未验证 提交 7e68465e 编写于 作者: S SunAhong1993 提交者: GitHub

Update caffe_op_mapper.py

上级 8d952fd3
......@@ -21,7 +21,7 @@ from x2paddle.core.util import *
from x2paddle.core.program import PaddleGraph
def adjust_parameters(node):
def _adjust_parameters(node):
data = node.data
# When using the protobuf-backend, each parameter initially has four dimensions.
# In certain cases (like FC layers), we want to eliminate the singleton dimensions.
......@@ -57,8 +57,8 @@ def adjust_parameters(node):
shape_new = data[idx].shape
return data
def get_kernel_parameters(kind, params):
assert kind in ['Convolution', 'Pooling', 'Deconvolution']
def _get_kernel_parameters(kind, params):
assert kind in ["Convolution", "Pooling", "Deconvolution", "ConvolutionDepthwise"]
[k_h, k_w] = [1, 1]
if isinstance(params.kernel_size, numbers.Number):
[k_h, k_w] = [params.kernel_size] * 2
......@@ -93,7 +93,8 @@ def get_kernel_parameters(kind, params):
dila_h = dila_w = 1
group = 1
c_o = 1
if kind in ['Convolution', 'Deconvolution']:
if kind in ["Convolution", "Deconvolution", "ConvolutionDepthwise"]:
if kind in ["Convolution", "Deconvolution"]:
c_o = params.num_output
dila_len = len(params.dilation)
if dila_len == 2:
......@@ -193,7 +194,7 @@ class CaffeOpMapper(OpMapper):
def Convolution(self, node):
data = node.data
params = node.layer.convolution_param
channel, kernel, stride, pad, dilation, group = get_kernel_parameters(
channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
node.layer_type, params)
if data is None:
data = []
......@@ -207,7 +208,7 @@ class CaffeOpMapper(OpMapper):
'float32'))
data.append(np.zeros([output_c, ]).astype('float32'))
else:
data = adjust_parameters(node)
data = _adjust_parameters(node)
kernel_weight_name = node.name + '_weights'
self.params[kernel_weight_name] = data[0]
self.paddle_graph.add_layer(
......@@ -249,7 +250,7 @@ class CaffeOpMapper(OpMapper):
def Deconvolution(self, node):
data = node.data
params = node.layer.convolution_param
channel, kernel, stride, pad, dilation, group = get_kernel_parameters(
channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
node.layer_type, params)
if data is None:
data = []
......@@ -263,7 +264,7 @@ class CaffeOpMapper(OpMapper):
'float32'))
data.append(np.zeros([output_c, ]).astype('float32'))
else:
data = adjust_parameters(node)
data = _adjust_parameters(node)
kernel_weight_name = node.name + '_weights'
self.params[kernel_weight_name] = data[0]
self.paddle_graph.add_layer(
......@@ -307,9 +308,6 @@ class CaffeOpMapper(OpMapper):
self.ConvolutionDepthwise(node)
def ConvolutionDepthwise(self, node):
conv2d_name = name_generator("conv", self.nn_name2id)
output_name = node.layer_name
layer_outputs = [conv2d_name, output_name]
data = node.data
params = node.layer.convolution_param
out_channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
......@@ -372,7 +370,7 @@ class CaffeOpMapper(OpMapper):
ceil_mode = getattr(params, 'ceil_mode', True)
global_pool = getattr(params, 'global_pooling', False)
kernel_default = [1, 1]
channel, kernel, stride, pad, dilation, group = get_kernel_parameters(
channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
node.layer_type, params)
assert len(
node.inputs) == 1, 'The count of Pooling node\'s input is not 1.'
......@@ -390,7 +388,7 @@ class CaffeOpMapper(OpMapper):
self.paddle_graph.add_layer(
"paddle.nn.functional.adaptive_avg_pool2d",
inputs={"x": input.name},
outputs=layer_outputs,
outputs=[node.name],
output_size=kernel)
else:
if params.pool == 0:
......@@ -406,7 +404,7 @@ class CaffeOpMapper(OpMapper):
# TODO(syf): The op has diff.
self.paddle_graph.add_layer(
kernel="fluid.layers.pool2d",
inputs={"input": x.name},
inputs={"input": input.name},
outputs=[node.name],
pool_size=kernel,
pool_type=string("avg"),
......@@ -456,7 +454,7 @@ class CaffeOpMapper(OpMapper):
data.append(
np.zeros([output_c]).astype('float32').astype('float32'))
else:
data = adjust_parameters(node)
data = _adjust_parameters(node)
# Reshape the parameters to Paddle's ordering
transpose_order = (1, 0)
w = data[0]
......@@ -605,20 +603,21 @@ class CaffeOpMapper(OpMapper):
input = self.graph.get_input_node(node, idx=0, copy=True)
params = node.layer.prelu_param
mode_bool = params.channel_shared
output_shape = node.out_shapes[0]
if mode_bool:
mode = 'all'
num_parameters = 1
else:
mode = 'channel'
num_parameters = output_shape[1]
data = node.data
assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format(
node.name, node.layer_type)
kernel_weight_name = node.name + '_weights'
self.params[kernel_weight_name] = data[0]
self.params[kernel_weight_name] = np.squeeze(data[0])
self.paddle_graph.add_layer(
kernel="paddle.static.nn.create_parameter",
inputs={},
outputs=[kernel_weight_name],
shape=self.params[kernel_weight_name].shape,
shape=[num_parameters],
dtype=string(str(self.params[kernel_weight_name].dtype)),
name=string(kernel_weight_name))
self.paddle_graph.add_layer(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册