提交 7cfd764d 编写于 作者: W wjj19950828

Merge remote-tracking branch 'upstream/develop' into add_scatter_mapper

......@@ -27,12 +27,13 @@ from x2paddle.core.util import *
class PaddleLayer(object):
def __init__(self, id, kernel, inputs, outputs, scope_name="", **kwargs):
assert isinstance(
inputs,
dict), "parameter 'inputs' for PaddleLayer should be type of dict"
assert isinstance(inputs, (
dict, list
)), "parameter 'inputs' for PaddleLayer should be type of dict or list"
assert isinstance(
outputs,
list), "parameter 'outputs' for PaddleLayer should be type of list"
if isinstance(inputs, dict):
for k, v in inputs.items():
if isinstance(v, (list, tuple)):
for i in v:
......@@ -164,6 +165,7 @@ class PaddleGraph(object):
self.clear_edges()
outputs_from_nodes = dict()
for layer_id, layer in self.layers.items():
if isinstance(layer.inputs, dict):
for input_key, input_var in layer.inputs.items():
vs = input_var
if not isinstance(vs, (list, tuple)):
......@@ -186,6 +188,26 @@ class PaddleGraph(object):
if layer_id not in self.edges_in:
self.edges_in[layer_id] = list()
self.edges_in[layer_id].append(in_layer_id)
else:
for v in layer.inputs:
assert v in outputs_from_nodes or (
inputs is not None and v in list(inputs.values())
) or (
outputs is not None and v in outputs
), "Couldn't find {} in previous layers, the layers should be make by topological sort".format(
v)
if v in outputs_from_nodes:
in_layer_id = outputs_from_nodes[v]
else:
in_layer_id = -1
if in_layer_id not in self.edges_out:
self.edges_out[in_layer_id] = list()
self.edges_out[in_layer_id].append(layer_id)
if layer_id not in self.edges_in:
self.edges_in[layer_id] = list()
self.edges_in[layer_id].append(in_layer_id)
for output in layer.outputs:
outputs_from_nodes[output] = layer_id
......@@ -496,6 +518,7 @@ class PaddleGraph(object):
else:
line = ','.join(layer.outputs)
line += " = {}(".format(layer.kernel)
if isinstance(layer.inputs, dict):
for k, v in layer.inputs.items():
if isinstance(v, list):
line += "{}=[{}], ".format(k, ", ".join(v))
......@@ -506,6 +529,9 @@ class PaddleGraph(object):
line += v
else:
line += "{}={}, ".format(k, v)
else:
line += "{}".format(", ".join(layer.inputs))
for k, v in layer.attrs.items():
line += "{}={}, ".format(k, v)
line = line.strip(", ")
......
......@@ -62,6 +62,7 @@ def _rename_or_remove_weight(weights,
if origin_name not in weights:
raise KeyError('{} not a key in {}'.format(origin_name, weights.keys()))
if is_remove:
# TODO There may be problems when the same data is used as an argument to multiple OPs.
# remove weight
data = weights.pop(origin_name)
else:
......@@ -250,6 +251,7 @@ class OpSet9():
node = parameter
dtype = node.dtype
shape = node.out_shapes[0]
if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
self.paddle_graph.add_layer(
"paddle.full",
......@@ -387,6 +389,7 @@ class OpSet9():
**attrs)
return
elif node.layer_type == 'Upsample':
if len(node.layer.input) == 2:
val_scales = self.graph.get_input_node(node, idx=1, copy=True)
self.paddle_graph.add_layer(
"paddle.slice",
......@@ -396,6 +399,8 @@ class OpSet9():
starts=[2],
ends=[4])
inputs['scale_factor'] = val_scales.name
else:
val_scales = node.get_attr('scales')[2:]
mode = node.get_attr('mode', 'nearest')
attrs.update({
......@@ -403,6 +408,8 @@ class OpSet9():
"mode": string(mode),
"align_mode": 1
})
if len(node.layer.input) == 1:
attrs["scale_factor"] = val_scales
val_x_shape = val_x.out_shapes[0]
if mode == "linear" and len(val_x_shape) == 4:
attrs["mode"] = string("bilinear")
......@@ -682,8 +689,7 @@ class OpSet9():
axes = node.get_attr('axes')
if axes is None:
axes = self.graph.get_input_node(node, idx=1, copy=True)
if len(val_x.out_shapes[0]) == 0:
if len(val_x.out_shapes[0]) == 0 and len(axes) == 1 and axes[0] == 0:
if node.name:
self.paddle_graph.add_layer(
'paddle.reshape',
......@@ -804,11 +810,19 @@ class OpSet9():
val_shape = self.graph.get_input_node(node, idx=1, copy=True)
val_x_dtype = val_x.dtype
name_ones = node.name + '_ones'
shape_values = _const_weight_or_none(val_shape)
if shape_values is None:
attr_ones = {
'shape': val_shape.name,
'dtype': string(val_x_dtype),
'fill_value': 1
}
else:
attr_ones = {
'shape': shape_values.tolist(),
'dtype': string(val_x_dtype),
'fill_value': 1
}
self.paddle_graph.add_layer(
'paddle.full', inputs={}, outputs=[name_ones], **attr_ones)
inputs_dict = {'x': name_ones, 'y': val_x.name}
......@@ -840,6 +854,11 @@ class OpSet9():
outputs=[node.name])
elif len(val_x.out_shapes[0]) > 1:
if len(indices_shape) == 0:
self.paddle_graph.add_layer(
'paddle.reshape',
inputs={"x": indices.name},
outputs=[indices.name],
shape=[-1, ])
gather_ = node.name + '_1'
self.paddle_graph.add_layer(
'paddle.gather',
......@@ -1142,6 +1161,10 @@ class OpSet9():
starts = node.get_attr('starts')
ends = node.get_attr('ends')
axes = node.get_attr('axes')
output_shape = val_x.out_shapes[0]
if axes is None:
axes = [i for i in range(len(starts))]
for idx in range(len(ends)):
if ends[idx] > 2**31 - 1:
ends[idx] = 2**31 - 1
......@@ -1182,7 +1205,6 @@ class OpSet9():
@print_mapping_info
def GatherND(self, node):
print(len(node.inputs), node.inputs)
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_y = self.graph.get_input_node(node, idx=1, copy=True)
self.paddle_graph.add_layer(
......@@ -1348,7 +1370,6 @@ class OpSet9():
@print_mapping_info
def GatherND(self, node):
print(len(node.inputs), node.inputs)
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_y = self.graph.get_input_node(node, idx=1, copy=True)
self.paddle_graph.add_layer(
......@@ -1976,6 +1997,143 @@ class OpSet9():
outputs=layer_outputs,
output_size=output_shape[2:])
@print_mapping_info
def Neg(self, node):
import paddle
val_x = self.graph.get_input_node(node, idx=0, copy=True)
v0, v1, v2 = paddle.__version__.split('.')
if int(v0) >= 2 and int(v1) >= 2:
self.paddle_graph.add_layer(
"paddle.neg", inputs={'x': val_x.name}, outputs=[node.name])
else:
val_y = node.name + "_y"
dtype = np.dtype(val_x.dtype)
self.paddle_graph.add_layer(
"paddle.full",
inputs={},
outputs=[val_y],
dtype=string(dtype),
shape=[1],
fill_value=-1)
self.paddle_graph.add_layer(
"paddle.multiply",
inputs={'x': val_x.name,
'y': val_y},
outputs=[node.name])
@print_mapping_info
def SpaceToDepth(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
blocksize = node.get_attr('blocksize')
val_x_shape = val_x.out_shapes[0]
b, c, h, w = val_x_shape
self.paddle_graph.add_layer(
'paddle.reshape',
inputs={"x": val_x.name},
outputs=[node.name],
shape=[b, c, h // blocksize, blocksize, w // blocksize, blocksize])
self.paddle_graph.add_layer(
'paddle.transpose',
inputs={"x": node.name},
outputs=[node.name],
perm=[0, 3, 5, 1, 2, 4])
self.paddle_graph.add_layer(
'paddle.reshape',
inputs={"x": node.name},
outputs=[node.name],
shape=[b, c * (blocksize**2), h // blocksize, w // blocksize])
@print_mapping_info
def GatherElements(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
indices = self.graph.get_input_node(node, idx=1, copy=True)
axis = node.get_attr('axis')
val_x_shape = val_x.out_shapes[0]
indices_shape = indices.out_shapes[0]
axis = axis if axis >= 0 else axis + len(val_x_shape)
if axis == 0:
axis_perm = [i for i in range(len(val_x_shape))]
data_swaped = val_x.name
index_swaped = indices.name
else:
axis_perm = [i for i in range(len(val_x_shape))]
axis_perm[axis] = 0
axis_perm[0] = axis
data_swaped = val_x.name + "_transpose"
self.paddle_graph.add_layer(
"paddle.transpose",
inputs={'x': val_x.name},
perm=axis_perm,
outputs=[data_swaped])
index_swaped = indices.name + "_transpose"
self.paddle_graph.add_layer(
"paddle.transpose",
inputs={'x': indices.name},
perm=axis_perm,
outputs=[index_swaped])
temp = indices_shape[0]
indices_shape[0] = indices_shape[axis]
indices_shape[axis] = temp
idx_tensors_per_axis_pre = [
indices_shape[i] for i in range(len(indices_shape))
]
name_list = list()
for i in range(len(idx_tensors_per_axis_pre)):
tensor_name = val_x.name + "_meshgrid_" + str(i)
self.paddle_graph.add_layer(
kernel="paddle.linspace",
inputs={},
outputs=[tensor_name],
start=0,
stop=idx_tensors_per_axis_pre[i] - 1,
num=idx_tensors_per_axis_pre[i])
name_list.append(tensor_name)
self.paddle_graph.add_layer(
"paddle.meshgrid", inputs=name_list, outputs=name_list)
self.paddle_graph.add_layer(
"paddle.cast",
inputs={"x": index_swaped},
outputs=[index_swaped],
dtype=string("float32"))
import copy
copy_name_list = copy.copy(name_list)
copy_name_list[0] = index_swaped
new_name_list = list()
for i in range(len(copy_name_list)):
unsqueeze_name = copy_name_list[i] + "_unsqueeze"
self.paddle_graph.add_layer(
"paddle.unsqueeze",
inputs={"x": copy_name_list[i]},
axis=-1,
outputs=[unsqueeze_name])
new_name_list.append(unsqueeze_name)
concat_name = val_x.name + "_concated_layer"
self.paddle_graph.add_layer(
"paddle.concat",
inputs={'x': new_name_list},
axis=-1,
outputs=[concat_name])
self.paddle_graph.add_layer(
"paddle.cast",
inputs={"x": concat_name},
outputs=[concat_name],
dtype=string("int32"))
gather_nd_name = "gather_nd_layer"
self.paddle_graph.add_layer(
"paddle.gather_nd",
inputs={'x': data_swaped,
"index": concat_name},
outputs=[gather_nd_name])
self.paddle_graph.add_layer(
"paddle.transpose",
inputs={'x': gather_nd_name},
perm=axis_perm,
outputs=[node.name])
@print_mapping_info
def GlobalAveragePool(self, node):
op_name = name_generator("pool", self.nn_name2id)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册