Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
8aa1008b
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
8aa1008b
编写于
11月 06, 2020
作者:
S
SunAhong1993
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add dygraph
上级
90f0f4a9
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
1321 addition
and
0 deletion
+1321
-0
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
+1321
-0
未找到文件。
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
0 → 100644
浏览文件 @
8aa1008b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
x2paddle.decoder.tf_decoder
import
TFGraph
from
x2paddle.core.program
import
PaddleGraph
from
x2paddle.core.op_mapper
import
OpMapper
from
x2paddle.core.util
import
*
import
traceback
import
math
import
inspect
import
numpy
import
sys
name_counter
=
dict
()
def
gen_name
(
op_name
,
var_name
):
name
=
"{}_{}"
.
format
(
op_name
,
var_name
)
if
name
not
in
name_counter
:
name_counter
[
name
]
=
0
else
:
name_counter
[
name
]
+=
1
name
=
name
+
'_'
+
str
(
name_counter
[
name
])
return
name
# compute padding size for SAME mode
def
get_same_padding
(
in_size
,
kernel_size
,
stride
):
new_size
=
int
(
math
.
ceil
(
in_size
*
1.0
/
stride
))
pad_size
=
(
new_size
-
1
)
*
stride
+
kernel_size
-
in_size
if
pad_size
<
0
:
pad_size
=
0
pad0
=
int
(
pad_size
/
2
)
pad1
=
pad_size
-
pad0
return
[
pad0
,
pad1
]
class
TFOpMapper
(
OpMapper
):
directly_map_ops
=
{
'Relu'
:
[
'paddle.nn.ReLU'
],
'Relu6'
:
[
'paddle.nn.ReLU6'
],
'Abs'
:
[
'paddle.abs'
],
'Sigmoid'
:
[
'paddle.nn.Sigmoid'
],
'Exp'
:
[
'paddle.exp'
],
'Rsqrt'
:
[
'paddle.rsqrt'
],
'Sqrt'
:
[
'paddle.sqrt'
],
'swish_f32'
:
[
'paddle.nn.Swish'
],
'Tanh'
:
[
'paddle.nn.Tanh'
],
'Softplus'
:
[
'paddle.nn.Softplus'
],
'LeakyRelu'
:
[
'paddle.nn.LeakyReLU'
,
{
'alpha'
:
'negative_slope'
}],
'Softmax'
:
[
'paddle.nn.Softmax'
,
{
'axis'
:
'axis'
}],
'Floor'
:
[
'paddle.floor'
],
'Erf'
:
[
'paddle.erf'
],
'Square'
:
[
'paddle.square'
]
}
elementwise_ops
=
{
'Add'
:
'paddle.add'
,
'AddV2'
:
'paddle.add'
,
'RealDiv'
:
'paddle.divide'
,
'Sub'
:
'fluid.layers.elementwise_sub'
,
'Maximum'
:
'paddle.maximum'
,
'Minimum'
:
'paddle.minimum'
,
'LessEqual'
:
'paddle.less_equal'
,
'GreaterEqual'
:
'paddle.greater_equal'
,
'Mul'
:
'paddle.multiply'
,
'FloorDiv'
:
'fluid.layers.elementwise_floordiv'
}
def
__init__
(
self
,
decoder
):
super
(
TFOpMapper
,
self
).
__init__
()
self
.
decoder
=
decoder
self
.
graph
=
decoder
.
tf_graph
self
.
params
=
dict
()
self
.
nn_name2id
=
dict
()
self
.
input_index
=
0
self
.
paddle_graph
=
PaddleGraph
(
parent_layer
=
None
,
graph_type
=
"dygraph"
,
source_type
=
"tf"
)
self
.
used_custom_layers
=
dict
()
self
.
inputs_info
=
dict
()
not_placeholder
=
list
()
for
name
in
self
.
graph
.
input_nodes
:
if
self
.
graph
.
get_node
(
name
).
layer_type
!=
"Placeholder"
and
self
.
graph
.
get_node
(
name
).
layer_type
!=
"OneShotIterator"
and
self
.
graph
.
get_node
(
name
).
layer_type
!=
"IteratorV2"
:
not_placeholder
.
append
(
name
)
for
name
in
not_placeholder
:
idx
=
self
.
graph
.
input_nodes
.
index
(
name
)
del
self
.
graph
.
input_nodes
[
idx
]
self
.
paddle_graph
.
outputs
=
self
.
graph
.
output_nodes
unsupported_ops
=
set
()
sys
.
stderr
.
write
(
"Total nodes: {}
\n
"
.
format
(
len
(
self
.
graph
.
topo_sort
)))
for
i
,
node_name
in
enumerate
(
self
.
graph
.
topo_sort
):
sys
.
stderr
.
write
(
"
\r
Converting node {} ... "
.
format
(
i
+
1
))
node
=
self
.
graph
.
get_node
(
node_name
)
op
=
node
.
layer_type
if
op
in
self
.
directly_map_ops
:
if
len
(
unsupported_ops
)
>
0
:
continue
self
.
directly_map
(
node
)
elif
op
in
self
.
elementwise_ops
:
if
len
(
unsupported_ops
)
>
0
:
continue
self
.
elementwise_map
(
node
)
elif
hasattr
(
self
,
op
):
if
len
(
unsupported_ops
)
>
0
:
continue
func
=
getattr
(
self
,
op
)
try
:
func
(
node
)
except
Exception
as
e
:
unsupported_ops
.
add
(
op
)
print
(
"
\n
{}
\n
"
.
format
(
traceback
.
format_exc
()))
else
:
unsupported_ops
.
add
(
op
)
if
len
(
unsupported_ops
)
>
0
:
print
(
"
\n
========= {} OPs are not supported yet ==========="
.
format
(
len
(
unsupported_ops
)))
for
op
in
unsupported_ops
:
print
(
"========== {} ============"
.
format
(
op
))
sys
.
exit
(
-
1
)
sys
.
stderr
.
write
(
"
\n
Done!
\n
"
)
self
.
paddle_graph
.
set_name
(
self
.
graph
.
graph_name
)
self
.
paddle_graph
.
set_parameters
(
self
.
params
)
self
.
paddle_graph
.
set_inputs_info
(
self
.
inputs_info
)
def
directly_map
(
self
,
node
):
assert
node
.
layer_type
in
self
.
directly_map_ops
op_info
=
self
.
directly_map_ops
[
node
.
layer_type
]
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
layer_attrs
=
dict
()
for
param
in
op_info
[
1
:]:
tf_param_name
=
list
(
param
.
keys
())[
0
]
pd_param_name
=
list
(
param
.
values
())[
0
]
tf_param
=
node
.
get_attr
(
tf_param_name
)
layer_attrs
[
pd_param_name
]
=
tf_param
if
op_info
[
0
].
startswith
(
"paddle.nn"
):
op_name
=
op_info
[
0
][
10
:].
lower
()
op_name
=
name_generator
(
op_name
,
self
.
nn_name2id
)
output_name
=
node
.
name
layer_outputs
=
[
op_name
,
output_name
]
self
.
paddle_graph
.
add_layer
(
kernel
=
op_info
[
0
],
inputs
=
{
"x"
:
input
.
name
},
outputs
=
layer_outputs
,
**
layer_attrs
)
else
:
self
.
paddle_graph
.
add_layer
(
kernel
=
op_info
[
0
],
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
],
**
layer_attrs
)
def
elementwise_map
(
self
,
node
):
assert
node
.
layer_type
in
self
.
elementwise_ops
op_type
=
self
.
elementwise_ops
[
node
.
layer_type
]
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
x_shape
=
x
.
out_shapes
[
0
]
y_shape
=
y
.
out_shapes
[
0
]
self
.
paddle_graph
.
add_layer
(
kernel
=
op_type
,
inputs
=
{
"x"
:
x
.
name
,
"y"
:
y
.
name
},
outputs
=
[
node
.
name
])
def
NotEqual
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.not_equal"
,
inputs
=
{
"x"
:
x
.
name
,
"y"
:
y
.
name
},
outputs
=
[
node
.
name
])
def
Placeholder
(
self
,
node
):
shape
=
node
.
out_shapes
[
0
]
assert
len
(
shape
)
!=
0
,
"Unknown shape of input nodes[{}]."
.
format
(
node
.
layer_name
)
dtype
=
node
.
dtype
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.to_tensor"
,
inputs
=
{},
outputs
=
[
node
.
name
],
data
=
"x{}"
.
format
(
self
.
input_index
))
self
.
inputs_info
[
"x{}"
.
format
(
self
.
input_index
)]
=
[
shape
,
node
.
dtype
]
self
.
input_index
+=
1
def
Const
(
self
,
node
):
shape
=
node
.
out_shapes
[
0
]
dtype
=
node
.
dtype
value
=
node
.
value
if
len
(
shape
)
==
0
:
assert
value
.
size
==
1
,
"Unexpected situation happend"
if
value
==
float
(
'inf'
):
value
=
"float('inf')"
self
.
paddle_graph
.
add_layer
(
"paddle.full"
,
inputs
=
{},
outputs
=
[
node
.
name
],
dtype
=
string
(
dtype
),
shape
=
[
1
],
fill_value
=
value
)
return
self
.
params
[
node
.
name
]
=
node
.
value
self
.
paddle_graph
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
node
.
name
],
shape
=
shape
,
attr
=
string
(
node
.
name
))
def
Transpose
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
perm
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
assert
perm
.
layer_type
==
"Const"
,
"Perm of transpose OP should be Const"
perm
=
perm
.
value
.
tolist
()
self
.
paddle_graph
.
add_layer
(
"paddle.transpose"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
],
perm
=
perm
)
def
Fill
(
self
,
node
):
dims
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
input_value
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
inputs
=
dict
()
layer_attrs
=
dict
()
assert
input_value
.
layer_type
==
"Const"
,
"Value of fill OP should be Const"
if
dims
.
layer_type
==
"Const"
:
layer_attrs
[
"shape"
]
=
dims
.
value
.
tolist
()
else
:
inputs
[
"shape"
]
=
dims
.
name
layer_attrs
[
"dtype"
]
=
string
(
input_value
.
dtype
)
layer_attrs
[
"value"
]
=
input_value
.
value
self
.
paddle_graph
.
add_layer
(
"paddle.full"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
layer_attrs
)
def
DepthToSpace
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
block_size
=
node
.
get_attr
(
"block_size"
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
if
data_format
==
"NHWC"
:
n
,
h
,
w
,
c
=
input
.
out_shapes
[
0
]
else
:
n
,
c
,
h
,
w
=
input
.
out_shapes
[
0
]
input_name
=
input
.
name
if
data_format
==
"NHWC"
:
transpose_name
=
gen_name
(
"depth_to_space"
,
"transpose"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
transpose_name
],
perm
=
[
0
,
3
,
1
,
2
])
input_name
=
transpose_name
shape
=
[
0
,
block_size
*
block_size
,
-
1
,
h
,
w
]
reshape_name
=
gen_name
(
"depth_to_space"
,
"reshape"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.reshape"
,
inputs
=
{
"x"
:
input_name
},
outputs
=
[
reshape_name
],
shape
=
shape
)
transpose_name
=
gen_name
(
"depth_to_space"
,
"transpose"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
reshape_name
},
outputs
=
[
transpose_name
],
perm
=
[
0
,
2
,
1
,
3
,
4
])
reshape_name
=
gen_name
(
"depth_to_space"
,
"reshape"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.reshape"
,
inputs
=
{
"x"
:
transpose_name
},
outputs
=
[
reshape_name
],
shape
=
[
0
,
c
,
h
,
w
])
self
.
paddle_graph
.
add_layer
(
kernel
=
"fluid.layers.pixel_shuffle"
,
inputs
=
{
"x"
:
reshape_name
},
outputs
=
[
node
.
name
],
upscale_factor
=
block_size
)
if
data_format
==
"NHWC"
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
1
])
def
MaxPool
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
k_size
=
node
.
get_attr
(
"ksize"
)
strides
=
node
.
get_attr
(
"strides"
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
input_name
=
input
.
name
if
data_format
==
"NHWC"
:
transpose_name
=
gen_name
(
"max_pool"
,
"transpose"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
transpose_name
],
perm
=
[
0
,
3
,
1
,
2
])
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
k_size
=
[
k_size
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
input_name
=
transpose_name
op_name
=
name_generator
(
"pool"
,
self
.
nn_name2id
)
output_name
=
node
.
name
layer_outputs
=
[
op_name
,
output_name
]
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.Pool2D"
,
inputs
=
{
"input"
:
input_name
},
outputs
=
layer_outputs
,
pool_size
=
k_size
[
2
:
4
],
pool_type
=
string
(
"max"
),
pool_stride
=
strides
[
2
:
4
],
pool_padding
=
string
(
pad_mode
))
if
data_format
==
"NHWC"
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
1
])
def
Conv2D
(
self
,
node
):
op_name
=
name_generator
(
"conv"
,
self
.
nn_name2id
)
output_name
=
node
.
name
layer_outputs
=
[
op_name
,
output_name
]
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
kernel
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
k_size
=
kernel
.
out_shapes
[
0
]
strides
=
node
.
get_attr
(
"strides"
)
dilations
=
node
.
get_attr
(
"dilations"
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
if
data_format
==
"NHWC"
:
n
,
h
,
w
,
c
=
input
.
out_shapes
[
0
]
else
:
n
,
c
,
h
,
w
=
input
.
out_shapes
[
0
]
if
kernel
.
layer_type
==
'Const'
:
kernel_value
=
kernel
.
value
else
:
kernel_value
=
self
.
decoder
.
infer_tensor
(
kernel
)
kernel_weight_name
=
op_name
+
".weight"
self
.
params
[
kernel_weight_name
]
=
numpy
.
transpose
(
kernel_value
,
(
3
,
2
,
0
,
1
))
input_name
=
input
.
name
if
data_format
==
"NHWC"
:
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
dilations
=
[
dilations
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
transpose_name
=
gen_name
(
"conv2d"
,
"transpose"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
transpose_name
],
perm
=
[
0
,
3
,
1
,
2
])
input_name
=
transpose_name
if
c
==
-
1
:
attr
=
{
"shape"
:
[
0
,
k_size
[
2
],
0
,
0
]}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
output
=
input
,
param_attr
=
attr
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.reshape"
,
inputs
=
{
"x"
:
input_name
},
outputs
=
[
input_name
],
shape
=
[
0
,
k_size
[
2
],
0
,
0
])
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.Conv2D"
,
inputs
=
{
"input"
:
input_name
},
outputs
=
layer_outputs
,
weight_attr
=
string
(
kernel_weight_name
),
bias_attr
=
False
,
in_channels
=
k_size
[
2
],
out_channels
=
k_size
[
3
],
kernel_size
=
k_size
[
0
:
2
],
stride
=
strides
[
2
:
4
],
dilation
=
dilations
[
2
:
4
],
padding
=
string
(
pad_mode
))
if
data_format
==
"NHWC"
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
1
])
def
BiasAdd
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
bias
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.add"
,
inputs
=
{
"x"
:
input
.
name
,
"y"
:
bias
.
name
},
outputs
=
[
node
.
name
])
def
FusedBatchNorm
(
self
,
node
):
op_name
=
name_generator
(
"bn"
,
self
.
nn_name2id
)
output_name
=
node
.
name
layer_outputs
=
[
op_name
,
output_name
]
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
if
data_format
==
"NHWC"
:
n
,
h
,
w
,
c
=
input
.
out_shapes
[
0
]
else
:
n
,
c
,
h
,
w
=
input
.
out_shapes
[
0
]
gamma
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
beta
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
])
moving_mean
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
3
])
moving_var
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
4
])
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
assert
gamma
.
layer_type
==
"Const"
assert
beta
.
layer_type
==
"Const"
assert
moving_mean
.
layer_type
==
"Const"
assert
moving_var
.
layer_type
==
"Const"
input_name
=
input
.
name
if
data_format
==
"NHWC"
:
transpose_name
=
gen_name
(
"batch_norm"
,
"transpose"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
transpose_name
],
perm
=
[
0
,
3
,
1
,
2
])
input_name
=
transpose_name
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.BatchNorm"
,
inputs
=
{
"input"
:
input_name
},
outputs
=
layer_outputs
,
num_features
=
c
,
epsilon
=
node
.
get_attr
(
"epsilon"
),
weight_attr
=
string
(
gamma
.
name
),
bias_attr
=
string
(
beta
.
name
),
moving_mean_name
=
string
(
moving_mean
.
name
),
moving_variance_name
=
string
(
moving_var
.
name
),
is_test
=
True
)
if
data_format
==
"NHWC"
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
1
])
def
Mean
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
reduce_idx
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
assert
reduce_idx
.
layer_type
==
"Const"
,
"Only support Const parameter[reduce_idx]"
dims
=
reduce_idx
.
value
.
tolist
()
keep_dims
=
node
.
get_attr
(
"keep_dims"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.mean"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
],
axis
=
dims
,
keepdim
=
keep_dims
)
def
Reshape
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
param
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
input_name
=
input
.
name
if
input
.
dtype
==
'bool'
:
cast_name
=
gen_name
(
'reshape'
,
'cast'
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.cast"
,
inputs
=
{
"x"
:
input_name
},
outputs
=
[
cast_name
],
dtype
=
"'int32'"
)
input_name
=
cast_name
if
param
.
layer_type
==
"Const"
:
shape
=
param
.
value
.
tolist
()
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.reshape"
,
inputs
=
{
"x"
:
input_name
},
outputs
=
[
node
.
name
],
shape
=
shape
)
else
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.reshape"
,
inputs
=
{
"x"
:
input_name
,
"shape"
:
param
.
name
},
outputs
=
[
node
.
name
])
if
param
.
layer_type
!=
"Const"
:
out_shape
=
numpy
.
array
(
node
.
out_shapes
[
0
])
if
(
out_shape
>
0
).
any
():
out_shape
[
out_shape
<
0
]
=
0
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.reshape"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
shape
=
out_shape
.
tolist
())
if
input
.
dtype
==
'bool'
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.cast"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
dtype
=
"'bool'"
)
def
Pad
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
paddings
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
assert
paddings
.
layer_type
==
"Const"
,
"Padding should be Const"
paddings
=
paddings
.
value
.
flatten
().
tolist
()
if
len
(
input
.
out_shapes
[
0
])
==
4
:
if
paddings
[
0
]
+
paddings
[
1
]
+
paddings
[
6
]
+
paddings
[
7
]
==
0
:
new_padding
=
paddings
[
2
:
6
]
transpose_name
=
gen_name
(
"pad"
,
"transpose"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
transpose_name
],
perm
=
[
0
,
3
,
1
,
2
])
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.functional.pad"
,
inputs
=
{
"input"
:
transpose_name
},
outputs
=
[
node
.
name
],
pad
=
new_padding
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
1
])
return
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.functional.pad"
,
inputs
=
{
"input"
:
input
.
name
},
outputs
=
[
node
.
name
],
pad
=
paddings
)
def
Squeeze
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
squeeze_dims
=
node
.
get_attr
(
'squeeze_dims'
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.squeeze"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
],
axis
=
squeeze_dims
)
def
Shape
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
input_name
=
input
.
name
if
input
.
dtype
==
'bool'
:
cast_name
=
gen_name
(
'shape'
,
'cast'
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.cast"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
cast_name
],
dtype
=
string
(
"int32"
))
input_name
=
cast_name
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.shape"
,
inputs
=
{
"input"
:
input_name
},
outputs
=
[
node
.
name
])
def
ArgMax
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
axis
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
assert
axis
.
layer_type
==
"Const"
,
"ArgMax only support Const parameter"
axis
=
axis
.
value
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.argmax"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
],
axis
=
axis
)
def
MatMul
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
transpose_a
=
node
.
get_attr
(
'transpose_a'
)
transpose_b
=
node
.
get_attr
(
'transpose_b'
)
if
transpose_a
is
None
:
transpose_a
=
node
.
get_attr
(
'adj_x'
)
if
transpose_b
is
None
:
transpose_b
=
node
.
get_attr
(
'adj_y'
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.matmul"
,
inputs
=
{
"x"
:
x
.
name
,
"y"
:
y
.
name
},
outputs
=
[
node
.
name
],
transpose_x
=
transpose_a
,
transpose_y
=
transpose_b
)
def
BatchMatMul
(
self
,
node
):
return
self
.
MatMul
(
node
)
def
BatchMatMulV2
(
self
,
node
):
return
self
.
MatMul
(
node
)
def
DepthwiseConv2dNative
(
self
,
node
):
op_name
=
name_generator
(
"conv"
,
self
.
nn_name2id
)
output_name
=
node
.
name
layer_outputs
=
[
op_name
,
output_name
]
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
kernel
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
assert
kernel
.
layer_type
==
"Const"
,
"Kernel of DepthwiseConv2DNative should be Const"
in_shape
=
input
.
out_shapes
[
0
]
k_size
=
kernel
.
out_shapes
[
0
]
strides
=
node
.
get_attr
(
"strides"
)
dilations
=
node
.
get_attr
(
"dilations"
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
kernel_weight_name
=
op_name
+
".weight"
self
.
params
[
kernel_weight_name
]
=
numpy
.
transpose
(
kernel
.
value
,
(
2
,
3
,
0
,
1
))
input_name
=
input
.
name
if
data_format
==
"NHWC"
:
in_shape
=
[
in_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
dilations
=
[
dilations
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
transpose_name
=
gen_name
(
'depthwise_conv2d'
,
'transpose'
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
transpose_name
],
perm
=
[
0
,
3
,
1
,
2
])
input_name
=
transpose_name
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.Conv2D"
,
inputs
=
{
"input"
:
input_name
},
outputs
=
layer_outputs
,
weight_attr
=
string
(
kernel_weight_name
),
bias_attr
=
False
,
in_channels
=
in_shape
[
1
],
out_channels
=
k_size
[
2
],
kernel_size
=
k_size
[
0
:
2
],
stride
=
strides
[
2
:
4
],
dilation
=
dilations
[
2
:
4
],
groups
=
k_size
[
3
]
*
in_shape
[
1
],
padding
=
string
(
pad_mode
))
if
data_format
==
"NHWC"
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
1
])
def
AvgPool
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
k_size
=
node
.
get_attr
(
"ksize"
)
strides
=
node
.
get_attr
(
"strides"
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
input_name
=
input
.
name
if
data_format
==
"NHWC"
:
transpose_name
=
gen_name
(
"avg_pool"
,
"transpose"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
transpose_name
],
perm
=
[
0
,
3
,
1
,
2
])
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
k_size
=
[
k_size
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
input_name
=
transpose_name
op_name
=
name_generator
(
"pool"
,
self
.
nn_name2id
)
output_name
=
node
.
name
layer_outputs
=
[
op_name
,
output_name
]
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.Pool2D"
,
inputs
=
{
"input"
:
input_name
},
outputs
=
layer_outputs
,
pool_size
=
k_size
[
2
:
4
],
pool_type
=
string
(
"avg"
),
pool_stride
=
strides
[
2
:
4
],
pool_padding
=
string
(
pad_mode
))
if
data_format
==
"NHWC"
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
1
])
def
Pack
(
self
,
node
):
inputs
=
[
self
.
graph
.
get_node
(
name
)
for
name
in
node
.
layer
.
input
]
input_names
=
[
i
.
name
for
i
in
inputs
]
axis
=
node
.
get_attr
(
"axis"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.stack"
,
inputs
=
{
"x"
:
input_names
},
outputs
=
[
node
.
name
],
axis
=
axis
)
if
len
(
node
.
out_shapes
[
0
])
==
1
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.reshape"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
shape
=
[
-
1
])
def
Unpack
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
axis
=
node
.
get_attr
(
"axis"
)
num
=
node
.
get_attr
(
"num"
)
shape
=
input
.
out_shapes
[
0
]
input_name
=
input
.
name
if
len
(
shape
)
==
1
:
if
shape
[
0
]
>
0
and
num
==
shape
[
0
]:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.unsqueeze"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
],
axis
=
[
0
])
input_name
=
node
.
name
axis
=
1
else
:
raise
Exception
(
"Unexpected situation happend in Unpack OP"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.unstack"
,
inputs
=
{
"x"
:
input_name
},
outputs
=
[
"{}_p{}"
.
format
(
node
.
layer_name
,
i
)
for
i
in
range
(
num
)],
axis
=
axis
,
num
=
num
)
def
ConcatV2
(
self
,
node
):
inputs
=
[
self
.
graph
.
get_node
(
name
)
for
name
in
node
.
layer
.
input
[:
-
1
]]
axis
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
-
1
])
assert
axis
.
layer_type
==
"Const"
,
"axis for ConcatV2 must be type Const"
axis
=
axis
.
value
if
axis
<
0
:
axis
+=
len
(
inputs
[
0
].
out_shapes
[
0
])
input_names
=
[
i
.
name
for
i
in
inputs
]
for
i
,
ipt
in
enumerate
(
inputs
):
if
ipt
.
dtype
==
'bool'
:
cast_name
=
gen_name
(
'concat'
,
'cast'
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.cast"
,
inputs
=
{
"x"
:
ipt
.
name
},
outputs
=
[
cast_name
],
dtype
=
"'int32'"
)
input_names
[
i
]
=
cast_name
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.concat"
,
inputs
=
{
"input"
:
input_names
},
outputs
=
[
node
.
name
],
axis
=
axis
)
if
node
.
dtype
==
'bool'
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.cast"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
dtype
=
"'bool'"
)
def
StridedSlice
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
begin
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
end
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
])
strides
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
3
])
if
strides
.
layer_type
==
"Const"
:
strides
=
strides
.
value
.
tolist
()
else
:
strides
=
self
.
decoder
.
infer_shape_tensor
(
strides
)
if
begin
.
layer_type
==
"Const"
:
begin
=
begin
.
value
.
tolist
()
else
:
begin
=
self
.
decoder
.
infer_shape_tensor
(
begin
)
if
end
.
layer_type
==
"Const"
:
end
=
end
.
value
.
tolist
()
else
:
end
=
self
.
decoder
.
infer_shape_tensor
(
end
)
assert
len
(
set
(
strides
))
==
1
and
strides
[
0
]
==
1
,
"Only support strides be 1 in StridedSlice OP"
if
len
(
begin
)
<
len
(
input
.
out_shapes
[
0
]):
begin
=
begin
+
[
0
]
*
(
len
(
input
.
out_shapes
[
0
])
-
len
(
begin
))
if
len
(
end
)
<
len
(
input
.
out_shapes
[
0
]):
end
=
end
+
[
0
]
*
(
len
(
input
.
out_shapes
[
0
])
-
len
(
end
))
for
i
in
range
(
len
(
end
)):
if
end
[
i
]
==
0
:
end
[
i
]
=
999999
begin_mask
=
node
.
get_attr
(
'begin_mask'
)
end_mask
=
node
.
get_attr
(
'end_mask'
)
ellipsis_mask
=
node
.
get_attr
(
'ellipsis_mask'
)
new_axis_mask
=
node
.
get_attr
(
'new_axis_mask'
)
shrink_axis_mask
=
node
.
get_attr
(
'shrink_axis_mask'
)
assert
ellipsis_mask
==
0
,
"(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP"
.
format
(
node
.
layer_type
,
node
.
layer
.
name
,
ellipsis_mask
)
# TODO codes without validation
# Use it carefully
new_begin
=
list
()
new_end
=
list
()
new_axes
=
list
()
shrink_axes
=
list
()
for
i
,
item
in
enumerate
(
begin
):
mask
=
(
new_axis_mask
>>
i
)
&
1
if
mask
!=
0
:
new_axes
.
append
(
i
)
continue
mask
=
(
shrink_axis_mask
>>
i
)
&
1
if
mask
!=
0
:
shrink_axes
.
append
(
i
)
mask
=
(
begin_mask
>>
i
)
&
1
if
mask
!=
0
:
new_begin
.
append
(
0
)
else
:
new_begin
.
append
(
item
)
mask
=
(
end_mask
>>
i
)
&
1
if
mask
!=
0
:
new_end
.
append
(
999999
)
else
:
new_end
.
append
(
end
[
i
])
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.slice"
,
inputs
=
{
"input"
:
input
.
name
},
outputs
=
[
node
.
name
],
axes
=
[
i
for
i
in
range
(
len
(
new_begin
))],
starts
=
new_begin
,
ends
=
new_end
)
if
len
(
new_axes
)
>
0
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.unsqueeze"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
axis
=
new_axes
)
if
len
(
shrink_axes
)
>
0
:
if
len
(
input
.
out_shapes
[
0
])
+
len
(
new_axes
)
<=
1
:
pass
else
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.squeeze"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
axis
=
shrink_axes
)
def
Split
(
self
,
node
):
dim
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
assert
dim
.
layer_type
==
"Const"
num_split
=
node
.
get_attr
(
'num_split'
)
dim
=
dim
.
value
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.split"
,
inputs
=
{
"input"
:
input
.
name
},
outputs
=
[
"{}_p{}"
.
format
(
node
.
layer_name
,
i
)
for
i
in
range
(
num_split
)
],
num_or_sections
=
num_split
,
dim
=
dim
)
def
Slice
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
begin
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
size
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
])
inputs
=
{
"x"
:
input
.
name
}
attrs
=
{}
if
begin
.
layer_type
==
"Const"
:
begin
=
begin
.
value
.
tolist
()
attrs
[
'offsets'
]
=
begin
else
:
# shape = begin.out_shapes[0]
# reshape_name = gen_name("slice", "reshape")
# self.paddle_graph.add_layer(
# kernel="fluid.layers.reshape",
# inputs={"x": begin.name},
# outputs=[reshape_name],
# shape=shape)
# inputs['offsets'] = reshape_name
begin
=
self
.
decoder
.
infer_tensor
(
begin
).
tolist
()
attrs
[
'offsets'
]
=
begin
if
size
.
layer_type
==
"Const"
:
size
=
size
.
value
.
tolist
()
attrs
[
'shape'
]
=
size
else
:
shape
=
size
.
out_shapes
[
0
]
reshape_name
=
gen_name
(
"slice"
,
"reshape"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.reshape"
,
inputs
=
{
"x"
:
size
.
name
},
outputs
=
[
reshape_name
],
shape
=
shape
)
inputs
[
'shape'
]
=
reshape_name
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.crop"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attrs
)
def
ResizeNearestNeighbor
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
resize_shape
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
data_format
=
"NHWC"
inputs
=
{
"input"
:
input
.
name
}
attrs
=
{
"align_corner"
:
node
.
get_attr
(
"align_corners"
),
"mode"
:
"nearest"
}
if
resize_shape
.
layer_type
==
"Const"
:
resize_shape
=
resize_shape
.
value
.
tolist
()
attrs
[
"size"
]
=
resize_shape
else
:
shape
=
resize_shape
.
out_shapes
[
0
]
reshape_name
=
gen_name
(
"resize_nearest"
,
"reshape"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.reshape"
,
inputs
=
{
"x"
:
resize_shape
.
name
},
outputs
=
[
reshape_name
],
shape
=
shape
)
inputs
[
"out_shape"
]
=
reshape_name
if
data_format
==
"NHWC"
:
transpose_name
=
gen_name
(
"resize_nearest"
,
"reshape"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
transpose_name
],
perm
=
[
0
,
3
,
1
,
2
])
inputs
[
"input"
]
=
transpose_name
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.functioanl.interpolate"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attrs
)
if
data_format
==
"NHWC"
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
1
])
def
ResizeBilinear
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
resize_shape
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
data_format
=
"NHWC"
inputs
=
{
"input"
:
input
.
name
}
attrs
=
{
"align_corners"
:
node
.
get_attr
(
"align_corners"
),
"mode"
:
"bilinear"
}
if
resize_shape
.
layer_type
==
"Const"
:
resize_shape
=
resize_shape
.
value
.
tolist
()
attrs
[
"size"
]
=
resize_shape
else
:
shape
=
resize_shape
.
out_shapes
[
0
]
reshape_name
=
gen_name
(
"resize_bilinear"
,
"reshape"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.reshape"
,
inputs
=
{
"x"
:
resize_shape
.
name
},
outputs
=
[
reshape_name
],
shape
=
shape
)
inputs
[
"out_shape"
]
=
reshape_name
if
data_format
==
"NHWC"
:
transpose_name
=
gen_name
(
"resize_bilinear"
,
"reshape"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
transpose_name
],
perm
=
[
0
,
3
,
1
,
2
])
inputs
[
"input"
]
=
transpose_name
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.functioanl.interpolate"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attrs
)
if
data_format
==
"NHWC"
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"fluid.layers.transpose"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
1
])
def
Cast
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
dtype
=
node
.
dtype
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.cast"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
],
dtype
=
string
(
dtype
))
def
Sum
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
reduce_idx
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
assert
reduce_idx
.
layer_type
==
"Const"
,
"Only support Const parameter[reduce_idx]"
keep_dims
=
node
.
get_attr
(
"keep_dims"
)
dim
=
reduce_idx
.
value
.
tolist
()
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.sum"
,
inputs
=
{
"input"
:
input
.
name
},
outputs
=
[
node
.
name
],
axis
=
dim
,
keepdim
=
keep_dims
)
def
Max
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
reduce_idx
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
assert
reduce_idx
.
layer_type
==
"Const"
,
"Only support Const parameter[reduce_idx]"
keep_dims
=
node
.
get_attr
(
"keep_dims"
)
dim
=
reduce_idx
.
value
.
tolist
()
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.max"
,
inputs
=
{
"input"
:
input
.
name
},
outputs
=
[
node
.
name
],
axis
=
dim
,
keepdim
=
keep_dims
)
def
RandomUniform
(
self
,
node
):
shape
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
if
shape
.
layer_type
==
"Const"
:
shape
=
shape
.
value
.
tolist
()
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.uniform"
,
inputs
=
{},
outputs
=
[
node
.
name
],
shape
=
shape
,
min
=
0.0
,
max
=
0.9999
)
else
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.uniform"
,
inputs
=
{
'shape'
:
shape
.
name
},
outputs
=
[
node
.
name
],
min
=
0.0
,
max
=
0.9999
)
def
Conv2DBackpropInput
(
self
,
node
):
op_name
=
name_generator
(
"conv"
,
self
.
nn_name2id
)
output_name
=
node
.
name
layer_outputs
=
[
op_name
,
output_name
]
out_shape
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
kernel
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
])
assert
kernel
.
layer_type
==
"Const"
,
"Kernel of Conv2DBackpropInput should be Const"
if
out_shape
.
layer_type
==
"Const"
:
out_shape
=
out_shape
.
value
.
tolist
()
else
:
out_shape
=
self
.
decoder
.
infer_shape_tensor
(
out_shape
,
node
.
out_shapes
[
0
])
in_shape
=
input
.
out_shapes
[
0
]
if
in_shape
.
count
(
-
1
)
>
2
:
in_shape
=
self
.
decoder
.
infer_tensor
(
input
).
shape
k_size
=
kernel
.
out_shapes
[
0
]
if
k_size
.
count
(
-
1
)
>
2
:
k_size
=
self
.
decoder
.
infer_tensor
(
kernel
).
shape
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
strides
=
node
.
get_attr
(
"strides"
)
dilations
=
node
.
get_attr
(
"dilations"
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
kernel_name
=
op_name
+
".weight"
self
.
params
[
kernel_name
]
=
numpy
.
transpose
(
kernel
.
value
,
(
3
,
2
,
0
,
1
))
input_name
=
input
.
name
if
data_format
==
"NHWC"
:
in_shape
=
[
in_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
dilations
=
[
dilations
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
transpose_name
=
gen_name
(
"conv2dbackpropinput"
,
"transpose"
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
transpose_name
],
perm
=
[
0
,
3
,
1
,
2
])
input_name
=
transpose_name
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.Conv2DTranspose"
,
inputs
=
{
"input"
:
input_name
},
outputs
=
layer_outputs
,
bias_attr
=
False
,
in_channels
=
k_size
[
3
],
out_channels
=
k_size
[
2
],
kernel_size
=
k_size
[
0
:
2
],
stride
=
strides
[
2
:
4
],
dilation
=
dilations
[
2
:
4
],
padding
=
string
(
pad_mode
))
if
data_format
==
"NHWC"
:
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
perm
=
[
0
,
2
,
3
,
1
])
def
Tile
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
expand_times
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
inputs
=
{
"x"
:
input
.
name
}
attr
=
dict
()
in_shape
=
input
.
out_shapes
[
0
]
if
expand_times
.
layer_type
==
"Const"
:
expand_times
=
expand_times
.
value
.
tolist
()
attr
[
"repeat_times"
]
=
expand_times
else
:
inputs
[
"repeat_times"
]
=
expand_times
.
name
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.tile"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attr
)
def
Range
(
self
,
node
):
start
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
limit
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
delta
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
])
inputs
=
dict
()
attr
=
dict
()
dtype
=
'int32'
if
start
.
dtype
.
startswith
(
'float'
):
dtype
=
start
.
dtype
if
start
.
layer_type
==
"Const"
:
attr
[
"start"
]
=
start
.
value
else
:
inputs
[
"start"
]
=
start
.
name
if
limit
.
dtype
.
startswith
(
'float'
):
dtype
=
limit
.
dtype
if
limit
.
layer_type
==
"Const"
:
attr
[
"end"
]
=
limit
.
value
else
:
inputs
[
"end"
]
=
limit
.
name
if
delta
.
dtype
.
startswith
(
'float'
):
dtype
=
delta
.
dtype
if
delta
.
layer_type
==
"Const"
:
attr
[
"step"
]
=
delta
.
value
else
:
inputs
[
"step"
]
=
delta
.
name
node
.
set_dtype
(
dtype
)
attr
[
"dtype"
]
=
string
(
node
.
dtype
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.arange"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attr
)
def
SquaredDifference
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
inputs
=
{
"x"
:
x
.
name
,
"y"
:
y
.
name
}
x_shape
=
x
.
out_shapes
[
0
]
y_shape
=
y
.
out_shapes
[
0
]
layer_id
=
self
.
paddle_graph
.
add_layer
(
"paddle.fluid.layers.elementwise_sub"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
])
# program.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
inputs
=
{
"x"
:
node
.
name
,
"y"
:
node
.
name
}
x_shape
=
node
.
out_shapes
[
0
]
y_shape
=
node
.
out_shapes
[
0
]
layer_id
=
self
.
paddle_graph
.
add_layer
(
"paddle.multiply"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
])
# program.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
def
OneHot
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
depth
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
on_value
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
])
off_value
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
3
])
assert
depth
.
layer_type
==
'Const'
,
'Parameter depth should be Const in OneHot'
assert
on_value
.
layer_type
==
'Const'
,
'Parameter on_value should be Const in OneHot'
assert
off_value
.
layer_type
==
'Const'
,
'Parameter off_value should be Const in OneHot'
attr
=
{
'depth'
:
depth
.
value
}
on_value
=
on_value
.
value
off_value
=
off_value
.
value
assert
math
.
fabs
(
on_value
-
1.0
)
<
1e-06
,
"on_value should be 1 in OneHot"
assert
math
.
fabs
(
off_value
-
0.0
)
<
1e-06
,
"off_value should be 0 in OneHot"
self
.
paddle_graph
.
add_layer
(
"paddle.nn.functional.one_hot"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
],
num_classes
=
depth
.
value
)
def
Pow
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
factor
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
inputs
=
{
"x"
:
x
.
name
}
attr
=
dict
()
if
factor
.
layer_type
==
'Const'
:
attr
[
"y"
]
=
factor
.
value
.
tolist
()
else
:
inputs
[
"y"
]
=
factor
.
name
self
.
paddle_graph
.
add_layer
(
"paddle.pow"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attr
)
def
All
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
reduce_idx
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
assert
reduce_idx
.
layer_type
==
"Const"
,
"Only support Const parameter[reduce_idx]"
attr
=
dict
()
attr
[
"axis"
]
=
reduce_idx
.
value
.
tolist
()
attr
[
"keepdim"
]
=
node
.
get_attr
(
"keep_dims"
)
input_name
=
input
.
name
if
input
.
dtype
!=
"bool"
:
input_name
=
gen_name
(
"all"
,
"cast"
)
self
.
paddle_graph
.
add_layer
(
"paddle.cast"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
input_name
],
dtype
=
string
(
"bool"
))
self
.
paddle_graph
.
add_layer
(
"paddle.all"
,
inputs
=
{
"x"
:
input_name
},
outputs
=
[
node
.
name
],
**
attr
)
node
.
layer
.
attr
[
'dtype'
].
type
=
10
def
GatherV2
(
self
,
node
):
embeddings
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
index
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
axis
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
])
assert
axis
.
layer_type
==
'Const'
,
"Only support Const parameter[axis]"
axis
=
axis
.
value
.
tolist
()
assert
axis
==
0
,
"Only support axis=0 in GatherV2 OP"
index_name
=
index
.
name
if
len
(
index
.
out_shapes
[
0
])
!=
1
:
reshape_name
=
gen_name
(
"gather"
,
"reshape"
)
index_name
=
reshape_name
self
.
paddle_graph
.
add_layer
(
"paddle.reshape"
,
inputs
=
{
"x"
:
index
.
name
},
outputs
=
[
reshape_name
],
shape
=
[
-
1
])
inputs
=
{
'x'
:
embeddings
.
name
,
'index'
:
index_name
}
self
.
paddle_graph
.
add_layer
(
"paddle.gather"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
])
if
len
(
index
.
out_shapes
[
0
])
!=
1
:
out_shape
=
node
.
out_shapes
[
0
]
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.reshape"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
shape
=
out_shape
)
def
ExpandDims
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
inputs
=
{
"x"
:
x
.
name
}
attr
=
dict
()
if
y
.
layer_type
==
'Const'
:
dim
=
y
.
value
.
tolist
()
if
not
isinstance
(
dim
,
list
):
dim
=
[
dim
]
attr
[
'axis'
]
=
dim
else
:
inputs
[
'axis'
]
=
y
.
name
self
.
paddle_graph
.
add_layer
(
"paddle.unsqueeze"
,
inputs
=
inputs
,
outputs
=
[
node
.
name
],
**
attr
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录