diff --git a/add_caffe_custom_layer.md b/add_caffe_custom_layer.md deleted file mode 100644 index 8b665d795ba1e24a5ad3341944334491042deb29..0000000000000000000000000000000000000000 --- a/add_caffe_custom_layer.md +++ /dev/null @@ -1,78 +0,0 @@ -## 如何转换Caffe自定义Layer - -本文档介绍如何将Caffe自定义Layer转换为PaddlePaddle模型中的对应实现, 用户可根据自己需要,添加代码实现自定义层,从而支持模型的完整转换。 -***步骤一 下载代码*** -此处涉及修改源码,应先卸载x2paddle,并且下载源码,主要有以下两步完成: -``` -pip uninstall x2paddle -pip install git+https://github.com/PaddlePaddle/X2Paddle.git@develop -``` - -***步骤二 编译caffe.proto*** -该步骤依赖protobuf编译器,其安装过程有以下两种方式: -> 选择一:pip install protobuf -> 选择二:使用[官方源码](https://github.com/protocolbuffers/protobuf)进行编译 - -使用脚本./tools/compile.sh将caffe.proto(包含所需的自定义Layer信息)编译成我们所需的目标语言(Python) -使用方式: -``` -bash ./toos/compile.sh /home/root/caffe/src/caffe/proto -# /home/root/caffe/src/caffe/proto为caffe.proto的存放路径,生成的caffe_pb2.py也将保存在该路径下 -``` - -***步骤三 添加自定义Layer的实现代码*** -- 进入./x2paddle/op_mapper/caffe_custom_layer,创建.py文件,例如mylayer.py -- 仿照./x2paddle/op_mapper/caffe_custom_layer中的其他文件,在mylayer.py中主要需要实现3个函数,下面以roipooling.py为例分析代码: - 1. `def roipooling_shape(input_shape, pooled_w=None, pooled_h=None)` - 参数: - 1. input_shape(list):其中每个元素代表该层每个输入数据的shape,为必须传入的参数 - 2. pooled_w(int):代表ROI Pooling的kernel的宽,其命名与.prototxt中roi_pooling_param中的key一致 - 3. pooled_h(int):代表ROI Pooling的kernel的高,其命名与.prototxt中roi_pooling_param中的key一致 - - 功能:计算出进行ROI Pooling后的shape - 返回:一个list,其中每个元素代表每个输出数据的shape,由于ROI Pooling的输出数据只有一个,所以其list长度为1 - - 2. `def roipooling_layer(inputs, input_shape=None, name=None, pooled_w=None, pooled_h=None, spatial_scale=None)` - - 参数: - 1. inputs(list):其中每个元素代表该层每个输入数据,为必须传入的参数 - 2. input_shape(list):其中每个元素代表该层每个输入数据的shape,为必须传入的参数 - 3. name(str):ROI Pooling层的名字,为必须传入的参数 - 4. pooled_w(int):代表ROI Pooling的kernel的宽,其命名与.prototxt中roi_pooling_param中的key一致 - 5. pooled_h(int):代表ROI Pooling的kernel的高,其命名与.prototxt中roi_pooling_param中的key一致 - 6. spatial_scale(float):用于将ROI坐标从输入比例转换为池化时使用的比例,其命名与.prototxt中roi_pooling_param中的key一致 - - 功能:运用PaddlePaddle完成组网来实现`roipooling_layer`的功能 - 返回:一个Variable,为组网后的结果 - - 3. `def roipooling_weights(name, data=None)` - - 参数: - 1. name(str):ROI Pooling层的名字,为必须传入的参数 - 2. data(list):由Caffe模型.caffemodel获得的关于roipooling的参数,roipooling的参数为None - - 功能:为每个参数(例如kernel、bias等)命名;同时,若Caffe中该层参数与PaddlePaddle中参数的格式不一致,则变换操作也在该函数中实现。 - 返回:一个list,包含每个参数的名字。 - -- 在roipooling.py中注册`roipooling`,主要运用下述代码实现: - ``` - register(kind='ROIPooling', shape=roipooling_shape, layer=roipooling_layer, weights=roipooling_weights) - # kind为在model.prototxt中roipooling的type - ``` -- 在./x2paddle/op_mapper/caffe_custom_layer/\_\_init\_\_.py中引入该层的使用 - ``` - from . import roipooling - ``` - - -***步骤四 运行转换代码*** -``` -# 在X2Paddle目录下安装x2paddle -python setup.py install -# 运行转换代码 -x2paddle --framework=caffe - --prototxt=deploy.proto - --weight=deploy.caffemodel - --save_dir=pd_model - --caffe_proto=/home/root/caffe/src/caffe/proto/caffe_pb2.py -```