Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
8f2018b7
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8f2018b7
编写于
8月 29, 2019
作者:
J
Jason
提交者:
GitHub
8月 29, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update FAQ.md
上级
6bd3162e
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
3 addition
and
22 deletion
+3
-22
FAQ.md
FAQ.md
+3
-22
未找到文件。
FAQ.md
浏览文件 @
8f2018b7
...
@@ -5,29 +5,10 @@ A:该提示信息表示无法从TensorFlow的pb模型中获取到输入tensor(
...
@@ -5,29 +5,10 @@ A:该提示信息表示无法从TensorFlow的pb模型中获取到输入tensor(
**Q2. TensorFlow模型转换失败怎么解决?**
**Q2. TensorFlow模型转换失败怎么解决?**
A: 目前TensorFlow模型转换失败存在几个问题。1) 存在暂未支持的OP,此信息会在转换时输出; 2) NHWC优化导致部分参数出错;3)Batch维度带来的出错 4)其它
A: 如果并非是由缺少OP导致,那可能是由于TensorFlow模型转换时(NHWC->NCHW格式转换导致),在这种情况下,可以采用关闭格式优化,同时固化输入大小的方式,继续尝试转换,见如下命令,转换过程中,根据提示,输入相应tensor的固化shape大小
对于(1)问题,建议自行添加或发起Issue;
其中(2)、(3)、(4)问题目前没有明确的报错信息,当您遇到模型转换失败时,请尝试如下的步骤后,再进行转换测试
```
```
x2paddle -f tensorflow -m tf.pb -s pd-model --without_data_format_optimization --define_input_shape
x2paddle -f tensorflow -m tf.pb -s pd-model --without_data_format_optimization --define_input_shape
```
```
#### without_data_format_optimization : 关闭NHWC优化
> 目前Tensorflow的CV模型大部分均为`NHWC`的输入格式,而Paddle的默认输入格式为`NCHW`,因此X2Paddle在转换过程中,会对如`axis`, `shape`等参数进行转换,适应Paddle的NCHW格式。但在这种情况下,可能会由于TensorFlow模型太复杂,导致出错。
TensorFlow的CV模型,大多的输入格式为
`NHWC`
,而Paddle目前仅支持
`NCHW`
,如若直接转换,需要在conv2d、pool2d等操作前后添加transpose解决,这样会带来性能的损耗。X2Paddle在模型转换过程中,对此问题进行了优化,避免transpose操作带来的性能问题,但目前仅在部分模型上进行了测试,不一定适用于其它模型,因此,如若模型转换存在问题时,我们建议你关闭NHWC的优化。
> X2Paddle默认情况,TensorFlow模型转换后得到的Paddle模型为`NCHW`的输入格式。但在指定`--withou_data_format_optimization`后,转换后的Paddle模型输入格式也同样为`NHWC`。
在模型转换时添加参数 --without_data_format_optimization
```
x2paddle -f tensorflow -m tf.pb -s pd-model --without_data_format_optimization
```
### define_input_shape : 固定Batch大小
受限于不同框架的运行机制,在转换过程中,Batch维度也有一定可能会带来模型转换失败的问题。可以尝试固定Batch维度后再转换
在模型转换时添加参数 --define_input_shape
```
x2paddle -f tensorflow -m tf.pb -s pd-model --define_input_shape
```
如原tensorflow模型的输入shape为
`[None, 224, 224, 3]`
,可添加参数后,根据提示,把输入的shape修改为
`[2, 224, 224, 3]`
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录