提交 668f8c48 编写于 作者: W wjj19950828

support swintransformer

上级 a834dd82
...@@ -106,7 +106,8 @@ class NMS(object): ...@@ -106,7 +106,8 @@ class NMS(object):
if bboxes.shape[0] == 1: if bboxes.shape[0] == 1:
batch = paddle.zeros_like(clas, dtype="int64") batch = paddle.zeros_like(clas, dtype="int64")
else: else:
bboxes_count = bboxes.shape[1] bboxes_count = paddle.shape(bboxes)[1]
bboxes_count = paddle.cast(bboxes_count, dtype="int64")
batch = paddle.divide(index, bboxes_count) batch = paddle.divide(index, bboxes_count)
index = paddle.mod(index, bboxes_count) index = paddle.mod(index, bboxes_count)
res = paddle.concat([batch, clas, index], axis=1) res = paddle.concat([batch, clas, index], axis=1)
......
...@@ -620,8 +620,13 @@ class OpSet9(): ...@@ -620,8 +620,13 @@ class OpSet9():
pads) # NCHW pads) # NCHW
if assume_pad: if assume_pad:
paddle_op = 'paddle.nn.Pad2D' paddle_op = 'paddle.nn.Pad2D'
# x1_begin,x2_begin,x3_begin,x4_begin,x1_end,x2_end,x3_end,x4_end->x1_begin,x1_end,x2_begin,x2_end,x3_begin,x3_end,x4_begin,x4_end
paddings = np.array(pads).reshape( paddings = np.array(pads).reshape(
(2, -1)).transpose().astype("int32") (2, -1)).transpose().astype("int32")
if mode == 'constant':
paddings = paddings.flatten().tolist()
layer_attrs['padding'] = paddings
else:
paddings = np.flip(paddings, axis=0).flatten().tolist() paddings = np.flip(paddings, axis=0).flatten().tolist()
if sum(paddings[:4]) == 0: if sum(paddings[:4]) == 0:
paddings = paddings[4:] paddings = paddings[4:]
...@@ -629,6 +634,9 @@ class OpSet9(): ...@@ -629,6 +634,9 @@ class OpSet9():
else: else:
layer_attrs["pad"] = paddings layer_attrs["pad"] = paddings
paddle_op = "custom_layer:PadAllDim4WithOneInput" paddle_op = "custom_layer:PadAllDim4WithOneInput"
else:
paddle_op = 'paddle.nn.functional.pad'
layer_attrs["pad"] = np.array(pads).tolist()
else: else:
pad_data_temp = pads[0::2] pad_data_temp = pads[0::2]
pad_data_all = [] pad_data_all = []
...@@ -1464,11 +1472,18 @@ class OpSet9(): ...@@ -1464,11 +1472,18 @@ class OpSet9():
outputs_list.append("{}_p{}".format(node.layer_name, i)) outputs_list.append("{}_p{}".format(node.layer_name, i))
else: else:
outputs_list.append(node.name) outputs_list.append(node.name)
if len(split) > 1:
self.paddle_graph.add_layer( self.paddle_graph.add_layer(
'paddle.split', 'paddle.split',
inputs={"x": val_x.name}, inputs={"x": val_x.name},
outputs=outputs_list, outputs=outputs_list,
**layer_attrs) **layer_attrs)
else:
self.paddle_graph.add_layer(
"paddle.cast",
inputs={"x": val_x.name},
outputs=outputs_list,
dtype=string(val_x.dtype))
@print_mapping_info @print_mapping_info
def Reshape(self, node): def Reshape(self, node):
...@@ -2698,28 +2713,36 @@ class OpSet9(): ...@@ -2698,28 +2713,36 @@ class OpSet9():
layer_outputs = [nn_op_name, output_name] layer_outputs = [nn_op_name, output_name]
boxes = self.graph.get_input_node(node, idx=0, copy=True) boxes = self.graph.get_input_node(node, idx=0, copy=True)
scores = self.graph.get_input_node(node, idx=1, copy=True) scores = self.graph.get_input_node(node, idx=1, copy=True)
num_classes = scores.out_shapes[0][1]
inputs_len = len(node.layer.input) inputs_len = len(node.layer.input)
layer_attrs = dict() layer_attrs = dict()
layer_attrs["keep_top_k"] = -1
layer_attrs["nms_threshold"] = 0.0
layer_attrs["score_threshold"] = 0.0
if inputs_len > 2: if inputs_len > 2:
max_output_boxes_per_class = self.graph.get_input_node( max_output_boxes_per_class = self.graph.get_input_node(
node, idx=2, copy=True) node, idx=2, copy=True)
layer_attrs["keep_top_k"] = _const_weight_or_none( max_output_boxes_per_class = _const_weight_or_none(
max_output_boxes_per_class).tolist()[0] * num_classes max_output_boxes_per_class)
if len(scores.out_shapes[0]) != 0:
num_classes = scores.out_shapes[0][1]
else:
num_classes = 1
if max_output_boxes_per_class is not None:
max_output_boxes_per_class = max_output_boxes_per_class.tolist()
if isinstance(max_output_boxes_per_class, int):
layer_attrs[
"keep_top_k"] = max_output_boxes_per_class * num_classes
else: else:
layer_attrs["keep_top_k"] = 0 layer_attrs["keep_top_k"] = max_output_boxes_per_class[
0] * num_classes
if inputs_len > 3: if inputs_len > 3:
iou_threshold = self.graph.get_input_node(node, idx=3, copy=True) iou_threshold = self.graph.get_input_node(node, idx=3, copy=True)
layer_attrs["nms_threshold"] = _const_weight_or_none( layer_attrs["nms_threshold"] = _const_weight_or_none(
iou_threshold).tolist()[0] iou_threshold).tolist()[0]
else:
layer_attrs["nms_threshold"] = 0.0
if inputs_len > 4: if inputs_len > 4:
score_threshold = self.graph.get_input_node(node, idx=4, copy=True) score_threshold = self.graph.get_input_node(node, idx=4, copy=True)
layer_attrs["score_threshold"] = _const_weight_or_none( layer_attrs["score_threshold"] = _const_weight_or_none(
score_threshold).tolist()[0] score_threshold).tolist()[0]
else:
layer_attrs["score_threshold"] = 0.0
self.paddle_graph.add_layer( self.paddle_graph.add_layer(
"custom_layer:NMS", "custom_layer:NMS",
inputs={"bboxes": boxes.name, inputs={"bboxes": boxes.name,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册