提交 5cd17103 编写于 作者: C Channingss

[ONNX]fix bug: ndarray assignment destination may be read-only

上级 d8c0b3f5
......@@ -246,8 +246,10 @@ class ONNXOpMapper(OpMapper):
assert len(val_inps) == 1, 'directly_map error with multi inputs'
if fluid_op not in ['shape']:
attr['name'] = string(node.layer_name)
node.fluid_code.add_layer(
fluid_op, inputs=val_inps[0], output=val_outs[0], param_attr=attr)
node.fluid_code.add_layer(fluid_op,
inputs=val_inps[0],
output=val_outs[0],
param_attr=attr)
def deal_custom_layer(self, node):
op = node.layer_type
......@@ -256,8 +258,7 @@ class ONNXOpMapper(OpMapper):
params = get_params(node.layer, node.layer_type)
arg_names, kwargs = set_args(func, params)
kwargs['name'] = string(node.layer_name)
node.fluid_code.add_layer(
func.__code__.co_name,
node.fluid_code.add_layer(func.__code__.co_name,
inputs=node.inputs,
output=node,
param_attr=kwargs,
......@@ -298,18 +299,21 @@ class ONNXOpMapper(OpMapper):
'shape': val_y_reshaped,
'name': string(var_y_reshaped)
}
node.fluid_code.add_layer(
'reshape',
node.fluid_code.add_layer('reshape',
inputs=val_y,
output=var_y_reshaped,
param_attr=attr_reshaped)
inputs = {'x': val_x, 'y': var_y_reshaped}
node.fluid_code.add_layer(
op_type, inputs=inputs, output=node, param_attr=attr)
node.fluid_code.add_layer(op_type,
inputs=inputs,
output=node,
param_attr=attr)
else:
inputs = {'x': val_x, 'y': val_y}
node.fluid_code.add_layer(
op_type, inputs=inputs, output=node, param_attr=attr)
node.fluid_code.add_layer(op_type,
inputs=inputs,
output=node,
param_attr=attr)
def place_holder(self, node):
self.input_shapes.append(node.out_shapes[0])
......@@ -327,8 +331,10 @@ class ONNXOpMapper(OpMapper):
"append_batch_size": 'False'
}
node.fluid_code.add_layer(
"data", inputs=None, output=node, param_attr=attr)
node.fluid_code.add_layer("data",
inputs=None,
output=node,
param_attr=attr)
def create_parameter(self, node, parameter=None):
if parameter is not None:
......@@ -345,8 +351,10 @@ class ONNXOpMapper(OpMapper):
'attr': string(node.layer_name),
'default_initializer': 'Constant(0.0)'
}
node.fluid_code.add_layer(
"create_parameter", inputs=None, output=node, param_attr=attr)
node.fluid_code.add_layer("create_parameter",
inputs=None,
output=node,
param_attr=attr)
def _pad_if_asymmetric(self, node, pads, val_name): # pads: SSEE
assert len(pads) & 1 == 0
......@@ -410,8 +418,10 @@ class ONNXOpMapper(OpMapper):
else:
attr['out_shape'] = out_shape
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
def RoiAlign(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -427,8 +437,7 @@ class ONNXOpMapper(OpMapper):
'spatial_scale': spatial_scale,
'sampling_ratio': sampling_ratio,
}
node.fluid_code.add_layer(
'roi_align',
node.fluid_code.add_layer('roi_align',
inputs={
'input': val_x,
'rois': val_rois
......@@ -447,8 +456,7 @@ class ONNXOpMapper(OpMapper):
'pooled_width': pooled_width,
'spatial_scale': spatial_scale,
}
node.fluid_code.add_layer(
'roi_pool',
node.fluid_code.add_layer('roi_pool',
inputs={
'input': val_x,
'rois': val_rois
......@@ -491,12 +499,13 @@ class ONNXOpMapper(OpMapper):
attr['paddings'] = paddings
if op_independent:
attr['name'] = string(node.layer_name)
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
else:
attr['name'] = string(node.layer_name + '_paded')
node.fluid_code.add_layer(
fluid_op,
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node.layer_name + '_paded',
param_attr=attr)
......@@ -506,12 +515,16 @@ class ONNXOpMapper(OpMapper):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = node.get_attr('axes')
if len(val_x.out_shapes[0]) == 0:
node.fluid_code.add_layer(
'assign', inputs=val_x, output=node, param_attr=None)
node.fluid_code.add_layer('assign',
inputs=val_x,
output=node,
param_attr=None)
else:
attr = {'axes': axes, 'name': string(node.layer_name)}
node.fluid_code.add_layer(
'unsqueeze', inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer('unsqueeze',
inputs=val_x,
output=node,
param_attr=attr)
def Shrink(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -519,8 +532,10 @@ class ONNXOpMapper(OpMapper):
lambd = node.get_attr('lambd')
assert bias == 0.0, 'not support bias!=0'
attr = {'threshold': lambd, 'name': node.layer_name}
node.fluid_code.add_layer(
'hard_shrink', inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer('hard_shrink',
inputs=val_x,
output=node,
param_attr=attr)
def Constant(self, node):
val_output = self.graph.get_node(node.layer.output[0], copy=True)
......@@ -550,8 +565,10 @@ class ONNXOpMapper(OpMapper):
if dtype.name == 'int64':
dtype = 'int32'
attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
node.fluid_code.add_layer(
'fill_constant', inputs=None, output=node, param_attr=attr)
node.fluid_code.add_layer('fill_constant',
inputs=None,
output=node,
param_attr=attr)
else:
value = np.reshape(value, shape)
self.weights[node.layer_name] = value
......@@ -562,8 +579,10 @@ class ONNXOpMapper(OpMapper):
'attr': string(node.layer_name),
'default_initializer': 'Constant(0.0)'
}
node.fluid_code.add_layer(
"create_parameter", inputs=None, output=node, param_attr=attr)
node.fluid_code.add_layer("create_parameter",
inputs=None,
output=node,
param_attr=attr)
def Resize(self, node):
self._interpolate(node)
......@@ -584,12 +603,13 @@ class ONNXOpMapper(OpMapper):
name_ones = node.layer_name + '_ones'
attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
node.fluid_code.add_layer(
'ones', inputs=None, output=name_ones, param_attr=attr_ones)
node.fluid_code.add_layer('ones',
inputs=None,
output=name_ones,
param_attr=attr_ones)
inputs = {'x': name_ones, 'y': val_x}
attr = {'name': string(node.layer_name)}
node.fluid_code.add_layer(
'elementwise_mul',
node.fluid_code.add_layer('elementwise_mul',
inputs=inputs,
output=node.layer_name,
param_attr=attr)
......@@ -602,8 +622,7 @@ class ONNXOpMapper(OpMapper):
assert len(
indices_shape) <= 2, "Gather op don't support dim of indice >2 "
if axis == 0 and len(indices_shape) <= 1:
node.fluid_code.add_layer(
'gather',
node.fluid_code.add_layer('gather',
inputs={
'input': val_x,
'index': indices
......@@ -615,26 +634,25 @@ class ONNXOpMapper(OpMapper):
perm = [axis] + perm[:axis] + perm[axis + 1:]
attr_trans = {'perm': perm}
name_trans = val_x.layer_name + '_trans'
node.fluid_code.add_layer(
'transpose',
node.fluid_code.add_layer('transpose',
inputs=val_x,
output=name_trans,
param_attr=attr_trans)
node.fluid_code.add_layer(
'gather',
node.fluid_code.add_layer('gather',
inputs={
'input': name_trans,
'index': indices
},
output=node,
param_attr=None)
node.fluid_code.add_layer(
'transpose', inputs=node, output=node, param_attr=attr_trans)
node.fluid_code.add_layer('transpose',
inputs=node,
output=node,
param_attr=attr_trans)
elif len(indices_shape) > 1:
from functools import reduce
reshape_shape = reduce(lambda x, y: x * y, indices_shape)
node.fluid_code.add_layer(
'reshape',
node.fluid_code.add_layer('reshape',
inputs=indices,
output=indices,
param_attr={'shape': [
......@@ -645,29 +663,28 @@ class ONNXOpMapper(OpMapper):
perm = [axis] + perm[:axis] + perm[axis + 1:]
attr_trans = {'perm': perm}
name_trans = val_x.layer_name + '_trans'
node.fluid_code.add_layer(
'transpose',
node.fluid_code.add_layer('transpose',
inputs=val_x,
output=name_trans,
param_attr=attr_trans)
node.fluid_code.add_layer(
'gather',
node.fluid_code.add_layer('gather',
inputs={
'input': name_trans,
'index': indices
},
output=node,
param_attr=None)
node.fluid_code.add_layer(
'transpose', inputs=node, output=node, param_attr=attr_trans)
node.fluid_code.add_layer('transpose',
inputs=node,
output=node,
param_attr=attr_trans)
val_x_shape = val_x.out_shapes[0]
reshaped_shape = []
for i in perm:
reshaped_shape.append(indices_shape[i])
for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
reshaped_shape.append(i)
node.fluid_code.add_layer(
'reshape',
node.fluid_code.add_layer('reshape',
inputs=node,
output=node,
param_attr={'shape': reshaped_shape})
......@@ -708,8 +725,10 @@ class ONNXOpMapper(OpMapper):
if value > shape[axes[idx]]:
ends[idx] = shape[axes[idx]]
attr = {"axes": axes, "starts": starts, "ends": ends}
node.fluid_code.add_layer(
'slice', inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer('slice',
inputs=val_x,
output=node,
param_attr=attr)
def ConstantOfShape(self, node):
val_shape = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -732,8 +751,10 @@ class ONNXOpMapper(OpMapper):
if dtype.name == 'int64':
dtype = 'int32'
attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
node.fluid_code.add_layer(
'fill_constant', inputs=None, output=node, param_attr=attr)
node.fluid_code.add_layer('fill_constant',
inputs=None,
output=node,
param_attr=attr)
def Split(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -748,8 +769,10 @@ class ONNXOpMapper(OpMapper):
'name': string(node.layer_name)
}
node.fluid_code.add_layer(
'split', inputs=val_x, output=val_y, param_attr=attr)
node.fluid_code.add_layer('split',
inputs=val_x,
output=val_y,
param_attr=attr)
def Reshape(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -766,8 +789,7 @@ class ONNXOpMapper(OpMapper):
shape, _, _ = self.get_dynamic_shape(val_shape.layer_name)
if val_shape.dtype == 'int64':
val_shape_cast = val_shape.layer_name + '_cast'
node.fluid_code.add_layer(
'cast',
node.fluid_code.add_layer('cast',
inputs=val_shape,
output=val_shape_cast,
param_attr={'dtype': string('int32')})
......@@ -788,8 +810,10 @@ class ONNXOpMapper(OpMapper):
val_x.layer_name, val_reshaped.layer_name)
attr['shape'] = shape
node.fluid_code.add_layer(
'reshape', inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer('reshape',
inputs=val_x,
output=node,
param_attr=attr)
def Cast(self, node):
val_input = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -803,8 +827,10 @@ class ONNXOpMapper(OpMapper):
if output_dtype:
assert dtype == output_dtype, 'dtype of to unmatches output'
attr = {'dtype': string(dtype)}
node.fluid_code.add_layer(
'cast', inputs=val_input, output=node, param_attr=attr)
node.fluid_code.add_layer('cast',
inputs=val_input,
output=node,
param_attr=attr)
def AveragePool(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -839,8 +865,10 @@ class ONNXOpMapper(OpMapper):
"name": string(node.layer_name)
}
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
def Concat(self, node):
inputs = []
......@@ -852,15 +880,19 @@ class ONNXOpMapper(OpMapper):
inputs.append(ipt.layer_name)
axis = node.get_attr('axis')
attr = {'axis': axis}
node.fluid_code.add_layer(
'concat', inputs=inputs, output=node, param_attr=attr)
node.fluid_code.add_layer('concat',
inputs=inputs,
output=node,
param_attr=attr)
def Flatten(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axis = node.get_attr('axis', 1)
attr = {"axis": str(axis), "name": string(node.layer_name)}
node.fluid_code.add_layer(
'flatten', inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer('flatten',
inputs=val_x,
output=node,
param_attr=attr)
def Gemm(self, node):
val_a = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -879,8 +911,7 @@ class ONNXOpMapper(OpMapper):
"alpha": alpha,
"name": string(val_mm)
}
node.fluid_code.add_layer(
'matmul',
node.fluid_code.add_layer('matmul',
inputs=matmul_inputs,
output=val_mm,
param_attr=attr_matmul)
......@@ -889,24 +920,21 @@ class ONNXOpMapper(OpMapper):
if beta == 1.:
add_inputs = {"x": val_mm, "y": val_c}
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer(
"elementwise_add",
node.fluid_code.add_layer("elementwise_add",
inputs=add_inputs,
output=node,
param_attr=attr)
else:
var_beta = node.layer_name + '_beta'
matmul_beta_inputs = {"x": val_c, "y": var_beta}
node.fluid_code.add_layer(
"Constant",
node.fluid_code.add_layer("Constant",
inputs=matmul_beta_inputs,
output=var_beta,
param_attr={'value': beta})
add_inputs = {"x": val_mm, "y": var_beta}
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer(
"elementwise_add",
node.fluid_code.add_layer("elementwise_add",
inputs=add_inputs,
output=node,
param_attr=attr)
......@@ -925,16 +953,19 @@ class ONNXOpMapper(OpMapper):
"x": node.layer_name,
"y": y,
}
node.fluid_code.add_layer(
"elementwise_add", inputs=inputs, output=node)
node.fluid_code.add_layer("elementwise_add",
inputs=inputs,
output=node)
def MatMul(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_y = self.graph.get_input_node(node, idx=1, copy=True)
inputs = {"x": val_x, "y": val_y}
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer(
"matmul", inputs=inputs, output=node, param_attr=attr)
node.fluid_code.add_layer("matmul",
inputs=inputs,
output=node,
param_attr=attr)
def BatchNormalization(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -965,21 +996,27 @@ class ONNXOpMapper(OpMapper):
"use_global_stats": spatial,
"name": string(node.layer_name)
}
node.fluid_code.add_layer(
"batch_norm", inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer("batch_norm",
inputs=val_x,
output=node,
param_attr=attr)
def Transpose(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
perm = node.get_attr('perm')
attr = {'perm': perm, "name": string(node.layer_name)}
node.fluid_code.add_layer(
"transpose", inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer("transpose",
inputs=val_x,
output=node,
param_attr=attr)
def Relu(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer(
"relu", inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer("relu",
inputs=val_x,
output=node,
param_attr=attr)
def PRelu(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -995,21 +1032,24 @@ class ONNXOpMapper(OpMapper):
"param_attr": string(val_slope.layer_name),
'mode': string(mode)
}
node.fluid_code.add_layer(
"prelu", inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer("prelu",
inputs=val_x,
output=node,
param_attr=attr)
def Squeeze(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = node.get_attr('axes')
attr = {'axes': axes, "name": string(node.layer_name)}
node.fluid_code.add_layer(
"squeeze", inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer("squeeze",
inputs=val_x,
output=node,
param_attr=attr)
def Equal(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_y = self.graph.get_input_node(node, idx=1, copy=True)
node.fluid_code.add_layer(
"equal",
node.fluid_code.add_layer("equal",
inputs={
'x': val_x,
'y': val_y
......@@ -1023,26 +1063,22 @@ class ONNXOpMapper(OpMapper):
val_y = self.graph.get_input_node(node, idx=2, copy=True)
not_condition = condition.layer_name + '_not'
node.fluid_code.add_layer(
"logical_not",
node.fluid_code.add_layer("logical_not",
inputs=condition,
output=not_condition,
param_attr=None)
cast_not_condition = not_condition + '_cast'
node.fluid_code.add_layer(
"cast",
node.fluid_code.add_layer("cast",
inputs=not_condition,
output=cast_not_condition,
param_attr={'dtype': string(val_x.dtype)})
cast_condition = condition.layer_name + '_cast'
node.fluid_code.add_layer(
"cast",
node.fluid_code.add_layer("cast",
inputs=condition,
output=cast_condition,
param_attr={'dtype': string(val_x.dtype)})
mul_val_x = val_x.layer_name + '_mul'
node.fluid_code.add_layer(
"elementwise_mul",
node.fluid_code.add_layer("elementwise_mul",
inputs={
'x': val_x,
'y': cast_condition
......@@ -1051,8 +1087,7 @@ class ONNXOpMapper(OpMapper):
param_attr=None)
mul_val_y = val_y.layer_name + '_mul'
node.fluid_code.add_layer(
"elementwise_mul",
node.fluid_code.add_layer("elementwise_mul",
inputs={
'x': val_y,
'y': cast_not_condition
......@@ -1060,8 +1095,7 @@ class ONNXOpMapper(OpMapper):
output=mul_val_y,
param_attr=None)
node.fluid_code.add_layer(
"elementwise_add",
node.fluid_code.add_layer("elementwise_add",
inputs={
'x': mul_val_x,
'y': mul_val_y
......@@ -1072,8 +1106,9 @@ class ONNXOpMapper(OpMapper):
def NonZero(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
where_name = node.layer_name + '_where'
node.fluid_code.add_layer(
"where", inputs=val_x.layer_name + '!=0', output=where_name)
node.fluid_code.add_layer("where",
inputs=val_x.layer_name + '!=0',
output=where_name)
dims = len(val_x.out_shapes[0])
elements_count_val_x = reduce(lambda x, y: x * y, val_x.out_shapes[0])
flatten_names = []
......@@ -1086,15 +1121,18 @@ class ONNXOpMapper(OpMapper):
'starts': [0, dim],
'ends': [elements_count_val_x, dim + 1]
}
node.fluid_code.add_layer(
"slice", inputs=where_name, output=slice_name, param_attr=attr)
node.fluid_code.add_layer(
"flatten",
node.fluid_code.add_layer("slice",
inputs=where_name,
output=slice_name,
param_attr=attr)
node.fluid_code.add_layer("flatten",
inputs=slice_name,
output=flatten_name,
param_attr={'axis': 0})
node.fluid_code.add_layer(
"concat", inputs=flatten_names, output=node, param_attr={'axis': 0})
node.fluid_code.add_layer("concat",
inputs=flatten_names,
output=node,
param_attr={'axis': 0})
def Identity(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -1113,8 +1151,10 @@ class ONNXOpMapper(OpMapper):
'expand_times': repeats,
"name": string(node.layer_name),
}
node.fluid_code.add_layer(
"expand", inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer("expand",
inputs=val_x,
output=node,
param_attr=attr)
def MaxPool(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -1151,8 +1191,10 @@ class ONNXOpMapper(OpMapper):
"name": string(node.layer_name),
"exclusive": False
}
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
def _global_pool(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -1178,8 +1220,10 @@ class ONNXOpMapper(OpMapper):
"global_pooling": True,
"name": string(node.layer_name)
}
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
def GlobalMaxPool(self, node):
self._global_pool(node)
......@@ -1235,8 +1279,10 @@ class ONNXOpMapper(OpMapper):
attr["bias_attr"] = string(val_b.layer_name)
else:
attr["bias_attr"] = False
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
def ConvTranspose(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -1286,8 +1332,10 @@ class ONNXOpMapper(OpMapper):
'bias_attr': None if val_b is None else string(val_b.layer_name),
'name': string(node.layer_name),
}
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
def GRU(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -1304,13 +1352,15 @@ class ONNXOpMapper(OpMapper):
else:
miss_arg_num += 1
if num_ipt > 4 and node.layer.input[4] != '':
val_len = self.graph.get_input_node(
node, idx=4 - miss_arg_num, copy=True)
val_len = self.graph.get_input_node(node,
idx=4 - miss_arg_num,
copy=True)
else:
miss_arg_num += 1
if num_ipt > 5 and node.layer.input[5] != '':
val_xh = self.graph.get_input_node(
node, idx=5 - miss_arg_num, copy=True)
val_xh = self.graph.get_input_node(node,
idx=5 - miss_arg_num,
copy=True)
data, dtype, shape = self.get_dynamic_shape(val_x.layer_name)
......@@ -1351,8 +1401,7 @@ class ONNXOpMapper(OpMapper):
is_reverse = direction == 'reverse'
var_x0 = node.layer_name + '_x0'
node.fluid_code.add_layer(
'squeeze',
node.fluid_code.add_layer('squeeze',
inputs=val_x,
output=var_x0,
param_attr={
......@@ -1361,8 +1410,7 @@ class ONNXOpMapper(OpMapper):
})
var_w0 = node.layer_name + '_w0'
node.fluid_code.add_layer(
'squeeze',
node.fluid_code.add_layer('squeeze',
inputs=val_w,
output=var_w0,
param_attr={
......@@ -1372,8 +1420,7 @@ class ONNXOpMapper(OpMapper):
var_fc = node.layer_name + '_fc'
var_mm = (node.layer_name + '_mm') if val_b else var_fc
node.fluid_code.add_layer(
'matmul',
node.fluid_code.add_layer('matmul',
inputs={
'x': var_x0,
'y': var_w0
......@@ -1386,8 +1433,7 @@ class ONNXOpMapper(OpMapper):
})
var_r0 = node.layer_name + '_r0'
node.fluid_code.add_layer(
'squeeze',
node.fluid_code.add_layer('squeeze',
inputs=val_r,
output=var_r0,
param_attr={
......@@ -1397,8 +1443,7 @@ class ONNXOpMapper(OpMapper):
var_r0t = node.layer_name + '_r0t'
node.fluid_code.add_layer(
'transpose',
node.fluid_code.add_layer('transpose',
inputs=var_r0,
output=var_r0t,
param_attr={
......@@ -1408,18 +1453,19 @@ class ONNXOpMapper(OpMapper):
if val_b:
var_bi = node.layer_name + '_bi'
var_bh = node.layer_name + '_bh'
node.fluid_code.add_layer(
'split',
node.fluid_code.add_layer('split',
inputs=val_b,
output=var_bi + ',' + var_bh,
param_attr={
'axis': 1,
'split': [hidden_size * 3, hidden_size * 3],
'name': string(node.layer_name + '.b/split')
'axis':
1,
'split':
[hidden_size * 3, hidden_size * 3],
'name':
string(node.layer_name + '.b/split')
})
var_bi0 = node.layer_name + '_bi0'
node.fluid_code.add_layer(
'squeeze',
node.fluid_code.add_layer('squeeze',
inputs=var_bi,
output=var_bi0,
param_attr={
......@@ -1427,19 +1473,19 @@ class ONNXOpMapper(OpMapper):
'name': string(var_bi0)
})
node.fluid_code.add_layer(
'elmentwise_add',
node.fluid_code.add_layer('elmentwise_add',
inputs=[var_mm, var_bi0],
output=var_fc,
param_attr={
'axes': 1,
'name': string(node.layer_name + '.i/bias')
'axes':
1,
'name':
string(node.layer_name + '.i/bias')
})
if val_xh:
var_xh0 = node.layer_name + '_xh0'
node.fluid_code.add_layer(
'squeeze',
node.fluid_code.add_layer('squeeze',
inputs=val_xh,
output=var_xh0,
param_attr={
......@@ -1457,8 +1503,7 @@ class ONNXOpMapper(OpMapper):
'param_attr': string(var_r0t),
'bias_attr': string(var_bh) if val_b else False,
}
node.fluid_code.add_layer(
'dynamic_gru',
node.fluid_code.add_layer('dynamic_gru',
inputs=var_fc + ',' + str(hidden_size),
output=var_y00,
param_attr=attr)
......@@ -1466,8 +1511,7 @@ class ONNXOpMapper(OpMapper):
num_opt = len(node.layer.output)
if num_opt > 0 and node.layer.output[0] != '':
node.fluid_code.add_layer(
'unsqueeze',
node.fluid_code.add_layer('unsqueeze',
inputs=var_y00,
output=node.layer.output[0],
param_attr={
......@@ -1475,8 +1519,7 @@ class ONNXOpMapper(OpMapper):
'name': string(node.layer.output[0])
})
if num_opt > 1 and node.layer.output[1] != '':
node.fluid_code.add_layer(
'unsqueeze',
node.fluid_code.add_layer('unsqueeze',
inputs=var_y00,
output=node.layer.output[1],
param_attr={
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册