_gather_select_boxes
=
[
result_name
+
"@gather_select_boxes"
]
node_gather_select_boxes
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
inputs
[
'BBoxes'
]
+
outputs_squeeze_topk_boxes_id
,
outputs
=
outputs_gather_select_boxes
,
axis
=
1
)
node_list
.
append
(
node_gather_select_boxes
)
# concat the final result
# before concat need to cast the class to float
outputs_cast_topk_class
=
[
result_name
+
"@cast_topk_class"
]
node_cast_topk_class
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_gather_topk_class
,
outputs
=
outputs_cast_topk_class
,
to
=
1
)
node_list
.
append
(
node_cast_topk_class
)
outputs_unsqueeze_topk_scores
=
[
result_name
+
"@unsqueeze_topk_scores"
]
node_unsqueeze_topk_scores
=
onnx
.
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
outputs_gather_topk_scores
,
outputs
=
outputs_unsqueeze_topk_scores
,
axes
=
[
0
,
2
])
node_list
.
append
(
node_unsqueeze_topk_scores
)
inputs_concat_final_results
=
outputs_cast_topk_class
+
outputs_unsqueeze_topk_scores
+
\
outputs_gather_select_boxes
outputs_concat_final_results
=
outputs
[
'Out'
]
node_concat_final_results
=
onnx
.
helper
.
make_node
(
'Concat'
,
inputs
=
inputs_concat_final_results
,
outputs
=
outputs_concat_final_results
,
axis
=
2
)
node_list
.
append
(
node_concat_final_results
)
return
node_list
x2paddle/op_mapper/paddle2onnx/opset10/paddle_custom_layer/yolo_box.py
浏览文件 @
98b8c410
import
onnx
import
onnx
import
numpy
as
np
import
numpy
as
np
from
onnx
import
onnx_pb
,
helper
from
onnx
import
onnx_pb
,
helper
from
x2paddle.op_mapper.paddle2onnx.opset9.paddle_custom_layer.yolo_box
import
yolo_box
as
yolo_box9
def
get_old_name
(
arg
,
name_prefix
=
''
):
prefix_index
=
arg
.
find
(
name_prefix
)
if
prefix_index
!=
-
1
:
last_prefix
=
arg
[
len
(
name_prefix
):]
else
:
last_prefix
=
arg
idx
=
last_prefix
.
find
(
'@'
)
if
idx
!=
-
1
:
last_prefix
=
last_prefix
[:
idx
]
return
name_prefix
+
last_prefix
def
yolo_box
(
op
,
block
):
def
yolo_box
(
op
,
block
):
inputs
=
dict
()
return
yolo_box9
(
op
,
block
)
outputs
=
dict
()
attrs
=
dict
()
for
name
in
op
.
input_names
:
inputs
[
name
]
=
op
.
input
(
name
)
for
name
in
op
.
output_names
:
outputs
[
name
]
=
op
.
output
(
name
)
for
name
in
op
.
attr_names
:
attrs
[
name
]
=
op
.
attr
(
name
)
model_name
=
outputs
[
'Boxes'
][
0
]
input_shape
=
block
.
vars
[
get_old_name
(
inputs
[
'X'
][
0
])].
shape
image_size
=
inputs
[
'ImgSize'
]
input_height
=
input_shape
[
2
]
input_width
=
input_shape
[
3
]
class_num
=
attrs
[
'class_num'
]
anchors
=
attrs
[
'anchors'
]
num_anchors
=
int
(
len
(
anchors
))
//
2
downsample_ratio
=
attrs
[
'downsample_ratio'
]
input_size
=
input_height
*
downsample_ratio
conf_thresh
=
attrs
[
'conf_thresh'
]
conf_thresh_mat
=
np
.
ones
([
num_anchors
*
input_height
*
input_width
])
*
conf_thresh
node_list
=
[]
im_outputs
=
[]
x_shape
=
[
1
,
num_anchors
,
5
+
class_num
,
input_height
,
input_width
]
name_x_shape
=
[
model_name
+
"@x_shape"
]
node_x_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_x_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_x_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
5
],
vals
=
x_shape
))
node_list
.
append
(
node_x_shape
)
outputs_x_reshape
=
[
model_name
+
"@reshape"
]
node_x_reshape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
inputs
[
'X'
]
+
name_x_shape
,
outputs
=
outputs_x_reshape
)
node_list
.
append
(
node_x_reshape
)
outputs_x_transpose
=
[
model_name
+
"@x_transpose"
]
node_x_transpose
=
onnx
.
helper
.
make_node
(
'Transpose'
,
inputs
=
outputs_x_reshape
,
outputs
=
outputs_x_transpose
,
perm
=
[
0
,
1
,
3
,
4
,
2
])
node_list
.
append
(
node_x_transpose
)
range_x
=
[]
range_y
=
[]
for
i
in
range
(
0
,
input_width
):
range_x
.
append
(
i
)
for
j
in
range
(
0
,
input_height
):
range_y
.
append
(
j
)
name_range_x
=
[
model_name
+
"@range_x"
]
node_range_x
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_range_x
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_range_x
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
[
input_width
],
vals
=
range_x
))
node_list
.
append
(
node_range_x
)
name_range_y
=
[
model_name
+
"@range_y"
]
node_range_y
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_range_y
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_range_y
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
[
input_height
],
vals
=
range_y
))
node_list
.
append
(
node_range_y
)
range_x_new_shape
=
[
1
,
input_width
]
range_y_new_shape
=
[
input_height
,
1
]
name_range_x_new_shape
=
[
model_name
+
"@range_x_new_shape"
]
node_range_x_new_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_range_x_new_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_range_x_new_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
range_x_new_shape
)],
vals
=
range_x_new_shape
))
node_list
.
append
(
node_range_x_new_shape
)
name_range_y_new_shape
=
[
model_name
+
"@range_y_new_shape"
]
node_range_y_new_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_range_y_new_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_range_y_new_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
range_y_new_shape
)],
vals
=
range_y_new_shape
))
node_list
.
append
(
node_range_y_new_shape
)
outputs_range_x_reshape
=
[
model_name
+
"@range_x_reshape"
]
node_range_x_reshape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
name_range_x
+
name_range_x_new_shape
,
outputs
=
outputs_range_x_reshape
)
node_list
.
append
(
node_range_x_reshape
)
outputs_range_y_reshape
=
[
model_name
+
"@range_y_reshape"
]
node_range_y_reshape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
name_range_y
+
name_range_y_new_shape
,
outputs
=
outputs_range_y_reshape
)
node_list
.
append
(
node_range_y_reshape
)
outputs_grid_x
=
[
model_name
+
"@grid_x"
]
node_grid_x
=
onnx
.
helper
.
make_node
(
"Tile"
,
inputs
=
outputs_range_x_reshape
+
name_range_y_new_shape
,
outputs
=
outputs_grid_x
)
node_list
.
append
(
node_grid_x
)
outputs_grid_y
=
[
model_name
+
"@grid_y"
]
node_grid_y
=
onnx
.
helper
.
make_node
(
"Tile"
,
inputs
=
outputs_range_y_reshape
+
name_range_x_new_shape
,
outputs
=
outputs_grid_y
)
node_list
.
append
(
node_grid_y
)
outputs_box_x
=
[
model_name
+
"@box_x"
]
outputs_box_y
=
[
model_name
+
"@box_y"
]
outputs_box_w
=
[
model_name
+
"@box_w"
]
outputs_box_h
=
[
model_name
+
"@box_h"
]
outputs_conf
=
[
model_name
+
"@conf"
]
outputs_prob
=
[
model_name
+
"@prob"
]
node_split_input
=
onnx
.
helper
.
make_node
(
"Split"
,
inputs
=
outputs_x_transpose
,
outputs
=
outputs_box_x
+
outputs_box_y
+
outputs_box_w
\
+
outputs_box_h
+
outputs_conf
+
outputs_prob
,
axis
=-
1
,
split
=
[
1
,
1
,
1
,
1
,
1
,
class_num
])
node_list
.
append
(
node_split_input
)
outputs_box_x_sigmoid
=
[
model_name
+
"@box_x_sigmoid"
]
outputs_box_y_sigmoid
=
[
model_name
+
"@box_y_sigmoid"
]
node_box_x_sigmoid
=
onnx
.
helper
.
make_node
(
"Sigmoid"
,
inputs
=
outputs_box_x
,
outputs
=
outputs_box_x_sigmoid
)
node_list
.
append
(
node_box_x_sigmoid
)
node_box_y_sigmoid
=
onnx
.
helper
.
make_node
(
"Sigmoid"
,
inputs
=
outputs_box_y
,
outputs
=
outputs_box_y_sigmoid
)
node_list
.
append
(
node_box_y_sigmoid
)
outputs_box_x_squeeze
=
[
model_name
+
"@box_x_squeeze"
]
outputs_box_y_squeeze
=
[
model_name
+
"@box_y_squeeze"
]
node_box_x_squeeze
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_box_x_sigmoid
,
outputs
=
outputs_box_x_squeeze
,
axes
=
[
4
])
node_list
.
append
(
node_box_x_squeeze
)
node_box_y_squeeze
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_box_y_sigmoid
,
outputs
=
outputs_box_y_squeeze
,
axes
=
[
4
])
node_list
.
append
(
node_box_y_squeeze
)
outputs_box_x_add_grid
=
[
model_name
+
"@box_x_add_grid"
]
outputs_box_y_add_grid
=
[
model_name
+
"@box_y_add_grid"
]
node_box_x_add_grid
=
onnx
.
helper
.
make_node
(
"Add"
,
inputs
=
outputs_grid_x
+
outputs_box_x_squeeze
,
outputs
=
outputs_box_x_add_grid
)
node_list
.
append
(
node_box_x_add_grid
)
node_box_y_add_grid
=
onnx
.
helper
.
make_node
(
"Add"
,
inputs
=
outputs_grid_y
+
outputs_box_y_squeeze
,
outputs
=
outputs_box_y_add_grid
)
node_list
.
append
(
node_box_y_add_grid
)
name_input_h
=
[
model_name
+
"@input_h"
]
name_input_w
=
[
model_name
+
"@input_w"
]
node_input_h
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_input_h
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_input_w
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
input_height
]))
node_list
.
append
(
node_input_h
)
node_input_w
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_input_w
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_input_w
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
input_width
]))
node_list
.
append
(
node_input_w
)
outputs_box_x_encode
=
[
model_name
+
"@box_x_encode"
]
outputs_box_y_encode
=
[
model_name
+
"@box_y_encode"
]
node_box_x_encode
=
onnx
.
helper
.
make_node
(
'Div'
,
inputs
=
outputs_box_x_add_grid
+
name_input_w
,
outputs
=
outputs_box_x_encode
)
node_list
.
append
(
node_box_x_encode
)
node_box_y_encode
=
onnx
.
helper
.
make_node
(
'Div'
,
inputs
=
outputs_box_y_add_grid
+
name_input_h
,
outputs
=
outputs_box_y_encode
)
node_list
.
append
(
node_box_y_encode
)
name_anchor_tensor
=
[
model_name
+
"@anchor_tensor"
]
node_anchor_tensor
=
onnx
.
helper
.
make_node
(
"Constant"
,
inputs
=
[],
outputs
=
name_anchor_tensor
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_anchor_tensor
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
[
len
(
anchors
)],
vals
=
anchors
))
node_list
.
append
(
node_anchor_tensor
)
anchor_shape
=
[
int
(
num_anchors
),
2
]
name_anchor_shape
=
[
model_name
+
"@anchor_shape"
]
node_anchor_shape
=
onnx
.
helper
.
make_node
(
"Constant"
,
inputs
=
[],
outputs
=
name_anchor_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_anchor_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
2
],
vals
=
anchor_shape
))
node_list
.
append
(
node_anchor_shape
)
outputs_anchor_tensor_reshape
=
[
model_name
+
"@anchor_tensor_reshape"
]
node_anchor_tensor_reshape
=
onnx
.
helper
.
make_node
(
"Reshape"
,
inputs
=
name_anchor_tensor
+
name_anchor_shape
,
outputs
=
outputs_anchor_tensor_reshape
)
node_list
.
append
(
node_anchor_tensor_reshape
)
name_input_size
=
[
model_name
+
"@input_size"
]
node_input_size
=
onnx
.
helper
.
make_node
(
"Constant"
,
inputs
=
[],
outputs
=
name_input_size
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_input_size
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
input_size
]))
node_list
.
append
(
node_input_size
)
outputs_anchors_div_input_size
=
[
model_name
+
"@anchors_div_input_size"
]
node_anchors_div_input_size
=
onnx
.
helper
.
make_node
(
"Div"
,
inputs
=
outputs_anchor_tensor_reshape
+
name_input_size
,
outputs
=
outputs_anchors_div_input_size
)
node_list
.
append
(
node_anchors_div_input_size
)
outputs_anchor_w
=
[
model_name
+
"@anchor_w"
]
outputs_anchor_h
=
[
model_name
+
"@anchor_h"
]
node_anchor_split
=
onnx
.
helper
.
make_node
(
'Split'
,
inputs
=
outputs_anchors_div_input_size
,
outputs
=
outputs_anchor_w
+
outputs_anchor_h
,
axis
=
1
,
split
=
[
1
,
1
])
node_list
.
append
(
node_anchor_split
)
new_anchor_shape
=
[
1
,
int
(
num_anchors
),
1
,
1
]
name_new_anchor_shape
=
[
model_name
+
"@new_anchor_shape"
]
node_new_anchor_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_new_anchor_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_new_anchor_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
new_anchor_shape
)],
vals
=
new_anchor_shape
))
node_list
.
append
(
node_new_anchor_shape
)
outputs_anchor_w_reshape
=
[
model_name
+
"@anchor_w_reshape"
]
outputs_anchor_h_reshape
=
[
model_name
+
"@anchor_h_reshape"
]
node_anchor_w_reshape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_anchor_w
+
name_new_anchor_shape
,
outputs
=
outputs_anchor_w_reshape
)
node_list
.
append
(
node_anchor_w_reshape
)
node_anchor_h_reshape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_anchor_h
+
name_new_anchor_shape
,
outputs
=
outputs_anchor_h_reshape
)
node_list
.
append
(
node_anchor_h_reshape
)
outputs_box_w_squeeze
=
[
model_name
+
"@box_w_squeeze"
]
node_box_w_squeeze
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_box_w
,
outputs
=
outputs_box_w_squeeze
,
axes
=
[
4
])
node_list
.
append
(
node_box_w_squeeze
)
outputs_box_h_squeeze
=
[
model_name
+
"@box_h_squeeze"
]
node_box_h_squeeze
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_box_h
,
outputs
=
outputs_box_h_squeeze
,
axes
=
[
4
])
node_list
.
append
(
node_box_h_squeeze
)
outputs_box_w_exp
=
[
model_name
+
"@box_w_exp"
]
node_box_w_exp
=
onnx
.
helper
.
make_node
(
"Exp"
,
inputs
=
outputs_box_w_squeeze
,
outputs
=
outputs_box_w_exp
)
node_list
.
append
(
node_box_w_exp
)
outputs_box_h_exp
=
[
model_name
+
"@box_h_exp"
]
node_box_h_exp
=
onnx
.
helper
.
make_node
(
"Exp"
,
inputs
=
outputs_box_h_squeeze
,
outputs
=
outputs_box_h_exp
)
node_list
.
append
(
node_box_h_exp
)
outputs_box_w_encode
=
[
model_name
+
"box_w_encode"
]
outputs_box_h_encode
=
[
model_name
+
"box_h_encode"
]
node_box_w_encode
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_box_w_exp
+
outputs_anchor_w_reshape
,
outputs
=
outputs_box_w_encode
)
node_list
.
append
(
node_box_w_encode
)
node_box_h_encode
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_box_h_exp
+
outputs_anchor_h_reshape
,
outputs
=
outputs_box_h_encode
)
node_list
.
append
(
node_box_h_encode
)
outputs_conf_sigmoid
=
[
model_name
+
"@conf_sigmoid"
]
node_conf_sigmoid
=
onnx
.
helper
.
make_node
(
'Sigmoid'
,
inputs
=
outputs_conf
,
outputs
=
outputs_conf_sigmoid
)
node_list
.
append
(
node_conf_sigmoid
)
name_conf_thresh
=
[
model_name
+
"@conf_thresh"
]
node_conf_thresh
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_conf_thresh
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_conf_thresh
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
[
num_anchors
*
input_height
*
input_width
],
vals
=
conf_thresh_mat
))
node_list
.
append
(
node_conf_thresh
)
conf_shape
=
[
1
,
int
(
num_anchors
),
input_height
,
input_width
,
1
]
name_conf_shape
=
[
model_name
+
"@conf_shape"
]
node_conf_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_conf_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_conf_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
conf_shape
)],
vals
=
conf_shape
))
node_list
.
append
(
node_conf_shape
)
outputs_conf_thresh_reshape
=
[
model_name
+
"@conf_thresh_reshape"
]
node_conf_thresh_reshape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
name_conf_thresh
+
name_conf_shape
,
outputs
=
outputs_conf_thresh_reshape
)
node_list
.
append
(
node_conf_thresh_reshape
)
outputs_conf_sub
=
[
model_name
+
"@conf_sub"
]
node_conf_sub
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_conf_sigmoid
+
outputs_conf_thresh_reshape
,
outputs
=
outputs_conf_sub
)
node_list
.
append
(
node_conf_sub
)
outputs_conf_clip
=
[
model_name
+
"@conf_clip"
]
node_conf_clip
=
onnx
.
helper
.
make_node
(
'Clip'
,
inputs
=
outputs_conf_sub
,
outputs
=
outputs_conf_clip
)
node_list
.
append
(
node_conf_clip
)
zeros
=
[
0
]
name_zeros
=
[
model_name
+
"@zeros"
]
node_zeros
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_zeros
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_zeros
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
zeros
))
node_list
.
append
(
node_zeros
)
outputs_conf_clip_bool
=
[
model_name
+
"@conf_clip_bool"
]
node_conf_clip_bool
=
onnx
.
helper
.
make_node
(
'Greater'
,
inputs
=
outputs_conf_clip
+
name_zeros
,
outputs
=
outputs_conf_clip_bool
)
node_list
.
append
(
node_conf_clip_bool
)
outputs_conf_clip_cast
=
[
model_name
+
"@conf_clip_cast"
]
node_conf_clip_cast
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_conf_clip_bool
,
outputs
=
outputs_conf_clip_cast
,
to
=
1
)
node_list
.
append
(
node_conf_clip_cast
)
outputs_conf_set_zero
=
[
model_name
+
"@conf_set_zero"
]
node_conf_set_zero
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_conf_sigmoid
+
outputs_conf_clip_cast
,
outputs
=
outputs_conf_set_zero
)
node_list
.
append
(
node_conf_set_zero
)
outputs_prob_sigmoid
=
[
model_name
+
"@prob_sigmoid"
]
node_prob_sigmoid
=
onnx
.
helper
.
make_node
(
'Sigmoid'
,
inputs
=
outputs_prob
,
outputs
=
outputs_prob_sigmoid
)
node_list
.
append
(
node_prob_sigmoid
)
new_shape
=
[
1
,
int
(
num_anchors
),
input_height
,
input_width
,
1
]
name_new_shape
=
[
model_name
+
"@new_shape"
]
node_new_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_new_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_new_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
new_shape
)],
vals
=
new_shape
))
node_list
.
append
(
node_new_shape
)
outputs_conf_new_shape
=
[
model_name
+
"@_conf_new_shape"
]
node_conf_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_conf_set_zero
+
name_new_shape
,
outputs
=
outputs_conf_new_shape
)
node_list
.
append
(
node_conf_new_shape
)
outputs_score
=
[
model_name
+
"@score"
]
node_score
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_prob_sigmoid
+
outputs_conf_new_shape
,
outputs
=
outputs_score
)
node_list
.
append
(
node_score
)
outputs_conf_bool
=
[
model_name
+
"@conf_bool"
]
node_conf_bool
=
onnx
.
helper
.
make_node
(
'Greater'
,
inputs
=
outputs_conf_new_shape
+
name_zeros
,
outputs
=
outputs_conf_bool
)
node_list
.
append
(
node_conf_bool
)
outputs_box_x_new_shape
=
[
model_name
+
"@box_x_new_shape"
]
node_box_x_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_box_x_encode
+
name_new_shape
,
outputs
=
outputs_box_x_new_shape
)
node_list
.
append
(
node_box_x_new_shape
)
outputs_box_y_new_shape
=
[
model_name
+
"@box_y_new_shape"
]
node_box_y_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_box_y_encode
+
name_new_shape
,
outputs
=
outputs_box_y_new_shape
)
node_list
.
append
(
node_box_y_new_shape
)
outputs_box_w_new_shape
=
[
model_name
+
"@box_w_new_shape"
]
node_box_w_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_box_w_encode
+
name_new_shape
,
outputs
=
outputs_box_w_new_shape
)
node_list
.
append
(
node_box_w_new_shape
)
outputs_box_h_new_shape
=
[
model_name
+
"@box_h_new_shape"
]
node_box_h_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_box_h_encode
+
name_new_shape
,
outputs
=
outputs_box_h_new_shape
)
node_list
.
append
(
node_box_h_new_shape
)
outputs_pred_box
=
[
model_name
+
"@pred_box"
]
node_pred_box
=
onnx
.
helper
.
make_node
(
'Concat'
,
inputs
=
outputs_box_x_new_shape
+
outputs_box_y_new_shape
+
\
outputs_box_w_new_shape
+
outputs_box_h_new_shape
,
outputs
=
outputs_pred_box
,
axis
=
4
)
node_list
.
append
(
node_pred_box
)
outputs_conf_cast
=
[
model_name
+
"conf_cast"
]
node_conf_cast
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_conf_bool
,
outputs
=
outputs_conf_cast
,
to
=
1
)
node_list
.
append
(
node_conf_cast
)
outputs_pred_box_mul_conf
=
[
model_name
+
"@pred_box_mul_conf"
]
node_pred_box_mul_conf
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_pred_box
+
outputs_conf_cast
,
outputs
=
outputs_pred_box_mul_conf
)
node_list
.
append
(
node_pred_box_mul_conf
)
box_shape
=
[
1
,
int
(
num_anchors
)
*
input_height
*
input_width
,
4
]
name_box_shape
=
[
model_name
+
"@box_shape"
]
node_box_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_box_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_box_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
box_shape
)],
vals
=
box_shape
))
node_list
.
append
(
node_box_shape
)
outputs_pred_box_new_shape
=
[
model_name
+
"@pred_box_new_shape"
]
node_pred_box_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_pred_box_mul_conf
+
name_box_shape
,
outputs
=
outputs_pred_box_new_shape
)
node_list
.
append
(
node_pred_box_new_shape
)
outputs_pred_box_x
=
[
model_name
+
"@_pred_box_x"
]
outputs_pred_box_y
=
[
model_name
+
"@_pred_box_y"
]
outputs_pred_box_w
=
[
model_name
+
"@_pred_box_w"
]
outputs_pred_box_h
=
[
model_name
+
"@_pred_box_h"
]
node_pred_box_split
=
onnx
.
helper
.
make_node
(
'Split'
,
inputs
=
outputs_pred_box_new_shape
,
outputs
=
outputs_pred_box_x
+
outputs_pred_box_y
+
outputs_pred_box_w
+
outputs_pred_box_h
,
axis
=
2
)
node_list
.
append
(
node_pred_box_split
)
name_number_two
=
[
model_name
+
"@number_two"
]
node_number_two
=
onnx
.
helper
.
make_node
(
"Constant"
,
inputs
=
[],
outputs
=
name_number_two
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_number_two
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
2
]))
node_list
.
append
(
node_number_two
)
outputs_half_w
=
[
model_name
+
"@half_w"
]
node_half_w
=
onnx
.
helper
.
make_node
(
"Div"
,
inputs
=
outputs_pred_box_w
+
name_number_two
,
outputs
=
outputs_half_w
)
node_list
.
append
(
node_half_w
)
outputs_half_h
=
[
model_name
+
"@half_h"
]
node_half_h
=
onnx
.
helper
.
make_node
(
"Div"
,
inputs
=
outputs_pred_box_h
+
name_number_two
,
outputs
=
outputs_half_h
)
node_list
.
append
(
node_half_h
)
outputs_pred_box_x1
=
[
model_name
+
"@pred_box_x1"
]
node_pred_box_x1
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_pred_box_x
+
outputs_half_w
,
outputs
=
outputs_pred_box_x1
)
node_list
.
append
(
node_pred_box_x1
)
outputs_pred_box_y1
=
[
model_name
+
"@pred_box_y1"
]
node_pred_box_y1
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_pred_box_y
+
outputs_half_h
,
outputs
=
outputs_pred_box_y1
)
node_list
.
append
(
node_pred_box_y1
)
outputs_pred_box_x2
=
[
model_name
+
"@pred_box_x2"
]
node_pred_box_x2
=
onnx
.
helper
.
make_node
(
'Add'
,
inputs
=
outputs_pred_box_x
+
outputs_half_w
,
outputs
=
outputs_pred_box_x2
)
node_list
.
append
(
node_pred_box_x2
)
outputs_pred_box_y2
=
[
model_name
+
"@pred_box_y2"
]
node_pred_box_y2
=
onnx
.
helper
.
make_node
(
'Add'
,
inputs
=
outputs_pred_box_y
+
outputs_half_h
,
outputs
=
outputs_pred_box_y2
)
node_list
.
append
(
node_pred_box_y2
)
outputs_sqeeze_image_size
=
[
model_name
+
"@sqeeze_image_size"
]
node_sqeeze_image_size
=
onnx
.
helper
.
make_node
(
"Squeeze"
,
axes
=
[
0
],
inputs
=
image_size
,
outputs
=
outputs_sqeeze_image_size
)
node_list
.
append
(
node_sqeeze_image_size
)
output_img_height
=
[
model_name
+
"@img_height"
]
output_img_width
=
[
model_name
+
"@img_width"
]
node_image_size_split
=
onnx
.
helper
.
make_node
(
"Split"
,
inputs
=
outputs_sqeeze_image_size
,
outputs
=
output_img_height
+
output_img_width
,
axis
=-
1
,
split
=
[
1
,
1
])
node_list
.
append
(
node_image_size_split
)
output_img_width_cast
=
[
model_name
+
"@img_width_cast"
]
node_img_width_cast
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
output_img_width
,
outputs
=
output_img_width_cast
,
to
=
1
)
node_list
.
append
(
node_img_width_cast
)
output_img_height_cast
=
[
model_name
+
"@img_height_cast"
]
node_img_height_cast
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
output_img_height
,
outputs
=
output_img_height_cast
,
to
=
1
)
node_list
.
append
(
node_img_height_cast
)
outputs_pred_box_x1_decode
=
[
model_name
+
"@pred_box_x1_decode"
]
outputs_pred_box_y1_decode
=
[
model_name
+
"@pred_box_y1_decode"
]
outputs_pred_box_x2_decode
=
[
model_name
+
"@pred_box_x2_decode"
]
outputs_pred_box_y2_decode
=
[
model_name
+
"@pred_box_y2_decode"
]
node_pred_box_x1_decode
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_pred_box_x1
+
output_img_width_cast
,
outputs
=
outputs_pred_box_x1_decode
)
node_list
.
append
(
node_pred_box_x1_decode
)
node_pred_box_y1_decode
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_pred_box_y1
+
output_img_height_cast
,
outputs
=
outputs_pred_box_y1_decode
)
node_list
.
append
(
node_pred_box_y1_decode
)
node_pred_box_x2_decode
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_pred_box_x2
+
output_img_width_cast
,
outputs
=
outputs_pred_box_x2_decode
)
node_list
.
append
(
node_pred_box_x2_decode
)
node_pred_box_y2_decode
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_pred_box_y2
+
output_img_height_cast
,
outputs
=
outputs_pred_box_y2_decode
)
node_list
.
append
(
node_pred_box_y2_decode
)
name_number_one
=
[
model_name
+
"@one"
]
node_number_one
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_number_one
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_number_one
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
1
]))
node_list
.
append
(
node_number_one
)
output_new_img_height
=
[
model_name
+
"@new_img_height"
]
node_new_img_height
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
output_img_height_cast
+
name_number_one
,
outputs
=
output_new_img_height
)
node_list
.
append
(
node_new_img_height
)
output_new_img_width
=
[
model_name
+
"@new_img_width"
]
node_new_img_width
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
output_img_width_cast
+
name_number_one
,
outputs
=
output_new_img_width
)
node_list
.
append
(
node_new_img_width
)
outputs_pred_box_x2_sub_w
=
[
model_name
+
"@pred_box_x2_sub_w"
]
node_pred_box_x2_sub_w
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_pred_box_x2_decode
+
output_new_img_width
,
outputs
=
outputs_pred_box_x2_sub_w
)
node_list
.
append
(
node_pred_box_x2_sub_w
)
outputs_pred_box_y2_sub_h
=
[
model_name
+
"@pred_box_y2_sub_h"
]
node_pred_box_y2_sub_h
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_pred_box_y2_decode
+
output_new_img_height
,
outputs
=
outputs_pred_box_y2_sub_h
)
node_list
.
append
(
node_pred_box_y2_sub_h
)
outputs_pred_box_x1_clip
=
[
model_name
+
"@pred_box_x1_clip"
]
outputs_pred_box_y1_clip
=
[
model_name
+
"@pred_box_y1_clip"
]
outputs_pred_box_x2_clip
=
[
model_name
+
"@pred_box_x2_clip"
]
outputs_pred_box_y2_clip
=
[
model_name
+
"@pred_box_y2_clip"
]
node_pred_box_x1_clip
=
onnx
.
helper
.
make_node
(
'Clip'
,
inputs
=
outputs_pred_box_x1_decode
,
outputs
=
outputs_pred_box_x1_clip
,
min
=
0.0
,
max
=
float
(
np
.
inf
))
node_list
.
append
(
node_pred_box_x1_clip
)
node_pred_box_y1_clip
=
onnx
.
helper
.
make_node
(
'Clip'
,
inputs
=
outputs_pred_box_y1_decode
,
outputs
=
outputs_pred_box_y1_clip
,
min
=
0.0
,
max
=
float
(
np
.
inf
))
node_list
.
append
(
node_pred_box_y1_clip
)
node_pred_box_x2_clip
=
onnx
.
helper
.
make_node
(
'Clip'
,
inputs
=
outputs_pred_box_x2_sub_w
,
outputs
=
outputs_pred_box_x2_clip
,
min
=
0.0
,
max
=
float
(
np
.
inf
))
node_list
.
append
(
node_pred_box_x2_clip
)
node_pred_box_y2_clip
=
onnx
.
helper
.
make_node
(
'Clip'
,
inputs
=
outputs_pred_box_y2_sub_h
,
outputs
=
outputs_pred_box_y2_clip
,
min
=
0.0
,
max
=
float
(
np
.
inf
))
node_list
.
append
(
node_pred_box_y2_clip
)
outputs_pred_box_x2_res
=
[
model_name
+
"@box_x2_res"
]
node_pred_box_x2_res
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_pred_box_x2_decode
+
outputs_pred_box_x2_clip
,
outputs
=
outputs_pred_box_x2_res
)
node_list
.
append
(
node_pred_box_x2_res
)
outputs_pred_box_y2_res
=
[
model_name
+
"@box_y2_res"
]
node_pred_box_y2_res
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_pred_box_y2_decode
+
outputs_pred_box_y2_clip
,
outputs
=
outputs_pred_box_y2_res
)
node_list
.
append
(
node_pred_box_y2_res
)
node_pred_box_result
=
onnx
.
helper
.
make_node
(
'Concat'
,
inputs
=
outputs_pred_box_x1_clip
+
outputs_pred_box_y1_clip
+
outputs_pred_box_x2_res
+
outputs_pred_box_y2_res
,
outputs
=
outputs
[
'Boxes'
],
axis
=-
1
)
node_list
.
append
(
node_pred_box_result
)
score_shape
=
[
1
,
input_height
*
input_width
*
int
(
num_anchors
),
class_num
]
name_score_shape
=
[
model_name
+
"@score_shape"
]
node_score_shape
=
onnx
.
helper
.
make_node
(
"Constant"
,
inputs
=
[],
outputs
=
name_score_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_score_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
score_shape
)],
vals
=
score_shape
))
node_list
.
append
(
node_score_shape
)
node_score_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_score
+
name_score_shape
,
outputs
=
outputs
[
'Scores'
])
node_list
.
append
(
node_score_new_shape
)
return
node_list
x2paddle/op_mapper/paddle2onnx/opset11/paddle_custom_layer/im2sequence.py
浏览文件 @
98b8c410
import
onnx
import
onnx
import
numpy
as
np
import
numpy
as
np
from
onnx
import
onnx_pb
,
helper
from
onnx
import
onnx_pb
,
helper
from
x2paddle.op_mapper.paddle2onnx.opset10.paddle_custom_layer.im2sequence
import
im2sequence
as
im2sequence10
im2seq_counter
=
0
def
im2sequence
(
op
,
block
):
def
im2sequence
(
op
,
block
):
global
im2sequence_counter
return
im2sequence10
(
op
,
block
)
n
,
c
,
h
,
w
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
assert
h
>
0
and
w
>
0
,
"Only supported fixed input shape for im2sequence operator."
stride_h
,
stride_w
=
op
.
attr
(
'strides'
)
paddings
=
op
.
attr
(
'paddings'
)
assert
op
.
attr
(
'out_stride'
)
!=
1
,
"Only out_stride==1 is supported for im2sequence operator."
h
=
h
+
paddings
[
0
]
+
paddings
[
1
]
w
=
w
+
paddings
[
1
]
+
paddings
[
2
]
kernel_h
,
kernel_w
=
op
.
attr
(
'kernels'
)
out_h
=
1
+
(
h
-
kernel_h
+
stride_h
-
1
)
//
stride_h
out_w
=
1
+
(
w
-
kernel_w
+
stride_w
-
1
)
//
stride_w
h_steps
=
list
()
for
i
in
range
(
out_h
):
h_steps
.
append
([
i
*
stride_h
,
i
*
stride_h
+
kernel_h
])
w_steps
=
list
()
for
i
in
range
(
out_w
):
w_steps
.
append
([
i
*
stride_w
,
i
*
stride_w
+
kernel_w
])
nodes
=
list
()
slice_blocks
=
list
()
for
i
in
range
(
out_h
):
for
j
in
range
(
out_w
):
starts_name
=
"im2sequence.starts.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
starts_tensor
=
helper
.
make_tensor
(
name
=
starts_name
,
data_type
=
onnx_pb
.
TensorProto
.
INT64
,
dims
=
[
4
],
vals
=
[
0
,
0
,
h_steps
[
i
][
0
],
w_steps
[
j
][
0
]])
ends_name
=
"im2sequence.ends.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
ends_tensor
=
helper
.
make_tensor
(
name
=
ends_name
,
data_type
=
onnx_pb
.
TensorProto
.
INT64
,
dims
=
[
4
],
vals
=
[
999999
,
999999
,
h_steps
[
i
][
1
],
w_steps
[
j
][
1
]])
starts_node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
starts_name
],
value
=
starts_tensor
)
ends_node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
ends_name
],
value
=
ends_tensor
)
nodes
.
extend
([
starts_node
,
ends_node
])
slice_block_name
=
"im2sequence.slice.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
slice_block_node
=
helper
.
make_node
(
'Slice'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
starts_name
,
ends_name
],
outputs
=
[
slice_block_name
])
flatten_block_name
=
"im2sequence.flatten.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
flatten_block_node
=
helper
.
make_node
(
"Flatten"
,
inputs
=
[
slice_block_name
],
outputs
=
[
flatten_block_name
],
axis
=
0
)
nodes
.
extend
([
slice_block_node
,
flatten_block_node
])
slice_blocks
.
append
(
flatten_block_name
)
concat_block_name
=
"im2sequence.concat_block.{}"
.
format
(
im2seq_counter
)
# concat_block_node = helper.make_node("Concat", inputs=slice_blocks, outputs=[concat_block_name], axis=0)
concat_block_node
=
helper
.
make_node
(
"Concat"
,
inputs
=
slice_blocks
,
outputs
=
op
.
output
(
'Out'
),
axis
=
0
)
nodes
.
append
(
concat_block_node
)
print
(
"
\n\n
==========Importance Notice==========="
)
print
(
"Since im2sequence operator is used in your paddlepaddle model, the translated onnx model only support input data with batch_size=1."
)
print
(
"======================================
\n
"
)
return
nodes
x2paddle/op_mapper/paddle2onnx/opset11/paddle_custom_layer/multiclass_nms.py
浏览文件 @
98b8c410
...
@@ -21,6 +21,7 @@ import paddle.fluid as fluid
...
@@ -21,6 +21,7 @@ import paddle.fluid as fluid
import
onnx
import
onnx
import
warnings
import
warnings
from
onnx
import
helper
,
onnx_pb
from
onnx
import
helper
,
onnx_pb
from
x2paddle.op_mapper.paddle2onnx.opset10.paddle_custom_layer.multiclass_nms
import
multiclass_nms
as
multiclass_nms10
def
multiclass_nms
(
op
,
block
):
def
multiclass_nms
(
op
,
block
):
...
@@ -28,389 +29,4 @@ def multiclass_nms(op, block):
...
@@ -28,389 +29,4 @@ def multiclass_nms(op, block):
Convert the paddle multiclass_nms to onnx op.
Convert the paddle multiclass_nms to onnx op.
This op is get the select boxes from origin boxes.
This op is get the select boxes from origin boxes.
"""
"""
inputs
=
dict
()
return
multiclass_nms10
(
op
,
block
)
outputs
=
dict
()
attrs
=
dict
()
for
name
in
op
.
input_names
:
inputs
[
name
]
=
op
.
input
(
name
)
for
name
in
op
.
output_names
:
outputs
[
name
]
=
op
.
output
(
name
)
for
name
in
op
.
attr_names
:
attrs
[
name
]
=
op
.
attr
(
name
)
result_name
=
outputs
[
'Out'
][
0
]
background
=
attrs
[
'background_label'
]
normalized
=
attrs
[
'normalized'
]
if
normalized
==
False
:
warnings
.
warn
(
'The parameter normalized of multiclass_nms OP of Paddle is False, which has diff with ONNX.
\
Please set normalized=True in multiclass_nms of Paddle'
)
#convert the paddle attribute to onnx tensor
name_score_threshold
=
[
outputs
[
'Out'
][
0
]
+
"@score_threshold"
]
name_iou_threshold
=
[
outputs
[
'Out'
][
0
]
+
"@iou_threshold"
]
name_keep_top_k
=
[
outputs
[
'Out'
][
0
]
+
'@keep_top_k'
]
name_keep_top_k_2D
=
[
outputs
[
'Out'
][
0
]
+
'@keep_top_k_1D'
]
node_score_threshold
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_score_threshold
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_score_threshold
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
float
(
attrs
[
'score_threshold'
])]))
node_iou_threshold
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_iou_threshold
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_iou_threshold
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
float
(
attrs
[
'nms_threshold'
])]))
node_keep_top_k
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_keep_top_k
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_keep_top_k
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
(),
vals
=
[
np
.
int64
(
attrs
[
'keep_top_k'
])]))
node_keep_top_k_2D
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_keep_top_k_2D
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_keep_top_k_2D
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
1
,
1
],
vals
=
[
np
.
int64
(
attrs
[
'keep_top_k'
])]))
# the paddle data format is x1,y1,x2,y2
kwargs
=
{
'center_point_box'
:
0
}
name_select_nms
=
[
outputs
[
'Out'
][
0
]
+
"@select_index"
]
node_select_nms
=
onnx
.
helper
.
make_node
(
'NonMaxSuppression'
,
inputs
=
inputs
[
'BBoxes'
]
+
inputs
[
'Scores'
]
+
name_keep_top_k
+
\
name_iou_threshold
+
name_score_threshold
,
outputs
=
name_select_nms
)
# step 1 nodes select the nms class
node_list
=
[
node_score_threshold
,
node_iou_threshold
,
node_keep_top_k
,
node_keep_top_k_2D
,
node_select_nms
]
# create some const value to use
name_const_value
=
[
result_name
+
"@const_0"
,
result_name
+
"@const_1"
,
\
result_name
+
"@const_2"
,
\
result_name
+
"@const_-1"
]
value_const_value
=
[
0
,
1
,
2
,
-
1
]
for
name
,
value
in
zip
(
name_const_value
,
value_const_value
):
node
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
name
],
value
=
onnx
.
helper
.
make_tensor
(
name
=
name
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
1
],
vals
=
[
value
]))
node_list
.
append
(
node
)
# Ine this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# and the same time, decode the select indices to 1 * D, gather the select_indices
outputs_gather_1
=
[
result_name
+
"@gather_1"
]
node_gather_1
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
name_select_nms
+
[
result_name
+
"@const_1"
],
outputs
=
outputs_gather_1
,
axis
=
1
)
node_list
.
append
(
node_gather_1
)
outputs_squeeze_gather_1
=
[
result_name
+
"@sequeeze_gather_1"
]
node_squeeze_gather_1
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_gather_1
,
outputs
=
outputs_squeeze_gather_1
,
axes
=
[
1
])
node_list
.
append
(
node_squeeze_gather_1
)
outputs_gather_2
=
[
result_name
+
"@gather_2"
]
node_gather_2
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
name_select_nms
+
[
result_name
+
"@const_2"
],
outputs
=
outputs_gather_2
,
axis
=
1
)
node_list
.
append
(
node_gather_2
)
#slice the class is not 0
if
background
==
0
:
outputs_nonzero
=
[
result_name
+
"@nonzero"
]
node_nonzero
=
onnx
.
helper
.
make_node
(
'NonZero'
,
inputs
=
outputs_squeeze_gather_1
,
outputs
=
outputs_nonzero
)
node_list
.
append
(
node_nonzero
)
else
:
name_thresh
=
[
result_name
+
"@thresh"
]
node_thresh
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_thresh
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_thresh
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT32
,
dims
=
[
1
],
vals
=
[
-
1
]))
node_list
.
append
(
node_thresh
)
outputs_cast
=
[
result_name
+
"@cast"
]
node_cast
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_squeeze_gather_1
,
outputs
=
outputs_cast
,
to
=
6
)
node_list
.
append
(
node_cast
)
outputs_greater
=
[
result_name
+
"@greater"
]
node_greater
=
onnx
.
helper
.
make_node
(
'Greater'
,
inputs
=
outputs_cast
+
name_thresh
,
outputs
=
outputs_greater
)
node_list
.
append
(
node_greater
)
outputs_nonzero
=
[
result_name
+
"@nonzero"
]
node_nonzero
=
onnx
.
helper
.
make_node
(
'NonZero'
,
inputs
=
outputs_greater
,
outputs
=
outputs_nonzero
)
node_list
.
append
(
node_nonzero
)
outputs_gather_1_nonzero
=
[
result_name
+
"@gather_1_nonzero"
]
node_gather_1_nonzero
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_1
+
outputs_nonzero
,
outputs
=
outputs_gather_1_nonzero
,
axis
=
0
)
node_list
.
append
(
node_gather_1_nonzero
)
outputs_gather_2_nonzero
=
[
result_name
+
"@gather_2_nonzero"
]
node_gather_2_nonzero
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_2
+
outputs_nonzero
,
outputs
=
outputs_gather_2_nonzero
,
axis
=
0
)
node_list
.
append
(
node_gather_2_nonzero
)
# reshape scores N * C * M to (N*C*M) * 1
outputs_reshape_scores_rank1
=
[
result_name
+
"@reshape_scores_rank1"
]
node_reshape_scores_rank1
=
onnx
.
helper
.
make_node
(
"Reshape"
,
inputs
=
inputs
[
'Scores'
]
+
[
result_name
+
"@const_-1"
],
outputs
=
outputs_reshape_scores_rank1
)
node_list
.
append
(
node_reshape_scores_rank1
)
# get the shape of scores
outputs_shape_scores
=
[
result_name
+
"@shape_scores"
]
node_shape_scores
=
onnx
.
helper
.
make_node
(
'Shape'
,
inputs
=
inputs
[
'Scores'
],
outputs
=
outputs_shape_scores
)
node_list
.
append
(
node_shape_scores
)
# gather the index: 2 shape of scores
outputs_gather_scores_dim1
=
[
result_name
+
"@gather_scores_dim1"
]
node_gather_scores_dim1
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_shape_scores
+
[
result_name
+
"@const_2"
],
outputs
=
outputs_gather_scores_dim1
,
axis
=
0
)
node_list
.
append
(
node_gather_scores_dim1
)
# mul class * M
outputs_mul_classnum_boxnum
=
[
result_name
+
"@mul_classnum_boxnum"
]
node_mul_classnum_boxnum
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_gather_1_nonzero
+
outputs_gather_scores_dim1
,
outputs
=
outputs_mul_classnum_boxnum
)
node_list
.
append
(
node_mul_classnum_boxnum
)
# add class * M * index
outputs_add_class_M_index
=
[
result_name
+
"@add_class_M_index"
]
node_add_class_M_index
=
onnx
.
helper
.
make_node
(
'Add'
,
inputs
=
outputs_mul_classnum_boxnum
+
outputs_gather_2_nonzero
,
outputs
=
outputs_add_class_M_index
)
node_list
.
append
(
node_add_class_M_index
)
# Squeeze the indices to 1 dim
outputs_squeeze_select_index
=
[
result_name
+
"@squeeze_select_index"
]
node_squeeze_select_index
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_add_class_M_index
,
outputs
=
outputs_squeeze_select_index
,
axes
=
[
0
,
2
])
node_list
.
append
(
node_squeeze_select_index
)
# gather the data from flatten scores
outputs_gather_select_scores
=
[
result_name
+
"@gather_select_scores"
]
node_gather_select_scores
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_reshape_scores_rank1
+
\
outputs_squeeze_select_index
,
outputs
=
outputs_gather_select_scores
,
axis
=
0
)
node_list
.
append
(
node_gather_select_scores
)
# get nums to input TopK
outputs_shape_select_num
=
[
result_name
+
"@shape_select_num"
]
node_shape_select_num
=
onnx
.
helper
.
make_node
(
'Shape'
,
inputs
=
outputs_gather_select_scores
,
outputs
=
outputs_shape_select_num
)
node_list
.
append
(
node_shape_select_num
)
outputs_gather_select_num
=
[
result_name
+
"@gather_select_num"
]
node_gather_select_num
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_shape_select_num
+
[
result_name
+
"@const_0"
],
outputs
=
outputs_gather_select_num
,
axis
=
0
)
node_list
.
append
(
node_gather_select_num
)
outputs_unsqueeze_select_num
=
[
result_name
+
"@unsqueeze_select_num"
]
node_unsqueeze_select_num
=
onnx
.
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
outputs_gather_select_num
,
outputs
=
outputs_unsqueeze_select_num
,
axes
=
[
0
])
node_list
.
append
(
node_unsqueeze_select_num
)
outputs_concat_topK_select_num
=
[
result_name
+
"@conat_topK_select_num"
]
node_conat_topK_select_num
=
onnx
.
helper
.
make_node
(
'Concat'
,
inputs
=
outputs_unsqueeze_select_num
+
name_keep_top_k_2D
,
outputs
=
outputs_concat_topK_select_num
,
axis
=
0
)
node_list
.
append
(
node_conat_topK_select_num
)
outputs_cast_concat_topK_select_num
=
[
result_name
+
"@concat_topK_select_num"
]
node_outputs_cast_concat_topK_select_num
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_concat_topK_select_num
,
outputs
=
outputs_cast_concat_topK_select_num
,
to
=
6
)
node_list
.
append
(
node_outputs_cast_concat_topK_select_num
)
# get min(topK, num_select)
outputs_compare_topk_num_select
=
[
result_name
+
"@compare_topk_num_select"
]
node_compare_topk_num_select
=
onnx
.
helper
.
make_node
(
'ReduceMin'
,
inputs
=
outputs_cast_concat_topK_select_num
,
outputs
=
outputs_compare_topk_num_select
,
keepdims
=
0
)
node_list
.
append
(
node_compare_topk_num_select
)
# unsqueeze the indices to 1D tensor
outputs_unsqueeze_topk_select_indices
=
[
result_name
+
"@unsqueeze_topk_select_indices"
]
node_unsqueeze_topk_select_indices
=
onnx
.
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
outputs_compare_topk_num_select
,
outputs
=
outputs_unsqueeze_topk_select_indices
,
axes
=
[
0
])
node_list
.
append
(
node_unsqueeze_topk_select_indices
)
# cast the indices to INT64
outputs_cast_topk_indices
=
[
result_name
+
"@cast_topk_indices"
]
node_cast_topk_indices
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_unsqueeze_topk_select_indices
,
outputs
=
outputs_cast_topk_indices
,
to
=
7
)
node_list
.
append
(
node_cast_topk_indices
)
# select topk scores indices
outputs_topk_select_topk_indices
=
[
result_name
+
"@topk_select_topk_values"
,
\
result_name
+
"@topk_select_topk_indices"
]
node_topk_select_topk_indices
=
onnx
.
helper
.
make_node
(
'TopK'
,
inputs
=
outputs_gather_select_scores
+
outputs_cast_topk_indices
,
outputs
=
outputs_topk_select_topk_indices
)
node_list
.
append
(
node_topk_select_topk_indices
)
# gather topk label, scores, boxes
outputs_gather_topk_scores
=
[
result_name
+
"@gather_topk_scores"
]
node_gather_topk_scores
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_select_scores
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_scores
,
axis
=
0
)
node_list
.
append
(
node_gather_topk_scores
)
outputs_gather_topk_class
=
[
result_name
+
"@gather_topk_class"
]
node_gather_topk_class
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_1_nonzero
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_class
,
axis
=
1
)
node_list
.
append
(
node_gather_topk_class
)
# gather the boxes need to gather the boxes id, then get boxes
outputs_gather_topk_boxes_id
=
[
result_name
+
"@gather_topk_boxes_id"
]
node_gather_topk_boxes_id
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_2_nonzero
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_boxes_id
,
axis
=
1
)
node_list
.
append
(
node_gather_topk_boxes_id
)
# squeeze the gather_topk_boxes_id to 1 dim
outputs_squeeze_topk_boxes_id
=
[
result_name
+
"@squeeze_topk_boxes_id"
]
node_squeeze_topk_boxes_id
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_gather_topk_boxes_id
,
outputs
=
outputs_squeeze_topk_boxes_id
,
axes
=
[
0
,
2
])
node_list
.
append
(
node_squeeze_topk_boxes_id
)
outputs_gather_select_boxes
=
[
result_name
+
"@gather_select_boxes"
]
node_gather_select_boxes
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
inputs
[
'BBoxes'
]
+
outputs_squeeze_topk_boxes_id
,
outputs
=
outputs_gather_select_boxes
,
axis
=
1
)
node_list
.
append
(
node_gather_select_boxes
)
# concat the final result
# before concat need to cast the class to float
outputs_cast_topk_class
=
[
result_name
+
"@cast_topk_class"
]
node_cast_topk_class
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_gather_topk_class
,
outputs
=
outputs_cast_topk_class
,
to
=
1
)
node_list
.
append
(
node_cast_topk_class
)
outputs_unsqueeze_topk_scores
=
[
result_name
+
"@unsqueeze_topk_scores"
]
node_unsqueeze_topk_scores
=
onnx
.
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
outputs_gather_topk_scores
,
outputs
=
outputs_unsqueeze_topk_scores
,
axes
=
[
0
,
2
])
node_list
.
append
(
node_unsqueeze_topk_scores
)
inputs_concat_final_results
=
outputs_cast_topk_class
+
outputs_unsqueeze_topk_scores
+
\
outputs_gather_select_boxes
outputs_concat_final_results
=
outputs
[
'Out'
]
node_concat_final_results
=
onnx
.
helper
.
make_node
(
'Concat'
,
inputs
=
inputs_concat_final_results
,
outputs
=
outputs_concat_final_results
,
axis
=
2
)
node_list
.
append
(
node_concat_final_results
)
return
node_list
x2paddle/op_mapper/paddle2onnx/opset9/opset.py
浏览文件 @
98b8c410
...
@@ -196,8 +196,8 @@ class OpSet9(object):
...
@@ -196,8 +196,8 @@ class OpSet9(object):
pool_type
[
op
.
attr
(
'pooling_type'
)][
1
],
pool_type
[
op
.
attr
(
'pooling_type'
)][
1
],
inputs
=
op
.
input
(
'X'
),
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
)
outputs
=
op
.
output
(
'Out'
),
)
#
elif op.attr('adaptive'):
elif
op
.
attr
(
'adaptive'
):
# k_size = op.attr('ksize'
)
raise
Excpetion
(
"ONNX cannot support adaptive pool"
)
else
:
else
:
input_shape
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
input_shape
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
k_size
=
op
.
attr
(
'ksize'
)
k_size
=
op
.
attr
(
'ksize'
)
...
...
x2paddle/op_mapper/paddle2onnx/opset9/paddle_custom_layer/multiclass_nms.py
浏览文件 @
98b8c410
...
@@ -125,7 +125,7 @@ def multiclass_nms(op, block):
...
@@ -125,7 +125,7 @@ def multiclass_nms(op, block):
vals
=
[
value
]))
vals
=
[
value
]))
node_list
.
append
(
node
)
node_list
.
append
(
node
)
# In
e
this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# In this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# and the same time, decode the select indices to 1 * D, gather the select_indices
# and the same time, decode the select indices to 1 * D, gather the select_indices
outputs_gather_1
=
[
result_name
+
"@gather_1"
]
outputs_gather_1
=
[
result_name
+
"@gather_1"
]
node_gather_1
=
onnx
.
helper
.
make_node
(
node_gather_1
=
onnx
.
helper
.
make_node
(
...
@@ -405,12 +405,43 @@ def multiclass_nms(op, block):
...
@@ -405,12 +405,43 @@ def multiclass_nms(op, block):
inputs_concat_final_results
=
outputs_cast_topk_class
+
outputs_unsqueeze_topk_scores
+
\
inputs_concat_final_results
=
outputs_cast_topk_class
+
outputs_unsqueeze_topk_scores
+
\
outputs_gather_select_boxes
outputs_gather_select_boxes
outputs_
concat_final_results
=
outputs
[
'Out'
]
outputs_
sort_by_socre_results
=
[
result_name
+
"@concat_topk_scores"
]
node_
concat_final
_results
=
onnx
.
helper
.
make_node
(
node_
sort_by_socre
_results
=
onnx
.
helper
.
make_node
(
'Concat'
,
'Concat'
,
inputs
=
inputs_concat_final_results
,
inputs
=
inputs_concat_final_results
,
outputs
=
outputs_
concat_final
_results
,
outputs
=
outputs_
sort_by_socre
_results
,
axis
=
2
)
axis
=
2
)
node_list
.
append
(
node_
concat_final
_results
)
node_list
.
append
(
node_
sort_by_socre
_results
)
# select topk classes indices
outputs_squeeze_cast_topk_class
=
[
result_name
+
"@squeeze_cast_topk_class"
]
node_squeeze_cast_topk_class
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_cast_topk_class
,
outputs
=
outputs_squeeze_cast_topk_class
,
axes
=
[
0
,
2
])
node_list
.
append
(
node_squeeze_cast_topk_class
)
outputs_neg_squeeze_cast_topk_class
=
[
result_name
+
"@neg_squeeze_cast_topk_class"
]
node_neg_squeeze_cast_topk_class
=
onnx
.
helper
.
make_node
(
'Neg'
,
inputs
=
outputs_squeeze_cast_topk_class
,
outputs
=
outputs_neg_squeeze_cast_topk_class
)
node_list
.
append
(
node_neg_squeeze_cast_topk_class
)
outputs_topk_select_classes_indices
=
[
result_name
+
"@topk_select_topk_classes_scores"
,
\
result_name
+
"@topk_select_topk_classes_indices"
]
node_topk_select_topk_indices
=
onnx
.
helper
.
make_node
(
'TopK'
,
inputs
=
outputs_neg_squeeze_cast_topk_class
+
outputs_cast_topk_indices
,
outputs
=
outputs_topk_select_classes_indices
)
node_list
.
append
(
node_topk_select_topk_indices
)
outputs_concat_final_results
=
outputs
[
'Out'
]
node_concat_final_results
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_sort_by_socre_results
+
[
outputs_topk_select_classes_indices
[
1
]],
outputs
=
outputs_concat_final_results
,
axis
=
1
)
node_list
.
append
(
node_concat_final_results
)
return
node_list
return
node_list
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录