提交 5f0b141b 编写于 作者: W wjj19950828

Merge remote-tracking branch 'upstream/develop' into ONNX_for_HF

......@@ -117,6 +117,7 @@ Aten:
| 125 | aten::complex | 126 | aten::real | 127 | aten::imag | 128 | aten::fft\_rfftn |
| 129 | aten::fft\_irfftn | 130 | aten::hardsigmoid | 131 | aten::hardswish | 132 | aten::linear |
| 133 | aten::rsqrt | 134 | aten::replication\_pad1d | 135 | aten::full | 136 | aten::group\_norm |
| 137 | aten::argmax | 138 | aten::copy | | | | |
Prim:
| 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
......
......@@ -484,6 +484,55 @@ def aten_arange(mapper, graph, node):
return current_inputs, current_outputs
def aten_argmax(mapper, graph, node):
"""
TorchScript:
%x.28 : Tensor = aten::argmax(%result.1, %4967, %3, %2)
Parameter meaning:
%x.28 (Tensor): Output Tensor
%result.1 (Tensor): Input Tensor
%4967 (int/list): Axis
%3 (bool): Keepdim
"""
scope_name = mapper.normalize_scope_name(node)
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# output list
current_outputs = [output_name]
# process Input Tensor
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
scope_name)
layer_inputs["x"] = inputs_name[0]
current_inputs = list(layer_inputs.values())
# process Axis
if inputs_name[1] in mapper.attrs:
layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs, scope_name)
layer_inputs["axis"] = inputs_name[1]
current_inputs.append(inputs_name[1])
# process Keepdim
if inputs_name[2] in mapper.attrs:
layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
else:
mapper._check_input(graph, inputs_node[2], inputs_name[2],
current_outputs, scope_name)
layer_inputs["keepdim"] = inputs_name[2]
current_inputs.append(inputs_name[2])
graph.add_layer(
"paddle.argmax",
inputs=layer_inputs,
outputs=layer_outputs,
scope_name=scope_name,
**layer_attrs)
return current_inputs, current_outputs
def aten_avg_pool2d(mapper, graph, node):
""" 构造最大池化的PaddleLayer。
TorchScript示例:
......@@ -1075,6 +1124,35 @@ def aten_complex(mapper, graph, node):
return current_inputs, current_outputs
def aten_copy(mapper, graph, node):
"""
TorchScript Code:
%107 : Tensor = aten::copy(%new_mem.1)
Parameter meaning:
%107 (Tensor): Output Tensor
%new_mem.1 (Tensor): Input Tensor
"""
scope_name = mapper.normalize_scope_name(node)
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# output list
current_outputs = [output_name]
# process Input Tensor
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
scope_name)
layer_inputs["input"] = inputs_name[0]
current_inputs = list(layer_inputs.values())
graph.add_layer(
"prim.equal",
inputs=layer_inputs,
outputs=layer_outputs,
scope_name=scope_name)
return current_inputs, current_outputs
def aten___contains__(mapper, graph, node):
""" 构造in的PaddleLayer。
TorchScript示例:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册