未验证 提交 5a20cb89 编写于 作者: J Jason 提交者: GitHub

Merge pull request #405 from SunAhong1993/syf_dev

add pytorch code and docs
......@@ -44,6 +44,10 @@ x2paddle --framework=caffe --prototxt=deploy.prototxt --weight=deploy.caffemodel
```
x2paddle --framework=onnx --model=onnx_model.onnx --save_dir=pd_model
```
### PyTorch
```
x2paddle --framework=pytorch --model=resnet50.pt --save_dir=pd_model --input_shapes [-1,3,224,224]
```
### Paddle2ONNX
```
# 注意:paddle_infer_model_dir下需包含__model__和__params__两个文件
......@@ -52,7 +56,7 @@ x2paddle --framework=paddle2onnx --model=paddle_infer_model_dir --save_dir=onnx_
### 参数选项
| 参数 | |
|----------|--------------|
|--framework | 源模型类型 (tensorflow、caffe、onnx、paddle2onnx) |
|--framework | 源模型类型 (tensorflow、caffe、onnx、pytorch、paddle2onnx) |
|--prototxt | 当framework为caffe时,该参数指定caffe模型的proto文件路径 |
|--weight | 当framework为caffe时,该参数指定caffe模型的参数文件路径 |
|--save_dir | 指定转换后的模型保存目录路径 |
......@@ -62,6 +66,7 @@ x2paddle --framework=paddle2onnx --model=paddle_infer_model_dir --save_dir=onnx_
|--define_input_shape | **[可选]** For TensorFlow, 当指定该参数时,强制用户输入每个Placeholder的shape,见[文档Q2](FAQ.md) |
|--params_merge | **[可选]** 当指定该参数时,转换完成后,inference_model中的所有模型参数将合并保存为一个文件__params__ |
|--onnx_opset | **[可选]** 当framework为paddle2onnx时,该参数可设置转换为ONNX的OpSet版本,目前支持9、10、11,默认为10 |
|--input_shapes |**[可选]** 当framework为pytorch时,该参数若设置,则根据输入的shape导出inference model(用于预测的静态模型)|
......
## PyTorch模型导出为ONNX模型
目前pytorch2paddle主要支持pytorch ScriptModule。 用户可通过如下示例代码,将torchvison或者自己开发写的模型转换成ScriptModule model:
```
#coding: utf-8
import torch
import torch.nn as nn
from torchvision.models.utils import load_state_dict_from_url
# 定义模型
class AlexNet(nn.Module):
def __init__(self, num_classes=1000):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
self.classifier = nn.Sequential(
nn.Dropout(0.0),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(0.0),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
for i in range(1):
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
# 初始化模型
model = AlexNet()
# 加载参数
state_dict = load_state_dict_from_url('https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
progress=True)
model.load_state_dict(state_dict)
# 设置模式
model.eval()
# 生成ScriptModule并保存
script = torch.jit.script(model)
torch.jit.save(script, "alexnet.pt")
```
__version__ = "0.8.4"
from .core.program import PaddleProgram
from .core.program import PaddleGraph
program = PaddleProgram()
program = PaddleGraph()
name_counter = dict()
......
......@@ -87,10 +87,14 @@ def arg_parser():
action="store_true",
default=False,
help="define whether merge the params")
parser.add_argument(
"--input_shapes",
"-is",
action='append',
default=None,
help="define the inputs' shape")
return parser
def tf2paddle(model_path,
save_dir,
without_data_format_optimization,
......@@ -190,6 +194,45 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
print("Paddle model and code generating ...")
mapper.save_inference_model(save_dir, params_merge)
print("Paddle model and code generated.")
def pytorch2paddle(model_path, save_dir, input_shapes):
# check pytorch installation and version
try:
import torch
version = torch.__version__
ver_part = version.split('.')
print(ver_part)
if int(ver_part[1]) < 5:
print("[ERROR] pytorch>=1.5.0 is required")
return
except:
print(
"[ERROR] Pytorch is not installed, use \"pip install torch==1.5.0 torchvision\"."
)
return
print("Now translating model from pytorch to paddle.")
from x2paddle.decoder.pytorch_decoder import PyTorchDecoder
from x2paddle.op_mapper.pytorch2paddle import pytorch_op_mapper
model = PyTorchDecoder(model_path)
mapper = pytorch_op_mapper.PyTorchOpMapper(model)
mapper.graph.build()
print("Model optimizing ...")
from x2paddle.optimizer.pytorch_optimizer.optimizer import GraphOptimizer
graph_opt = GraphOptimizer()
graph_opt.optimize(mapper.graph)
print("Model optimized.")
if input_shapes is not None:
real_input_shapes = list()
for shape in input_shapes:
sp = shape[1:-1].split(",")
for i, s in enumerate(sp):
sp[i] = int(s)
real_input_shapes.append(sp)
else:
real_input_shapes = None
mapper.graph.gen_model(save_dir, real_input_shapes)
def paddle2onnx(model_path, save_dir, opset_version=10):
......@@ -267,6 +310,10 @@ def main():
if args.params_merge:
params_merge = True
onnx2paddle(args.model, args.save_dir, params_merge)
elif args.framework == "pytorch":
assert args.model is not None, "--model should be defined while translating pytorch model"
pytorch2paddle(args.model, args.save_dir, args.input_shapes)
elif args.framework == "paddle2onnx":
assert args.model is not None, "--model should be defined while translating paddle model to onnx"
......@@ -278,4 +325,4 @@ def main():
if __name__ == "__main__":
main()
main()
\ No newline at end of file
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
......@@ -14,62 +14,161 @@
from __future__ import print_function
from __future__ import division
import paddle.fluid as fluid
import os.path as osp
import paddle
from paddle.fluid.proto import framework_pb2
from collections import OrderedDict
import numpy
import collections
import sys
import os
import six
import pickle
class PaddleLayer(object):
def __init__(self, kernel, inputs, outputs, **kwargs):
def __init__(self, id, kernel, inputs, outputs, **kwargs):
assert isinstance(
inputs,
dict), "parameter 'inputs' for PaddleLayer should be type of dict"
assert isinstance(
outputs,
list), "parameter, 'outputs' for PaddleLayer should be type of list"
list), "parameter 'outputs' for PaddleLayer should be type of list"
for k, v in inputs.items():
if isinstance(v, list):
for i in v:
assert isinstance(
i, six.string_types
), "value in inputs should be type of string or list of string"
else:
assert isinstance(v, six.string_types) or isinstance(
v, list
), "value in inputs should be type of string or list of string"
for v in outputs:
assert isinstance(
v, six.
string_types), "elements in outputs should be type of string"
self.kernel = kernel
self.inputs = inputs
self.outputs = outputs
self.attrs = kwargs
self.id = id
self.blocks = list()
def add_block(self, block):
self.blocks.append(block)
class PaddleProgram(object):
def __init__(self):
self.layers = list()
class PaddleGraph(object):
def __init__(self, parent_layer=None, graph_type="static"):
self.layers = OrderedDict()
self.edges_out = dict()
self.edges_in = dict()
self.inputs = list()
self.outputs = list()
self.parameters = dict()
self.parent_layer = parent_layer
self.graph_type = graph_type
def set_name(self, name):
self.name = name
def set_parameters(self, parameters):
self.parameters = parameters
def clear(self):
self.layers = OrderedDict()
self.edges_out = dict()
self.edges_in = dict()
self.inputs = list()
self.outputs = list()
self.parameters = dict()
def clear_edges(self):
self.edges_out = dict()
self.edges_in = dict()
def add_layer(self, kernel, inputs, outputs, **kwargs):
layer = PaddleLayer(kernel, inputs, outputs, **kwargs)
self.layers.append(layer)
layer_id = str(len(self.layers))
if self.parent_layer is not None:
layer_id = "{}.{}.{}".format(self.parent_layer.id,
len(self.parent_layer.blocks),
layer_id)
layer = PaddleLayer(layer_id, kernel, inputs, outputs, **kwargs)
self.layers[layer_id] = layer
return layer_id
def build(self):
outputs = dict()
for i in range(len(self.layers)):
layer = self.layers[i]
def build(self, inputs=None, outputs=None):
self.clear_edges()
outputs_from_nodes = dict()
for layer_id, layer in self.layers.items():
for input_key, input_var in layer.inputs.items():
vs = input_var
if not isinstance(vs, list):
vs = [vs]
for v in vs:
assert v in outputs_from_nodes or (
inputs is not None and v in list(inputs.values())
) or (
outputs is not None and v in outputs
), "Couldn't find {} in previous layers, the layers should be make by topological sort".format(
v)
if v in outputs_from_nodes:
in_layer_id = outputs_from_nodes[v]
else:
in_layer_id = -1
if in_layer_id not in self.edges_out:
self.edges_out[in_layer_id] = list()
self.edges_out[in_layer_id].append(layer_id)
if layer_id not in self.edges_in:
self.edges_in[layer_id] = list()
self.edges_in[layer_id].append(in_layer_id)
for output in layer.outputs:
outputs[output] = i
outputs_from_nodes[output] = layer_id
for k, v in layer.inputs.items():
assert v in outputs, "Couldn't find {} in previous layers, the layers should be make by topological sort".format(
v)
in_layer_index = outputs[v]
# 将block的输出用于父图
if inputs is not None and outputs is not None and set(
layer.outputs).issubset(outputs):
if layer_id not in self.edges_out:
self.edges_out[layer_id] = list()
self.edges_out[layer_id].append(-1)
if in_layer_index not in self.edges_out:
self.edges_out[in_layer_index] = list()
self.edges_out[in_layer_index].append(i)
# 处理子图
if len(layer.blocks) > 0:
for block in layer.blocks:
block.build(layer.inputs, layer.outputs)
if i not in self.edges_in:
self.edges_in[i] = list()
self.edges_in[i].append(in_layer_index)
# 删除不必要的节点
invalid_list = list()
for layer_id, layer in self.layers.items():
if len(self.layers) > 1:
if self.edges_in.get(layer_id, 0) == 0 and self.edges_out.get(
layer_id, 0) == 0 and layer.kernel != "prim.assert" \
and layer.kernel != "prim.exception" \
and layer.kernel != "prim.warnings":
invalid_list.append(layer_id)
for layer_id in invalid_list:
self.layers.pop(layer_id)
def get_layer_outputs(self, i):
return self.edges_out[i]
if self.graph_type == "dygraph":
self.get_dygraph_inputs()
if len(self.outputs) == 0:
self.get_dygraph_outputs()
def get_layer_inputs(self, i):
return self.edges_in[i]
def get_global_layers(self):
# 该全局layers的信息是按照拓扑排序组成的
def update(layers):
global_layers = dict()
for layer_id, layer in layers.items():
global_layers[layer_id] = layer
for block in layer.blocks:
block_global_layers = update(block.layers)
global_layers.update(block_global_layers)
return global_layers
return update(self.layers)
def gen_code(self, code_dir):
def write_code(f, code_list, indent=0):
......@@ -80,19 +179,22 @@ class PaddleProgram(object):
else:
f.write(indent_blank + code_line + '\n')
f = open(os.path.join(code_dir, 'model.py'), 'w')
if not os.path.exists(code_dir):
os.makedirs(code_dir)
f = open(os.path.join(code_dir, 'x2paddle_model.py'), 'w')
write_code(
f, [
"from paddle.fluid.initializer import Constant",
"from paddle.fluid.param_attr import ParamAttr",
"import paddle.fluid as fluid"
"", "def x2paddle_net():"
"import paddle.fluid as fluid", "import math", "",
"def x2paddle_net():"
],
indent=0)
for i, layer in enumerate(self.layers):
if self.edges_in.get(i, 0) == 0 and self.edges_out.get(i, 0) == 0:
for layer_id, layer in self.layers.items():
edges_in = self.edges_in.get(layer_id, [])
edges_out = self.edges_out.get(layer_id, [])
if len(edges_in) == 0 and len(edges_out) == 0:
continue
line = ""
......@@ -106,16 +208,280 @@ class PaddleProgram(object):
line += " = {}(".format(layer.kernel)
for k, v in layer.inputs.items():
line += "{}={}, ".format(k, v)
if isinstance(v, list):
line += "{}=[{}], ".format(k, ", ".join(v))
else:
line += "{}={}, ".format(k, v)
for k, v in layer.attrs.items():
line += "{}={}, ".format(k, v)
line = line.strip(", ")
line += ")"
write_code(f, [line], indent=1)
write_code(
f, [
"return [{}], [{}]".format(", ".join(self.inputs),
", ".join(self.outputs))
],
indent=1)
f.close()
def gen_parameters(self, code_dir):
pass
def gen_model(self, save_dir, input_shapes=None):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if self.graph_type == "static":
code_dir = os.path.join(save_dir, 'model_with_code')
infer_dir = os.path.join(save_dir, 'inference_model')
self.gen_code(code_dir)
sys.path.append(code_dir)
import x2paddle_model
scope = fluid.Scope()
startup_program = fluid.Program()
main_program = fluid.Program()
with fluid.scope_guard(scope):
with fluid.program_guard(main_program, startup_program):
inputs, outputs = x2paddle_model.x2paddle_net()
exe = fluid.Executor(fluid.CPUPlace())
exe.run(startup_program)
param_dir = os.path.join(code_dir, 'weights')
for k, v in self.parameters.items():
if scope.find_var(k):
self.dump_parameter(k, v, param_dir)
def if_exist(var):
b = os.path.exists(
os.path.join(os.path.join(param_dir, var.name)))
return b
fluid.io.load_vars(
exe, param_dir, main_program, predicate=if_exist)
fluid.io.save_inference_model(
dirname=infer_dir,
feeded_var_names=[i.name for i in inputs],
target_vars=outputs,
executor=exe)
else:
self.gen_dygraph_code(save_dir)
self.dump_dygraph_parameter(save_dir)
if input_shapes is not None:
# 如果input_shapes非空,则导出推理模型;其值类似[[None, 3, 224, 224]]
self.dygraph2static(save_dir, input_shapes)
def dump_parameter(self, param_name, param, save_dir):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
dtype_map = {
"int16": [framework_pb2.VarType.INT16, 'h'],
"int32": [framework_pb2.VarType.INT32, 'i'],
"int64": [framework_pb2.VarType.INT64, 'q'],
"float16": [framework_pb2.VarType.FP16, 'e'],
"float32": [framework_pb2.VarType.FP32, 'f'],
"float64": [framework_pb2.VarType.FP64, 'd'],
"bool": [framework_pb2.VarType.BOOL, None]
}
shape = param.shape
if str(param.dtype) in ['uint8', 'uint_8', 'bool']:
param = param.astype('int64')
if len(shape) == 0:
assert param.size == 1, "Unexpected situation happend!"
shape = [1]
assert str(
param.dtype) in dtype_map, "Unknown dtype {} of params: {}.".format(
str(param.dtype), param_name)
fp = open(os.path.join(save_dir, param_name), 'wb')
numpy.array([0], dtype='int32').tofile(fp)
numpy.array([0], dtype='int64').tofile(fp)
numpy.array([0], dtype='int32').tofile(fp)
tensor_desc = framework_pb2.VarType.TensorDesc()
tensor_desc.data_type = dtype_map[str(param.dtype)][0]
tensor_desc.dims.extend(shape)
desc_size = tensor_desc.ByteSize()
numpy.array([desc_size], dtype='int32').tofile(fp)
fp.write(tensor_desc.SerializeToString())
param.tofile(fp)
fp.close()
def get_dygraph_inputs(self):
def update(layers):
for layer_id, layer in layers.items():
if self.edges_in.get(layer_id, 0) == 0 and self.edges_out.get(
layer_id, 0) == 0:
continue
if layer.kernel == "fluid.dygraph.base.to_variable":
value = layer.attrs["value"]
if not value.startswith("params["):
self.inputs.append(value)
if len(layer.blocks) > 0:
for block in layer.blocks:
block.get_dygraph_inputs()
self.inputs.extend(block.inputs)
update(self.layers)
self.inputs = list(set(self.inputs))
if self.inputs is not None:
self.inputs.sort()
def get_dygraph_outputs(self):
for layer_id, layer in self.layers.items():
if self.edges_in.get(layer_id, 0) == 0 and self.edges_out.get(
layer_id, 0) == 0:
continue
if self.edges_out.get(layer_id, 0) == 0:
for output_name in layer.outputs:
if not output_name.startswith("x"):
continue
self.outputs.append(output_name)
self.outputs = list(set(self.outputs))
def gen_dygraph_code(self, code_dir=None, indent=2):
def gen_codes(code_list, indent=0):
indent_blank = " " * indent
codes = []
for code_line in code_list:
if code_line.strip() == "":
codes.append('\n')
else:
codes.append(indent_blank + code_line + '\n')
return codes
def gen_head():
self.head = gen_codes(
[
"from paddle.fluid.initializer import Constant",
"from paddle.fluid.param_attr import ParamAttr",
"import paddle",
"import paddle.fluid as fluid",
"",
"class {}(fluid.dygraph.Layer):".format(self.name),
],
indent=0)
input_data_name = ', '.join(self.inputs)
self.init_func.extend(
gen_codes(
["def __init__(self, params):"], indent=1))
self.init_func.extend(
gen_codes(
["super({}, self).__init__()".format(self.name)], indent=2))
self.forward_func.extend(
gen_codes(
["def forward(self, {}):".format(input_data_name)],
indent=1))
def write_code(code_dir):
f = open(os.path.join(code_dir, 'x2paddle_code.py'), 'w')
for code_line in self.head:
f.write(code_line)
init_writen_codes = []
for code_line in self.init_func:
if code_line in init_writen_codes:
continue
f.write(code_line)
init_writen_codes.append(code_line)
f.write("\n")
return_code = "return {}".format(", ".join(self.outputs))
self.forward_func.extend(gen_codes([return_code], indent=2))
for code_line in self.forward_func:
f.write(code_line)
f.close()
self.init_func = []
self.forward_func = []
if indent == 2 and code_dir is not None:
gen_head()
for layer_id, layer in self.layers.items():
if ("paddle.nn" in layer.kernel and "functional" not in layer.kernel
) or layer.kernel == "fluid.dygraph.base.to_variable" or \
"paddle.fluid.dygraph" in layer.kernel:
line = "{}".format(
layer.outputs[0]
) if layer.kernel == "fluid.dygraph.base.to_variable" and not layer.attrs[
"value"].startswith("params[") else "self.{}".format(
layer.outputs[0])
line += " = {}(".format(layer.kernel)
for k, v in layer.attrs.items():
line += "{}={}, ".format(k, v)
line = line.strip(", ")
line += ")"
if layer.kernel == "fluid.dygraph.base.to_variable" and not layer.attrs[
"value"].startswith("params["):
self.forward_func.extend(gen_codes([line], indent=indent))
continue
else:
self.init_func.extend(gen_codes([line], indent=2))
if len(layer.outputs) == 1:
line = layer.outputs[0]
elif len(layer.outputs) == 2:
line = layer.outputs[1]
else:
line = ','.join(layer.outputs[1:])
if layer.kernel == "fluid.dygraph.base.to_variable" and layer.attrs[
"value"].startswith("params["):
line += " = self.{}".format(layer.outputs[0])
else:
line += " = self.{}(".format(layer.outputs[0])
for k, v in layer.inputs.items():
line += "{}, ".format(v)
line = line.strip(", ")
line += ")"
self.forward_func.extend(gen_codes([line], indent=indent))
elif "prim" in layer.kernel:
func_name = layer.kernel.replace(".", "_")
from x2paddle.op_mapper.pytorch2paddle import prim2code
if hasattr(prim2code, func_name):
func = getattr(prim2code, func_name)
func(
layer,
indent=indent,
init_func=self.init_func,
forward_func=self.forward_func)
else:
raise Exception(
"The kind {} in paddle model is not supported yet.".
format(layer.kernel))
else:
if len(layer.outputs) == 1:
line = layer.outputs[0]
else:
line = ','.join(layer.outputs)
line += " = {}(".format(layer.kernel)
for k, v in layer.inputs.items():
line += "{}={}, ".format(k, v)
for k, v in layer.attrs.items():
line += "{}={}, ".format(k, v)
line = line.strip(", ")
line += ")"
self.forward_func.extend(gen_codes([line], indent=indent))
if indent == 2:
write_code(code_dir)
else:
return self.init_func, self.forward_func
def dump_dygraph_parameter(self, code_dir):
params_output = open(os.path.join(code_dir, 'model.pdparams'), 'wb')
pickle.dump(self.parameters, params_output)
params_output.close()
def gen_inference_model(self, model_dir):
pass
def dygraph2static(self, save_dir, input_shapes=[]):
from paddle.fluid.dygraph.jit import declarative
sepc_list = list()
for i, name in enumerate(self.inputs):
sepc_list.append(
paddle.static.InputSpec(
shape=input_shapes[i], name=name))
import sys
path = osp.abspath(save_dir)
sys.path.insert(0, save_dir)
import x2paddle_code
place = fluid.CPUPlace()
with fluid.dygraph.guard(place):
restore, _ = fluid.load_dygraph(osp.join(save_dir, "model"))
model = getattr(x2paddle_code, self.name)(restore)
model.set_dict(restore)
model.eval()
model.forward = declarative(model.forward, sepc_list)
fluid.dygraph.jit.save(
layer=model, model_path=osp.join(save_dir, "inference"))
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
class PyTorchDecoder(object):
def __init__(self, script_path):
self.script = torch.jit.load(script_path)
self.graph = self._optimize_graph(self.script.inlined_graph)
def _optimize_graph(self, graph):
torch._C._jit_pass_constant_propagation(graph)
torch._C._jit_pass_dce(graph)
torch._C._jit_pass_lint(graph)
torch._C._jit_pass_peephole(graph)
torch._C._jit_pass_lint(graph)
torch._C._jit_pass_dce(graph)
torch._C._jit_pass_lint(graph)
torch._C._jit_pass_canonicalize(graph)
torch._C._jit_pass_lint(graph)
torch._C._jit_pass_constant_propagation(graph)
return graph
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.core.util import *
from x2paddle.core.program import PaddleGraph
dtype_dict = {
0: string("uint8"),
1: string("int8"),
2: string("int16"),
3: string("int32"),
4: string("int64"),
5: string("float16"),
6: string("float32"),
7: string("float64"),
11: string("bool")
}
def aten_abs(mapper, graph, node):
""" 构造获取绝对值的PaddleLayer。
TorchScript示例:
%n0.3 : Tensor = aten::abs(%n.3)
参数含义:
%n0.3 (Tensor): 绝对值后的Tensor。
%n.3 (Tensor): 绝对值前的Tensor。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%n.3
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"paddle.fluid.layers.abs", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_adaptive_avg_pool2d(mapper, graph, node):
""" 构造average adaptive pool2d的PaddleLayer。
TorchScript示例:
%x.5 : Tensor = aten::adaptive_avg_pool2d(%x.3, %_output_size.1)
参数含义:
%x.5 (Tensor): 池化后结果Tensor。
%x.3 (Tensor): 输入Tensor。
%_output_size.1 (list): 自适应池化后的Tensor的宽、高大小。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%x.3
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%_output_size.1
if inputs_name[1] in mapper.attrs:
layer_attrs["pool_size"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["pool_size"] = inputs_name[1]
current_inputs.append(inputs_name[1])
layer_attrs["pool_type"] = string("avg")
graph.add_layer(
"fluid.layers.adaptive_pool2d",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_addmm(mapper, graph, node):
""" 构造addmm的PaddleLayer,该节点实现out = alpha ∗ x ∗ y + beta ∗ input。
TorchScript示例:
%ret.2 : Tensor = aten::addmm(%150, %input.3, %156, %151, %152)
参数含义:
%ret.2 (Tensor): addmm结果Tensor。
%150 (Tensor): 输入Tensor input。
%input.3 (Tensor): 输入Tensor x。
%156 (Tensor): 输入Tensor y。
%151 (int/float): 输入alpha。
%152 (int/float): 输入beta。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%150
mapper._check_input(
graph, inputs_node[0], inputs_name[0], current_outputs, add_dim=True)
layer_inputs["input"] = inputs_name[0]
# 处理输入1,即%input.3
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["x"] = inputs_name[1]
# 处理输入2,即%156
mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
layer_inputs["y"] = inputs_name[2]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入3,即%152
if inputs_name[3] in mapper.attrs:
layer_attrs["beta"] = mapper.attrs[inputs_name[3]]
else:
mapper._check_input(graph, inputs_node[3], inputs_name[3],
current_outputs)
layer_inputs["beta"] = inputs_name[3]
current_inputs.append(inputs_name[3])
# 处理输入4,即%151
if inputs_name[4] in mapper.attrs:
layer_attrs["alpha"] = mapper.attrs[inputs_name[4]]
else:
mapper._check_input(graph, inputs_node[4], inputs_name[4],
current_outputs)
layer_inputs["alpha"] = inputs_name[4]
current_inputs.append(inputs_name[4])
graph.add_layer(
"paddle.addmm",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_add(mapper, graph, node):
""" 构造数值相加的PaddleLayer,该节点实现out = x + y。
TorchScript示例:
%296 : int = aten::add(%i.12, %288)
参数含义:
%296 (-): 相加结果。
%i.12 (-): 输入数值 x。
%288 (-): 输入数值 y。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%i.12
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%288
mapper._check_input(
graph, inputs_node[1], inputs_name[1], current_outputs, add_dim=True)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.add", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_add_(mapper, graph, node):
""" 构造数值相加的PaddleLayer,该节点实现out = x + alpha * y。
TorchScript示例:
%137 : Tensor = aten::add(%136, %130, %130)
参数含义:
%output.5 (Tensor): add结果Tensor。
%output.2 (Tensor): 输入Tensor x。
%150 (Tensor): 输入Tensor y。
%151 (int/float): 输入alpha。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%output.2
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%150
mapper._check_input(
graph, inputs_node[1], inputs_name[1], current_outputs, add_dim=True)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入2,即%151
if inputs_name[2] in mapper.attrs:
layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
else:
mapper._check_input(graph, inputs_node[2], inputs_name[2],
current_outputs)
layer_inputs["alpha"] = inputs_name[2]
current_inputs.append(inputs_name[2])
graph.add_layer(
"prim.add_", inputs=layer_inputs, outputs=layer_outputs, **layer_attrs)
return current_inputs, current_outputs
def aten___and__(mapper, graph, node):
""" 构造与计算的PaddleLayer。
TorchScript示例:
%361 : bool = aten::__and__(%360, %358)
参数含义:
%361 (bool): 输出,与计算结果。
%360 (-): 输入 x。
%358 (-): 输入 y。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%i.12
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%288
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.and", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_append(mapper, graph, node):
""" 构造对list进行append的PaddleLayer。
TorchScript示例:
%90 : int[] = aten::append(%_output_size.1, %v.1)
参数含义:
%90 (list): 输出,append后的list。
%_output_size.1 (list): 需要进行append的list。
%v.1 (-): append的元素。
"""
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
layer_outputs = [inputs_name[0]]
# 获取当前节点输出的list
current_outputs = [inputs_name[0]]
# 处理输入0,即_output_size.1
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["list"] = inputs_name[0]
# 处理输入1,即v.1
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["element"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.append", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_arange(mapper, graph, node):
""" 构造以步长均匀分隔给定数值区间的PaddleLayer。
TorchScript示例:
有三种情况,分别处理。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
current_inputs = []
if len(inputs_name) == 5:
# %position_ids.1 : Tensor = aten::arange(%52, %43, %45, %42, %46)
# 输入的后三者分别代表layout、device、是否使用梯度
# 处理输入0,即%52,代表end
if inputs_name[0] in mapper.attrs:
layer_attrs["end"] = mapper.attrs[inputs_name[0]]
else:
mapper._check_input(graph, inputs_node[0], inputs_name[0],
current_outputs)
layer_inputs["end"] = inputs_name[0]
current_inputs.append(inputs_name[0])
# 处理输入1,即%43,代表dtype
if mapper.attrs[inputs_name[1]] is None:
layer_attrs["dtype"] = None
else:
layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
elif len(inputs_name) == 6:
# %position_ids.1 : Tensor = aten::arange(%51, %52, %43, %45, %42, %46)
# 输入的后三者分别代表layout、device、是否使用梯度
# 处理输入0,即%51,代表start
if inputs_name[0] in mapper.attrs:
layer_attrs["start"] = mapper.attrs[inputs_name[0]]
else:
mapper._check_input(graph, inputs_node[0], inputs_name[0],
current_outputs)
layer_inputs["start"] = inputs_name[0]
current_inputs.append(inputs_name[0])
# 处理输入1,即%52,代表end
if inputs_name[1] in mapper.attrs:
layer_attrs["end"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["end"] = inputs_name[1]
current_inputs.append(inputs_name[1])
# 处理输入2,即%43,代表dtype
if mapper.attrs[inputs_name[2]] is None:
layer_attrs["dtype"] = None
else:
layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
elif len(inputs_name) == 7:
# %position_ids.1 : Tensor = aten::arange(%51, %52, %53, %43, %45, %42, %46)
# 输入的后三者分别代表layout、device、是否使用梯度
# 处理输入0,即%51,代表start
if inputs_name[0] in mapper.attrs:
layer_attrs["start"] = mapper.attrs[inputs_name[0]]
else:
mapper._check_input(graph, inputs_node[0], inputs_name[0],
current_outputs)
layer_inputs["start"] = inputs_name[0]
current_inputs.append(inputs_name[0])
# 处理输入1,即%52,代表end
if inputs_name[1] in mapper.attrs:
layer_attrs["end"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["end"] = inputs_name[1]
current_inputs.append(inputs_name[1])
# 处理输入2,即%53,代表step
if inputs_name[2] in mapper.attrs:
layer_attrs["step"] = mapper.attrs[inputs_name[2]]
else:
mapper._check_input(graph, inputs_node[2], inputs_name[2],
current_outputs)
layer_inputs["step"] = inputs_name[2]
current_inputs.append(inputs_name[2])
# 处理输入3,即%43,代表dtype
if mapper.attrs[inputs_name[3]] is None:
layer_attrs["dtype"] = None
else:
layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[3]]]
else:
raise Exception("Unknown aten::arange signature taking " + str(
len(inputs_name)) + " arguments.")
graph.add_layer(
"paddle.arange",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_avg_pool2d(mapper, graph, node):
""" 构造最大池化的PaddleLayer。
TorchScript示例:
%branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
参数含义:
%branch_pool.2 (Tensor): 输出,池化后的结果。
%x.43 (Tensor): 需要池化的Tensor。
%538 (list): 池化kernel的大小。
%539 (list): 步长大小。
%540 (list): 填充大小。
%273 (bool): 是否用ceil函数计算输出高度和宽度。
%272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
%271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
"""
if "pool" in mapper.dygraph_name_id:
mapper.dygraph_name_id["pool"] += 1
else:
mapper.dygraph_name_id["pool"] = 0
pool_name = "pool" + str(mapper.dygraph_name_id["pool"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [pool_name, output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%x.34
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%538
layer_attrs["pool_size"] = mapper.attrs[inputs_name[1]]
# 处理输入2,即%539
layer_attrs["pool_stride"] = mapper.attrs[inputs_name[2]]
# 处理输入3,即%540
layer_attrs["pool_padding"] = mapper.attrs[inputs_name[3]]
# 处理输入4,即%273
layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
# 处理输入5,即%272
layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
# 处理输入6,即%271
graph.add_layer(
"prim.assert",
inputs={},
outputs=[inputs_name[6]],
type="eq",
key=mapper.attrs[inputs_name[6]],
value=None)
layer_attrs["pool_type"] = string("avg")
graph.add_layer(
"paddle.nn.Pool2D",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_batch_norm(mapper, graph, node):
""" 构造BatchNorm的PaddleLayer。
TorchScript示例:
%input.81 : Tensor = aten::batch_norm(%input.80, %778, %779, %776, %777, %780,
%exponential_average_factor.23, %766, %781)
参数含义:
%input.81 (Tensor): 输出,批处理后的结果。
%input.80 (Tensor): 需要进行批处理的特征层。
%778 (Tensor): weights。
%779 (Tensor): bias。
%776 (Tensor): 全局均值。
%777 (Tensor): 全局方差。
%780 (bool): 是否训练。
%exponential_average_factor.23 (float): 用于计算均值和方差的比例。
%766 (float): 为了数值稳定加在分母上的值。
%781 (bool): 是否启用cudnn。
"""
if "batchnorm" in mapper.dygraph_name_id:
mapper.dygraph_name_id["batchnorm"] += 1
else:
mapper.dygraph_name_id["batchnorm"] = 0
batchnorm_name = "batchnorm" + str(mapper.dygraph_name_id["batchnorm"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [batchnorm_name, output_name]
layer_inputs = {}
layer_attrs = {}
layer_attrs["is_test"] = True
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%input.80
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%778
weights = mapper.pytorch_params[inputs_name[1]]
mapper.paddle_params[batchnorm_name + ".weight"] = weights
layer_attrs['num_channels'] = weights.shape[0]
# 处理输入2,即%779
if inputs_name[2] in mapper.pytorch_params:
bias = mapper.pytorch_params[inputs_name[2]]
if bias is not None:
mapper.paddle_params[batchnorm_name + ".bias"] = bias
else:
mapper.paddle_params[batchnorm_name + ".bias"] = False
# 处理输入3,即%776
mean = mapper.pytorch_params[inputs_name[3]]
mapper.paddle_params[batchnorm_name + "._mean"] = mean
# 处理输入4,即%777
var = mapper.pytorch_params[inputs_name[4]]
mapper.paddle_params[batchnorm_name + "._variance"] = var
# 处理输入6,即%exponential_average_factor.23
layer_attrs["momentum"] = mapper.attrs[inputs_name[6]]
# 处理输入7,即%766
layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]
graph.add_layer(
"paddle.nn.BatchNorm",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_cat(mapper, graph, node):
""" 构造连接Tensor的PaddleLayer。
TorchScript示例:
%x.222 : Tensor = aten::cat(%32, %7)
参数含义:
%x.222 (Tensor): 输出,连接后的结果。
%i.12 (list): 需要连接的Tensor组成的list。
%7 (int): 连接的轴。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%13
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%12
if inputs_name[1] in mapper.attrs:
layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["axis"] = inputs_name[1]
current_inputs.append(inputs_name[1])
graph.add_layer(
"fluid.layers.concat",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_chunk(mapper, graph, node):
"""构造分割Tensor的PaddleLayer。
TorchScript示例:
%724 : Tensor[] = aten::chunk(%input.170, %720, %719)
参数含义:
%724 (Tensor): 输出,分割后的结果。
%input.170 (Tensor): 需要进行分割的Tensor。
%720 (int): 分割的块数。
%719 (int): 分割的维度。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%input.170
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%720
if inputs_name[1] in mapper.attrs:
layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["num_or_sections"] = inputs_name[1]
current_inputs.append(inputs_name[1])
# 处理输入2,即%719
if inputs_name[2] in mapper.attrs:
layer_attrs["dim"] = mapper.attrs[inputs_name[2]]
else:
mapper._check_input(graph, inputs_node[2], inputs_name[2],
current_outputs)
layer_inputs["dim"] = inputs_name[2]
current_inputs.append(inputs_name[2])
graph.add_layer(
"fluid.layers.split",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten___contains__(mapper, graph, node):
""" 构造in的PaddleLayer。
TorchScript示例:
%51 : bool = aten::__contains__(%50, %name.1)
参数含义:
%51 (bool): 输出,第一个元素是否包含第二个元素。
%50 (-): 需对比的输入1。
%name.1 (-): 需对比的输入2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%50
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 处理输入1,即%name.1
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["element"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.contain", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_constant_pad_nd(mapper, graph, node):
""" 构造填充固定值的PaddleLayer。
TorchScript示例:
%58 : Tensor = aten::constant_pad_nd(%input1.24, %4876, %42)
参数含义:
%58 (Tensor): 输出,填充后的Tensor。
%input1.24 (Tensor): 需要填充的Tensor。
%4876 (list): 填充大小。
%42 (-): 填充值。
"""
if "constant_pad" in mapper.dygraph_name_id:
mapper.dygraph_name_id["constant_pad"] += 1
else:
mapper.dygraph_name_id["constant_pad"] = 0
constant_pad_name = "constant_pad" + str(mapper.dygraph_name_id[
"constant_pad"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [constant_pad_name, output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%input1.24
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%4876
layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
# 处理输入2,即%42
layer_attrs["value"] = mapper.attrs[inputs_name[2]]
graph.add_layer(
"fluid.layers.shape",
inputs={"input": inputs_name[0]},
outputs=[inputs_name[0] + "_shape"])
graph.add_layer(
"prim.len",
inputs={"input": inputs_name[0] + "_shape"},
outputs=[inputs_name[0] + "_len"])
def add_pad_layers(kernel, dim):
graph.add_layer(
"prim.ne",
inputs={"x": inputs_name[0] + "_len"},
outputs=[inputs_name[0] + "_cond"],
y=dim)
graph.add_layer(
"prim.if", {'input': inputs_name[0] + "_cond"},
outputs=[inputs_name[0] + "_if", output_name])
if_layer = graph.layers[list(graph.layers.keys())[-1]]
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"prim.sub",
inputs={"y": inputs_name[0] + "_len"},
outputs=[inputs_name[0] + "_len0"],
x=dim)
block.add_layer(
"prim.len2list",
inputs={"len": inputs_name[0] + "_len0"},
outputs=[inputs_name[0] + "_list"])
block.add_layer(
"paddle.tensor.unsqueeze",
inputs={"x": inputs_name[0],
"axis": inputs_name[0] + "_list"},
outputs=[inputs_name[0] + "_var"])
block.add_layer(
kernel,
inputs={"input": inputs_name[0] + "_var"},
outputs=layer_outputs,
**layer_attrs)
block.add_layer(
"paddle.tensor.squeeze",
inputs={"x": output_name,
"axis": inputs_name[0] + "_list"},
outputs=[output_name])
if_layer.add_block(block)
block = PaddleGraph(if_layer, graph_type="dygraph")
layer_inputs["input"] = inputs_name[0]
block.add_layer(
kernel, inputs=layer_inputs, outputs=layer_outputs, **layer_attrs)
if_layer.add_block(block)
if_layer.inputs["input-0"] = inputs_name[0]
if_layer.inputs["input-1"] = inputs_name[0] + "_len"
if len(layer_attrs["padding"]) == 2:
add_pad_layers("paddle.nn.ConstantPad1d", 3)
elif len(layer_attrs["padding"]) == 4:
add_pad_layers("paddle.nn.ConstantPad2d", 4)
elif len(layer_attrs["padding"]) == 6:
add_pad_layers("paddle.nn.ConstantPad3d", 5)
else:
raise Exception("The lenght of padding list must be 2, 4 or 6!")
return current_inputs, current_outputs
def aten_contiguous(mapper, graph, node):
""" 构造在内存中连续存储的PaddleLayer。
TorchScript示例:
%x.7 : Tensor = aten::contiguous(%4058, %4046)
参数含义:
%x.7 (Tensor): 输出,在内存中连续存储的Tensor。
%4058 (Tensor): 原始Tensor。
%4046 (int): 存储的形式。
【注意】Paddle中无此用法,所以此处翻译成赋值。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%4058
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_conv2d(mapper, graph, node):
""" 构造conv2d的PaddleLayer。
TorchScript示例:
%input.10 : Tensor = aten::conv2d(%input.8, %25, %27, %28, %29, %30, %26)
参数含义:
%input.10 (Tensor): 输出,卷积后的结果。
%input.8 (Tensor): 需要进行卷积的特征层。
%25 (Tensor): weights。
%27 (Tensor): bias。
%28 (int): 步长大小。
%29 (int): 填充大小。
%30 (int): 膨胀系数大小。
%26 (int): 卷积的组数。
"""
if "conv" in mapper.dygraph_name_id:
mapper.dygraph_name_id["conv"] += 1
else:
mapper.dygraph_name_id["conv"] = 0
conv2d_name = "conv" + str(mapper.dygraph_name_id["conv"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [conv2d_name, output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%input.8
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%25
weights = mapper.pytorch_params[inputs_name[1]]
mapper.paddle_params[conv2d_name + ".weight"] = weights
layer_attrs["out_channels"] = weights.shape[0]
layer_attrs["kernel_size"] = weights.shape[2:]
# 处理输入2,即%27
if inputs_name[2] in mapper.pytorch_params:
bias = mapper.pytorch_params[inputs_name[2]]
if bias is not None:
mapper.paddle_params[conv2d_name + ".bias"] = bias
else:
layer_attrs["bias_attr"] = False
else:
layer_attrs["bias_attr"] = False
# 处理输入3,即%28
layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
# 处理输入4,即%29
layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
# 处理输入5,即%30
layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
# 处理输入6,即%26
layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[inputs_name[6]]
graph.add_layer(
"paddle.nn.Conv2d",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten__convolution(mapper, graph, node):
""" 构造conv2d的PaddleLayer。
TorchScript示例:
%input.10 : Tensor = aten::_convolution(%input.8, %25, %27, %28, %29, %30, %26)
参数含义:
%input.10 (Tensor): 输出,卷积后的结果。
%input.8 (Tensor): 需要进行卷积的特征层。
%25 (Tensor): weights。
%27 (Tensor): bias。
%28 (int): 步长大小。
%29 (int): 填充大小。
%30 (int): 膨胀系数大小。
%26 (int): 卷积的组数。
"""
if "conv" in mapper.dygraph_name_id:
mapper.dygraph_name_id["conv"] += 1
else:
mapper.dygraph_name_id["conv"] = 0
conv2d_name = "conv" + str(mapper.dygraph_name_id["conv"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [conv2d_name, output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%input.8
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%25
weights = mapper.pytorch_params[inputs_name[1]]
mapper.paddle_params[conv2d_name + ".weight"] = weights
layer_attrs["num_filters"] = weights.shape[0]
layer_attrs["filter_size"] = weights.shape[2:]
# 处理输入2,即%27
if inputs_name[2] in mapper.pytorch_params:
bias = mapper.pytorch_params[inputs_name[2]]
if bias is not None:
mapper.paddle_params[conv2d_name + ".bias"] = bias
else:
layer_attrs["bias_attr"] = False
else:
layer_attrs["bias_attr"] = False
# 处理输入3,即%28
layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
# 处理输入4,即%29
layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
# 处理输入5,即%30
layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
# 处理输入6,即%26
layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
layer_attrs['num_channels'] = weights.shape[1] * mapper.attrs[inputs_name[
6]]
graph.add_layer(
"paddle.nn.Conv2D",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_cos(mapper, graph, node):
""" 构造数学计算cos的PaddleLayer。
TorchScript示例:
%94 : Tensor = aten::cos(%sinusoid_inp.1)
参数含义:
%94 (Tensor): 输出,cos之后的结果。
%sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%sinusoid_inp.1
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
graph.add_layer("paddle.cos", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_cumsum(mapper, graph, node):
""" 构造与前一个元素累加的PaddleLayer。
TorchScript示例:
%56 : Tensor = aten::cumsum(%mask.1, %46, %48)
参数含义:
%56 (Tensor): 输出,累加后的结果。
%mask.1 (Tensor): 输入,需要累加的Tensor。
%46 (int): 累加的维度。
%48 (int/None): Tensor的类型。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%mask.1
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%46
if inputs_name[1] in mapper.attrs:
layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["axis"] = inputs_name[1]
current_inputs.append(inputs_name[1])
# 处理输入1,即%48,代表dtype
if mapper.attrs[inputs_name[2]] is None:
layer_attrs["dtype"] = None
else:
layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
graph.add_layer(
"paddle.cumsum",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_detach(mapper, graph, node):
""" 构造返回一个新的Tensor,从当前计算图中分离下来的,但是仍指向原变量的存放位置的PaddleLayer。
TorchScript示例:
%107 : Tensor = aten::detach(%new_mem.1)
参数含义:
%107 (Tensor): 输出,得到的Scalar。
%new_mem.1 (Tensor): 输入。
【注意】由于Paddle无此操作,所以此处制转换为赋值。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%end.1
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_dict(mapper, graph, node):
""" 构造初始化dict的PaddleLayer。
TorchScript示例:
%features.1 : Dict(str, Tensor) = aten::dict()
参数含义:
%features.1: 输出,初始化的dict。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
current_inputs = {}
# 获取当前节点输出的list
current_outputs = [output_name]
graph.add_layer("prim.dict", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_dim(mapper, graph, node):
""" 构造获取维度的PaddleLayer。
TorchScript示例:
%106 : int = aten::dim(%101)
参数含义:
%106 (int): 输出,Tensor的维度。
%101 (Tensor): 输入的Tensor。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%input.8
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"fluid.layers.shape", inputs=layer_inputs, outputs=layer_outputs)
graph.add_layer(
"prim.len", inputs={"input": output_name}, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_div_(mapper, graph, node):
""" 构造除法的PaddleLayer。
TorchScript示例:
%bx_bw0.3 : Tensor = aten::div_(%bx_bw.3, %2678)
参数含义:
%bx_bw0.3 (-): 除后的结果。
%bx_bw.3 (-): 被除数。
%2678 (int): 除数。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%124
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%123
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.div", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_div(mapper, graph, node):
""" 构造除法的PaddleLayer。
TorchScript示例:
%bx_bw0.3 : Tensor = aten::div_(%bx_bw.3, %2678)
参数含义:
%bx_bw0.3 (-): 除后的结果。
%bx_bw.3 (-): 被除数。
%2678 (int): 除数。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%124
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%123
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.div", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_dropout(mapper, graph, node):
""" 构造Dropout的PaddleLayer。
TorchScript示例:
%119 : Tensor = aten::dropout(%result.3, %117, %118)
参数含义:
%119 (Tensor): Dropout后的Tensor。
%result.3 (Tensor): 输入Tensor。
%118 (bool): 是否是训练阶段。
"""
if "dropout" in mapper.dygraph_name_id:
mapper.dygraph_name_id["dropout"] += 1
else:
mapper.dygraph_name_id["dropout"] = 0
dropout_name = "dropout" + str(mapper.dygraph_name_id["dropout"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [dropout_name, output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%119
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"paddle.nn.Dropout", inputs=layer_inputs, outputs=layer_outputs, p=0.0)
return current_inputs, current_outputs
def aten_dropout_(mapper, graph, node):
""" 构造Dropout的PaddleLayer。
TorchScript示例:
%119 : Tensor = aten::dropout_(%result.3, %117, %118)
参数含义:
%119 (Tensor): Dropout后的Tensor。
%result.3 (Tensor): 输入Tensor。
%118 (bool): 是否是训练阶段。
"""
if "dropout" in mapper.dygraph_name_id:
mapper.dygraph_name_id["dropout"] += 1
else:
mapper.dygraph_name_id["dropout"] = 0
dropout_name = "dropout" + str(mapper.dygraph_name_id["dropout"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [dropout_name, output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%119
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"paddle.nn.Dropout", inputs=layer_inputs, outputs=layer_outputs, p=0.0)
return current_inputs, current_outputs
def aten_embedding(mapper, graph, node):
""" 构造embedding的PaddleLayer。
TorchScript示例:
%inputs_embeds.1 : Tensor = aten::embedding(%57, %input_ids.1, %45, %46, %46)
参数含义:
%inputs_embeds.1 (Tensor): 输出,embedding后的结果。
%57 (Tensor): weights。
%input_ids.1 (Tensor): 需要进行embedding的特征层。
%45 (int): padding_idx。
%46 (bool): scale_grad_by_freq。
%46 (bool): sparse。
"""
if "embedding" in mapper.dygraph_name_id:
mapper.dygraph_name_id["embedding"] += 1
else:
mapper.dygraph_name_id["embedding"] = 0
embedding_name = "embedding" + str(mapper.dygraph_name_id["embedding"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [embedding_name, output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%57
weights = mapper.pytorch_params[inputs_name[0]]
mapper.paddle_params[embedding_name + ".weight"] = weights
# layer_attrs["num_embeddings"] = weights.shape[0]
# layer_attrs["embedding_dim"] = weights.shape[1]
layer_attrs["size"] = weights.shape
# 处理输入1,即%input_ids.1
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["input"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入2,即%45
if mapper.attrs[inputs_name[2]] == -1:
layer_attrs["padding_idx"] = None
else:
layer_attrs["padding_idx"] = mapper.attrs[inputs_name[2]]
# 处理输入4,即%46
# layer_attrs["sparse"] = mapper.attrs[inputs_name[4]]
layer_attrs["is_sparse"] = mapper.attrs[inputs_name[4]]
graph.add_layer(
"paddle.fluid.dygraph.Embedding",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_eq(mapper, graph, node):
""" 构造判断数值是否相等的PaddleLayer。
TorchScript示例:
%125 : bool = aten::eq(%124, %123)
参数含义:
%125 (bool): 对比后结果。
%124 (-): 需对比的输入1。
%123 (-): 需对比的输入2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%124
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
x_value = list(node.inputs())[0]
x_type = x_value.type()
# 处理输入1,即%123
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
y_value = list(node.inputs())[1]
y_type = y_value.type()
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.eq", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_exp(mapper, graph, node):
""" 构造以自然数e为底指数运算的PaddleLayer。
TorchScript示例:
%55 : Tensor = aten::tanh(%54)
参数含义:
%55 (Tensor): 输出,运算后的结果。
%54 (Tensor): 需要指数运算的Tensor。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%result.5
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"fluid.layers.exp", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_expand(mapper, graph, node):
""" 构造对某维度进行广播的PaddleLayer。
TorchScript示例:
%1889 : Tensor = aten::expand(%1875, %1888, %1567)
参数含义:
%1889 (Tensor): 广播后的结果。
%1875 (Tensor): 需要广播的Tensor。
%1888 (int): 广播的维度。
%1567 (bool): 未使用。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%1875
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%1888
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
graph.add_layer(
"prim.type",
inputs={"input": inputs_name[0]},
outputs=[inputs_name[0] + "_type"])
graph.add_layer(
"prim.str",
inputs={"input": inputs_name[0] + "_type"},
outputs=[inputs_name[0] + "_type"])
graph.add_layer(
"prim.eq",
inputs={"x": inputs_name[0] + "_type"},
outputs=[inputs_name[0] + "_cond"],
y=string("VarType.BOOL"))
graph.add_layer(
"prim.if", {'input': inputs_name[0] + "_cond"},
outputs=[inputs_name[0] + "_if1", inputs_name[1] + "_var"])
if_layer = graph.layers[list(graph.layers.keys())[-1]]
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"fluid.layers.cast",
inputs={"x": inputs_name[0]},
outputs=[inputs_name[0]],
dtype=string("int64"))
block.add_layer(
"fluid.layers.create_global_var",
inputs={"shape": inputs_name[1]},
outputs=[inputs_name[1] + "_var"],
value=1.0,
dtype=string("int64"),
persistable=True)
if_layer.add_block(block)
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"prim.type",
inputs={"input": inputs_name[0]},
outputs=[inputs_name[0] + "_type"])
block.add_layer(
"fluid.layers.create_global_var",
inputs={"shape": inputs_name[1]},
outputs=[inputs_name[1] + "_var"],
value=1.0,
dtype=inputs_name[0] + "_type",
persistable=True)
if_layer.add_block(block)
if_layer.inputs["input-0"] = inputs_name[0]
if_layer.inputs["input-1"] = inputs_name[1]
layer_inputs["target_tensor"] = inputs_name[1] + "_var"
current_outputs.append(inputs_name[1] + "_var")
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
current_inputs.append(inputs_name[1])
graph.add_layer(
"fluid.layers.expand_as", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_expand_as(mapper, graph, node):
""" 构造广播的PaddleLayer。
TorchScript示例:
%1889 : Tensor = aten::expand_as(%1875, %1888)
参数含义:
%1889 (Tensor): 广播后的结果。
%1875 (Tensor): 需要广播的Tensor。
%1888 (Tensor): 广播的示例。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%1875
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%1888
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["target_tensor"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"prim.type",
inputs={"input": inputs_name[0]},
outputs=[inputs_name[0] + "_type"])
graph.add_layer(
"prim.str",
inputs={"input": inputs_name[0] + "_type"},
outputs=[inputs_name[0] + "_type"])
graph.add_layer(
"prim.eq",
inputs={"x": inputs_name[0] + "_type"},
outputs=[inputs_name[0] + "_cond"],
y=string("VarType.BOOL"))
graph.add_layer(
"prim.if", {'input': inputs_name[0] + "_cond"},
outputs=[inputs_name[0] + "_if1"])
if_layer = graph.layers[list(graph.layers.keys())[-1]]
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"prim.type",
inputs={"input": inputs_name[1]},
outputs=[inputs_name[1] + "_type"])
block.add_layer(
"fluid.layers.cast",
inputs={"x": inputs_name[0]},
outputs=[inputs_name[0]],
dtype=inputs_name[1] + "_type")
if_layer.add_block(block)
block = PaddleGraph(if_layer, graph_type="dygraph")
if_layer.add_block(block)
if_layer.inputs["input-0"] = inputs_name[0]
if_layer.inputs["input-1"] = inputs_name[1]
graph.add_layer(
"fluid.layers.expand_as", inputs=layer_inputs, outputs=layer_outputs)
graph.add_layer(
"prim.if", {'input': inputs_name[0] + "_cond"},
outputs=[inputs_name[0] + "_if2"])
if_layer = graph.layers[list(graph.layers.keys())[-1]]
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"fluid.layers.cast",
inputs={"x": layer_outputs[0]},
outputs=layer_outputs,
dtype=string("bool"))
if_layer.add_block(block)
block = PaddleGraph(if_layer, graph_type="dygraph")
if_layer.add_block(block)
if_layer.inputs["input-0"] = layer_outputs[0]
return current_inputs, current_outputs
def aten_eye(mapper, graph, node):
""" 构造批次二维矩阵的PaddleLayer。
TorchScript示例:
%68 : Tensor = aten::eye(%49, %_50, %_51, %15, %9, %67, %7)
参数含义:
%68 (Tensor): 输出,构造的矩阵。
%49 (int): 行数。
%_50 (int): 列数,非必须。
%_51 (Tensor): 非必须。
%9 (int): layout。
%67 (str): 设备。
%7 (bool): 是否计算梯度。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%49
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["num_rows"] = inputs_name[0]
if len(inputs_name) > 5:
# 处理输入1,即%_50
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["num_columns"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理倒数第4个输入,即%15
layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[-4]]]
graph.add_layer(
"fluid.layers.eye",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_flatten(mapper, graph, node):
""" 构造flatten的PaddleLayer。
TorchScript示例:
%x.8 : Tensor = aten::flatten(%x, %4, %2)
参数含义:
%x.8 (Tensor): flatten后结果。
%x (Tensor): 输入Tensor。
%4 (int): flatten的开始维度。
%2 (int): flatten的结束维度。
注意:目前flatten只支持第一维的flatten
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入1,即%4
graph.add_layer(
"prim.assert",
inputs={},
outputs=[inputs_name[1]],
type='eq',
key=mapper.attrs[inputs_name[1]],
value=1)
# 处理输入2,即%2
graph.add_layer(
"prim.assert",
inputs={},
outputs=[inputs_name[2]],
type='eq',
key=mapper.attrs[inputs_name[2]],
value=-1)
# 处理输入0,即%x
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"fluid.layers.flatten",
inputs=layer_inputs,
outputs=layer_outputs,
axis=1)
return current_inputs, current_outputs
def aten_Float(mapper, graph, node):
""" 构造取浮点型的PaddleLayer。
TorchScript示例:
%3992 : float = aten::Float(%3991)
参数含义:
%3992 (int): 向上取整后的整数。
%3991 (float): 需要取整的浮点数。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%3991
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.float", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_floor(mapper, graph, node):
""" 构造向上取整的PaddleLayer。
TorchScript示例:
%3978 : int = aten::floor(%scale.18)
参数含义:
%3978 (int): 向上取整后的整数。
%scale.18 (float): 需要取整的浮点数。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%scale.18
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.floor", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_floordiv(mapper, graph, node):
""" 构造向上取整除法的PaddleLayer。
TorchScript示例:
%channels_per_group.2 : int = aten::floordiv(%num_channels.2, %3690)
参数含义:
%channels_per_group.2 (-): 除后的结果。
%num_channels.2 (-): 被除数。
%2 (int): 除数。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%124
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%123
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.floordiv", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_floor_divide(mapper, graph, node):
""" 构造向上取整除法的PaddleLayer。
TorchScript示例:
%channels_per_group.2 : int = aten::floor_divide(%num_channels.2, %3690)
参数含义:
%channels_per_group.2 (-): 除后的结果。
%num_channels.2 (-): 被除数。
%2 (int): 除数。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%124
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%123
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.floordiv", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_full_like(mapper, graph, node):
""" 构造创建一个与输入具有相同的形状并且数据类型固定的Tensor的PaddleLayer。
TorchScript示例:
%159 : Tensor = aten::full_like(%val_if_large.3, %51, %50, %62, %53, %65, %66)
参数含义:
%159 (Tensor): 输出,全为固定值的Tensor。
%val_if_large.3 (Tensor): 类似形状的Tensor。
%51 (int/float/bool): 填充值。
%50 (int): dtype。
%62 (int): layout。
%53 (int): device。
%65 (bool): 是否计算梯度。
%66 (int): 内存形式。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%val_if_large.3
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%51
if inputs_name[1] in mapper.attrs:
layer_attrs["fill_value"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["fill_value"] = inputs_name[1]
current_inputs.append(inputs_name[1])
# 处理输入2,即%50,代表dtype
layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
graph.add_layer(
"paddle.full_like",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_gelu(mapper, graph, node):
""" 构造GeLU激活的PaddleLayer。
TorchScript示例:
%result.3 : Tensor = aten::gelu(%input.5)
参数含义:
%result.3 (Tensor): 输出,GELU后的结果。
%result.5 (Tensor): 需要GELU的Tensor。
注意: inplace这个参数在paddle中未实现
"""
if "gelu" in mapper.dygraph_name_id:
mapper.dygraph_name_id["gelu"] += 1
else:
mapper.dygraph_name_id["gelu"] = 0
gelu_name = "gelu" + str(mapper.dygraph_name_id["gelu"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [gelu_name, output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%result.5
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"paddle.nn.GELU", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten___getitem__(mapper, graph, node):
""" 构造获取list中元素的PaddleLayer。
TorchScript示例:
%v.1 : int = aten::__getitem__(%72, %88)
参数含义:
%v.1 (-): 输出,list中的元素。
%72 (list): 需要获取元素的list。
%88 (int): 索引。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%72
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["list"] = inputs_name[0]
# 处理输入1,即%88
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["index"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.getitem", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_gt(mapper, graph, node):
""" 构造对比大小的PaddleLayer。
TorchScript示例:
%83 : bool = aten::gt(%82, %78)
参数含义:
%83 (bool): 输出,第一个元素是否大于第二个元素。
%82 (-): 需对比的输入1。
%78 (-): 需对比的输入2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%82
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%78
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.gt", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_hardtanh_(mapper, graph, node):
""" 构造hardtanh激活的PaddleLayer。
TorchScript示例:
%result.9 : Tensor = aten::hardtanh_(%input.20, %67, %66)
参数含义:
%result.9 (Tensor): 输出,hardtanh激活后的Tensor。
%input.20 (Tensor): 需要hardtanh激活的Tensor。
%67 (float): hardtanh激活的最小阈值。
%66 (float): hardtanh激活的最大阈值。
"""
if "tanh" in mapper.dygraph_name_id:
mapper.dygraph_name_id["tanh"] += 1
else:
mapper.dygraph_name_id["tanh"] = 0
tanh_name = "tanh" + str(mapper.dygraph_name_id["tanh"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [tanh_name, output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%input.20
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%67
layer_attrs["min"] = mapper.attrs[inputs_name[1]]
# 处理输入2,即%66
layer_attrs["max"] = mapper.attrs[inputs_name[2]]
graph.add_layer(
'paddle.nn.Hardtanh',
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_index_select(mapper, graph, node):
""" 构造对dict加入元素的PaddleLayer。
TorchScript示例:
%bd.3 : Tensor = aten::index_select(%x2.3, %320, %371)
参数含义:
%bd.3 (Tensor): 输出,选择后的Tensor。
%x2.3 (Tensor): 需要选择的Tensor。
%320 (int): 维度。
%371 (Tensor): 选择的索引。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%x2.3
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%320
if inputs_name[1] in mapper.attrs:
layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["axis"] = inputs_name[1]
current_inputs.append(inputs_name[1])
# 处理输入2,即%371
mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
layer_inputs["index"] = inputs_name[2]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"prim.index_select",
inputs=layer_inputs,
outputs=current_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_Int(mapper, graph, node):
""" 构造强转为int的PaddleLayer。
TorchScript示例:
%1739 : int = aten::Int(%1738)
参数含义:
%1739 (int): 输出,int型数据。
%1738 (-): 需要强转的数据。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%1738
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.int", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten___is__(mapper, graph, node):
""" 构造is not的PaddleLayer。
TorchScript示例:
%3949 : bool = aten::__isnot__(%size.122, %3931)
参数含义:
%3949 (bool): 输出,第一个元素是否不是第二个元素。
%size.122 (-): 需对比的输入1。
%3931 (-): 需对比的输入2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%size.122
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%3931
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.is", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten___isnot__(mapper, graph, node):
""" 构造is not的PaddleLayer。
TorchScript示例:
%3949 : bool = aten::__isnot__(%size.122, %3931)
参数含义:
%3949 (bool): 输出,第一个元素是否不是第二个元素。
%size.122 (-): 需对比的输入1。
%3931 (-): 需对比的输入2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%size.122
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%3931
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.isnot", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_layer_norm(mapper, graph, node):
""" 构造层归一化的PaddleLayer。
TorchScript示例:
%input0.4 : Tensor = aten::layer_norm(%input.6, %1181, %174, %173, %70, %71)
参数含义:
%input0.4 (Tensor): 输出,层归一化后的结果。
%input.6 (Tensor): 需要进行层归一化的特征层。
%1181 (list/int/tuple): 需规范化的shape。
%174 (Tensor): weights。
%173 (Tensor): bias。
%70 (float): 指明在计算过程中是否添加较小的值到方差中以防止除零。
%71 (bool): 是否启用cudnn。
"""
if "layernorm" in mapper.dygraph_name_id:
mapper.dygraph_name_id["layernorm"] += 1
else:
mapper.dygraph_name_id["layernorm"] = 0
layernorm_name = "layernorm" + str(mapper.dygraph_name_id["layernorm"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [layernorm_name, output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%input.6
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%1181
layer_attrs["normalized_shape"] = mapper.attrs[inputs_name[1]]
# 处理输入2,即%174
weights = mapper.pytorch_params[inputs_name[2]]
mapper.paddle_params[layernorm_name + ".weight"] = weights
# 处理输入3,即%173
if inputs_name[3] in mapper.pytorch_params:
bias = mapper.pytorch_params[inputs_name[3]]
if bias is not None:
mapper.paddle_params[layernorm_name + ".bias"] = bias
else:
mapper.paddle_params[layernorm_name + ".bias"] = False
# 处理输入4,即%70
layer_attrs["epsilon"] = mapper.attrs[inputs_name[4]]
graph.add_layer(
"paddle.nn.LayerNorm",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_le(mapper, graph, node):
""" 构造对比大小的PaddleLayer。
TorchScript示例:
%80 : bool = aten::le(%78, %79)
参数含义:
%80 (bool): 输出,第一个元素是否小于等于第二个元素。
%78 (-): 需对比的输入1。
%79 (-): 需对比的输入2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%78
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%79
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.le", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_leaky_relu_(mapper, graph, node):
""" 构造leaky relu激活的PaddleLayer。
TorchScript示例:
%input.117 : Tensor = aten::leaky_relu_(%input.114, %1570)
参数含义:
%input.117 (Tensor): 输出,leaky relu后的结果。
%input.114 (Tensor): 需要leaky relu的Tensor。
%1570 (float): 输入中的元素小于0时的斜率。
"""
if "leaky_relu" in mapper.dygraph_name_id:
mapper.dygraph_name_id["leaky_relu"] += 1
else:
mapper.dygraph_name_id["leaky_relu"] = 0
leaky_relu_name = "leaky_relu" + str(mapper.dygraph_name_id["leaky_relu"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [leaky_relu_name, output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%result.5
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%1570
layer_attrs["negative_slope"] = mapper.attrs[inputs_name[1]]
graph.add_layer(
"paddle.nn.LeakyReLU",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_len(mapper, graph, node):
""" 构造获取list长度的PaddleLayer。
TorchScript示例:
%85 : int = aten::len(%83)
参数含义:
%85 (int): 输出,list的长度。
%72 (list): 需要获取长度的list。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%72
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.len", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_log(mapper, graph, node):
""" 构构造log的PaddleLayer。
TorchScript示例:
%787 : Tensor = aten::log(%786)
参数含义:
%787 (Tensor): 输出,取log的Tensor。
%786 (Tensor): 需要获取log的Tensor。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%786
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"fluid.layers.log", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_lt(mapper, graph, node):
""" 构造对比大小的PaddleLayer。
TorchScript示例:
%80 : bool = aten::lt(%78, %79)
参数含义:
%80 (bool): 输出,第一个元素是否小于第二个元素。
%78 (-): 需对比的输入1。
%79 (-): 需对比的输入2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%78
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%79
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.lt", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_masked_fill_(mapper, graph, node):
""" 构造填充mask的PaddleLayer。
TorchScript示例:
%input.4 : Tensor = aten::masked_fill_(%scores.2, %mask.2, %46)
参数含义:
%input.4 (Tensor): 输出,填充后的结果。
%scores.2 (Tensor): 需要填充的Tensor。
%mask.2 (Tensor): bool型的Tensor,哪些位置需要填充。
%46 (-): 填充的值。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输入的list
current_inputs = []
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%input.4
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
current_inputs.append(inputs_name[0])
graph.add_layer(
"prim.type",
inputs={"input": inputs_name[0]},
outputs=[inputs_name[0] + "_type"])
# 处理输入1,即%scores.2
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
current_inputs.append(inputs_name[1])
graph.add_layer(
"paddle.logical_not",
inputs={"x": inputs_name[1]},
outputs=[inputs_name[1] + "_not"])
graph.add_layer(
"fluid.layers.cast",
inputs={"x": inputs_name[1]},
outputs=[inputs_name[1] + "_mask"],
dtype=inputs_name[0] + "_type")
graph.add_layer(
"fluid.layers.cast",
inputs={"x": inputs_name[1] + "_not"},
outputs=[inputs_name[1] + "_not_mask"],
dtype=inputs_name[0] + "_type")
graph.add_layer(
"paddle.multiply",
inputs={"x": inputs_name[0],
"y": inputs_name[1] + "_not_mask"},
outputs=[inputs_name[0] + "_not_mask"])
# 处理输入2,即%46
mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
graph.add_layer(
"prim.eq",
inputs={"x": inputs_name[2]},
outputs=[inputs_name[2] + "_cond1"],
y="-float('inf')")
graph.add_layer(
"prim.eq",
inputs={"x": inputs_name[2]},
outputs=[inputs_name[2] + "_cond2"],
y="float('inf')")
graph.add_layer(
"prim.or",
inputs={
"x": inputs_name[2] + "_cond1",
"y": inputs_name[2] + "_cond2"
},
outputs=[inputs_name[2] + "_cond"])
graph.add_layer(
"prim.if", {'input': inputs_name[2] + "_cond"},
outputs=[inputs_name[2] + "_if"])
if_layer = graph.layers[list(graph.layers.keys())[-1]]
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"prim.equal",
inputs={"input": inputs_name[1] + "_mask"},
outputs=[inputs_name[2] + "_1"])
if_layer.add_block(block)
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"prim.mul",
inputs={"x": inputs_name[1] + "_mask",
"y": inputs_name[2]},
outputs=[inputs_name[2] + "_1"])
if_layer.add_block(block)
if_layer.inputs["input-0"] = inputs_name[1] + "_mask"
if_layer.inputs["input-1"] = inputs_name[2]
if_layer.outputs.append(inputs_name[2] + "_1")
graph.add_layer(
"fluid.layers.elementwise_add",
inputs={"x": inputs_name[2] + "_1",
"y": inputs_name[0] + "_not_mask"},
outputs=layer_outputs)
return current_inputs, current_outputs
def aten_masked_fill(mapper, graph, node):
""" 构造填充mask的PaddleLayer。
TorchScript示例:
%input.4 : Tensor = aten::masked_fill(%scores.2, %mask.2, %46)
参数含义:
%input.4 (Tensor): 输出,填充后的结果。
%scores.2 (Tensor): 需要填充的Tensor。
%mask.2 (Tensor): bool型的Tensor,哪些位置需要填充。
%46 (-): 填充的值。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输入的list
current_inputs = []
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%input.4
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
current_inputs.append(inputs_name[0])
graph.add_layer(
"prim.type",
inputs={"input": inputs_name[0]},
outputs=[inputs_name[0] + "_type"])
# 处理输入1,即%scores.2
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
current_inputs.append(inputs_name[1])
graph.add_layer(
"paddle.logical_not",
inputs={"x": inputs_name[1]},
outputs=[inputs_name[1] + "_not"])
graph.add_layer(
"fluid.layers.cast",
inputs={"x": inputs_name[1]},
outputs=[inputs_name[1] + "_mask"],
dtype=inputs_name[0] + "_type")
graph.add_layer(
"fluid.layers.cast",
inputs={"x": inputs_name[1] + "_not"},
outputs=[inputs_name[1] + "_not_mask"],
dtype=inputs_name[0] + "_type")
graph.add_layer(
"paddle.multiply",
inputs={"x": inputs_name[0],
"y": inputs_name[1] + "_not_mask"},
outputs=[inputs_name[0] + "_not_mask"])
# 处理输入2,即%46
mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
graph.add_layer(
"prim.eq",
inputs={"x": inputs_name[2]},
outputs=[inputs_name[2] + "_cond1"],
y="-float('inf')")
graph.add_layer(
"prim.eq",
inputs={"x": inputs_name[2]},
outputs=[inputs_name[2] + "_cond2"],
y="float('inf')")
graph.add_layer(
"prim.or",
inputs={
"x": inputs_name[2] + "_cond1",
"y": inputs_name[2] + "_cond2"
},
outputs=[inputs_name[2] + "_cond"])
graph.add_layer(
"prim.if", {'input': inputs_name[2] + "_cond"},
outputs=[inputs_name[2] + "_if"])
if_layer = graph.layers[list(graph.layers.keys())[-1]]
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"prim.equal",
inputs={"input": inputs_name[1] + "_mask"},
outputs=[inputs_name[2] + "_1"])
if_layer.add_block(block)
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"prim.mul",
inputs={"x": inputs_name[1] + "_mask",
"y": inputs_name[2]},
outputs=[inputs_name[2] + "_1"])
if_layer.add_block(block)
if_layer.inputs["input-0"] = inputs_name[1] + "_mask"
if_layer.inputs["input-1"] = inputs_name[2]
if_layer.outputs.append(inputs_name[2] + "_1")
graph.add_layer(
"fluid.layers.elementwise_add",
inputs={"x": inputs_name[2] + "_1",
"y": inputs_name[0] + "_not_mask"},
outputs=layer_outputs)
return current_inputs, current_outputs
def aten_max(mapper, graph, node):
""" 构造获取最大值的PaddleLayer。
TorchScript示例:
%val_if_large0.3 : Tensor = aten::max(%val_if_large.3, %159)
参数含义:
%val_if_large0.3 (Tensor): 输出,对比后的结果。
%val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
%159 (Tensor): 输入,需要对比的Tensor2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
input_type = list(node.inputs())[1].type()
if str(input_type) == "Tensor":
# 处理输入0,即%val_if_large.3
mapper._check_input(graph, inputs_node[0], inputs_name[0],
current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%159
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"paddle.maximum", inputs=layer_inputs, outputs=layer_outputs)
else:
pass
return current_inputs, current_outputs
def aten_max_pool2d(mapper, graph, node):
""" 构造最大池化的PaddleLayer。
TorchScript示例:
%input.8 : Tensor = aten::max_pool2d(%result.11, %20, %23, %21, %22, %19)
参数含义:
%input.8 (Tensor): 输出,池化后的结果。
%result.11 (Tensor): 需要池化的Tensor。
%20 (list): 池化kernel的大小。
%23 (list): 步长大小。
%21 (list): 填充大小。
%22 (list): 膨胀系数大小。
%19 (bool): 是否用ceil函数计算输出高度和宽度。
"""
if "pool" in mapper.dygraph_name_id:
mapper.dygraph_name_id["pool"] += 1
else:
mapper.dygraph_name_id["pool"] = 0
pool_name = "pool" + str(mapper.dygraph_name_id["pool"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [pool_name, output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%result.11
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%20
layer_attrs["pool_size"] = mapper.attrs[inputs_name[1]]
# 处理输入2,即%23
layer_attrs["pool_stride"] = mapper.attrs[inputs_name[2]]
# 处理输入3,即%21
layer_attrs["pool_padding"] = mapper.attrs[inputs_name[3]]
# 处理输入4,即%22
graph.add_layer(
"prim.assert",
inputs={},
outputs=[inputs_name[4]],
type="eq",
key=mapper.attrs[inputs_name[4]],
value=[1, [1, 1]])
# 处理输入5,即%19
layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[5]]
layer_attrs["pool_type"] = string("max")
graph.add_layer(
"paddle.nn.Pool2D",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_matmul(mapper, graph, node):
""" 构造矩阵相乘的PaddleLayer。
TorchScript示例:
%output.2 : Tensor = aten::matmul(%101, %111)
参数含义:
%output.2 (Tensor): 输出,相乘后的结果。
%101 (Tensor): 矩阵1。
%102 (Tensor): 矩阵2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%101
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%102
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("paddle.matmul", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_min(mapper, graph, node):
""" 构造获取最小值的PaddleLayer。
TorchScript示例:
%val_if_large0.3 : Tensor = aten::min(%val_if_large.3, %159)
参数含义:
%val_if_large0.3 (Tensor): 输出,对比后的结果。
%val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
%159 (Tensor): 输入,需要对比的Tensor2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
input_type = list(node.inputs())[1].type()
if str(input_type) == "Tensor":
# 处理输入0,即%val_if_large.3
mapper._check_input(graph, inputs_node[0], inputs_name[0],
current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%159
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"paddle.minimum", inputs=layer_inputs, outputs=layer_outputs)
else:
pass
return current_inputs, current_outputs
def aten_mean(mapper, graph, node):
""" 构造求均值的PaddleLayer。
TorchScript示例:
%x.28 : Tensor = aten::mean(%result.1, %4967, %3, %2)
参数含义:
%x.28 (Tensor): 输出,求均值后的结果。
%result.1 (Tensor): 输入,需要求均值的Tensor。
%4967 (int/list): 求平均值运算的维度。
%3 (bool): 是否在输出Tensor中保留减小的维度。
%2 (Tensor): 结果Tensor。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%result.1
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
current_inputs = list(layer_inputs.values())
# 处理输入1,即%4967
if inputs_name[1] in mapper.attrs:
layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["dim"] = inputs_name[1]
current_inputs.append(inputs_name[1])
# 处理输入2,即%3
if inputs_name[1] in mapper.attrs:
layer_attrs["keep_dim"] = mapper.attrs[inputs_name[2]]
else:
mapper._check_input(graph, inputs_node[2], inputs_name[2],
current_outputs)
layer_inputs["keep_dim"] = inputs_name[2]
current_inputs.append(inputs_name[2])
graph.add_layer(
"fluid.layers.reduce_mean",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_mul(mapper, graph, node):
""" 构造数值相乘的PaddleLayer。
TorchScript示例:
%size_prods.39 : int = aten::mul(%size_prods.38, %114)
参数含义:
%size_prods.39 (Tensor): 输出,相乘后的结果。
%size_prods.38 (-): 数值1。
%114 (-): 数值2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%size_prods.38
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%114
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
current_outputs = layer_outputs
graph.add_layer("prim.mul", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_mul_(mapper, graph, node):
""" 构造数值相乘的PaddleLayer。
TorchScript示例:
%size_prods.39 : int = aten::mul_(%size_prods.38, %114)
参数含义:
%size_prods.39 (Tensor): 输出,相乘后的结果。
%size_prods.38 (-): 数值1。
%114 (-): 数值2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%size_prods.38
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%114
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
current_outputs = layer_outputs
graph.add_layer("prim.mul", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_ne(mapper, graph, node):
""" 构造判断数值是否不相等的PaddleLayer。
TorchScript示例:
%134 : bool = aten::ne(%133, %132)
参数含义:
%134 (bool): 对比后结果。
%133 (-): 需对比的输入1。
%132 (-): 需对比的输入2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%124
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%123
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.ne", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_neg(mapper, graph, node):
""" 构造对数值取负的PaddleLayer。
TorchScript示例:
%909 : int = aten::neg(%908)
参数含义:
%909 (int): 取负后结果。
%908 (int): 需取负的输入。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%124
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.neg", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten___not__(mapper, graph, node):
""" 构造对bool型取负的PaddleLayer。
TorchScript示例:
%4498 : bool = aten::__not__(%aux_defined.2)
参数含义:
%4498 (bool): 取负后结果。
%aux_defined.2 (bool): 需取负的输入。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%124
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.not", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_ones(mapper, graph, node):
""" 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。
TorchScript示例:
%input.49 : Tensor = aten::ones(%23, %8, %6, %24, %5)
参数含义:
%input.49 (Tensor): 输出,全0的Tensor。
%23 (list): 形状。
%8 (int): 类型dtype。
%6 (int): layout。
%4995 (Device): 设备。
%4995 (bool): 是否计算梯度。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
current_inputs = []
# 处理输入0,即%23,代表end
if inputs_name[0] in mapper.attrs:
layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
else:
mapper._check_input(graph, inputs_node[0], inputs_name[0],
current_outputs)
layer_inputs["shape"] = inputs_name[0]
current_inputs.append(inputs_name[0])
# 处理输入1,即%8,代表dtype
layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
graph.add_layer(
"paddle.ones",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_permute(mapper, graph, node):
""" 构造对bool型取负的PaddleLayer。
TorchScript示例:
%2385 : Tensor = aten::permute(%cls_confs0.2, %2384)
参数含义:
%2385 (Tensor): 重排后的结果。
%cls_confs0.2 (Tensor): 需要重排的Tensor。
%2348 (list): 依照此参数进行重排。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%cls_confs0.2
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%2348
if inputs_name[1] in mapper.attrs:
layer_attrs["perm"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["perm"] = inputs_name[1]
current_inputs.append(inputs_name[1])
graph.add_layer(
"fluid.layers.transpose",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_pow(mapper, graph, node):
""" 构造指数激活的PaddleLayer。
TorchScript示例:
%x.6 : Tensor = aten::pow(%4700, %4703)
参数含义:
%x.6 (Tensor): 输出,指数激活后的Tensor。
%4700 (Tensor): 需要指数激活的Tensor。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%4700
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%4703
if inputs_name[1] in mapper.attrs:
layer_attrs["factor"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["factor"] = inputs_name[1]
current_inputs.append(inputs_name[1])
graph.add_layer(
"fluid.layers.pow",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_relu(mapper, graph, node):
""" 构造ReLU激活的PaddleLayer。
TorchScript示例:
%result.3 : Tensor = aten::relu(%input.5)
参数含义:
%result.3 (Tensor): 输出,ReLU后的结果。
%result.5 (Tensor): 需要ReLU的Tensor。
注意: inplace这个参数在paddle中未实现
"""
if "relu" in mapper.dygraph_name_id:
mapper.dygraph_name_id["relu"] += 1
else:
mapper.dygraph_name_id["relu"] = 0
relu_name = "relu" + str(mapper.dygraph_name_id["relu"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [relu_name, output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%result.5
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"paddle.nn.ReLU", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_relu_(mapper, graph, node):
""" 构造ReLU激活的PaddleLayer。
TorchScript示例:
%result.3 : Tensor = aten::relu_(%input.5)
参数含义:
%result.3 (Tensor): 输出,ReLU后的结果。
%result.5 (Tensor): 需要ReLU的Tensor。
注意: inplace这个参数在paddle中未实现
"""
if "relu" in mapper.dygraph_name_id:
mapper.dygraph_name_id["relu"] += 1
else:
mapper.dygraph_name_id["relu"] = 0
relu_name = "relu" + str(mapper.dygraph_name_id["relu"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [relu_name, output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%result.5
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"paddle.nn.ReLU", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_relu6(mapper, graph, node):
""" 构造ReLU6激活的PaddleLayer。
TorchScript示例:
%result.3 : Tensor = aten::relu6(%input.5)
参数含义:
%result.3 (Tensor): 输出,ReLU6后的结果。
%result.5 (Tensor): 需要ReLU6的Tensor。
注意: inplace这个参数在paddle中未实现
"""
if "relu6" in mapper.dygraph_name_id:
mapper.dygraph_name_id["relu6"] += 1
else:
mapper.dygraph_name_id["relu6"] = 0
relu6_name = "relu6" + str(mapper.dygraph_name_id["relu6"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [relu6_name, output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%result.5
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"paddle.nn.ReLU6", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_repeat(mapper, graph, node):
""" 构造根据参数对输入各维度进行复制的PaddleLayer。
TorchScript示例:
701 : Tensor = aten::repeat(%699, %700)
参数含义:
%701 (Tensor): 输出,复制后的Tensor。
%699 (Tensor): 需要复制的Tensor。
%700 (list): 指定每个维度复制的次数。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%699
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%700
if inputs_name[1] in mapper.attrs:
layer_attrs["repeat_times"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["repeat_times"] = inputs_name[1]
current_inputs.append(inputs_name[1])
graph.add_layer(
"paddle.tile",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_reshape(mapper, graph, node):
""" 构造调整大小的PaddleLayer。
TorchScript示例:
%x.6 : Tensor = aten::reshape(%4700, %4703)
参数含义:
%x.6 (Tensor): 输出,reshape后的Tensor。
%4700 (Tensor): 需要reshape的Tensor。
%4703 (list): 形状大小组成的list。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%4700
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%4703
if inputs_name[1] in mapper.attrs:
layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["shape"] = inputs_name[1]
current_inputs.append(inputs_name[1])
graph.add_layer(
"prim.type",
inputs={"input": inputs_name[0]},
outputs=[inputs_name[0] + "_type"])
graph.add_layer(
"prim.str",
inputs={"input": inputs_name[0] + "_type"},
outputs=[inputs_name[0] + "_type"])
graph.add_layer(
"prim.eq",
inputs={"x": inputs_name[0] + "_type"},
outputs=[inputs_name[0] + "_cond"],
y=string("VarType.BOOL"))
graph.add_layer(
"prim.if", {'input': inputs_name[0] + "_cond"},
outputs=[inputs_name[0] + "_if1"])
if_layer = graph.layers[list(graph.layers.keys())[-1]]
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"fluid.layers.cast",
inputs={"x": inputs_name[0]},
outputs=[inputs_name[0]],
dtype=string("int32"))
if_layer.add_block(block)
block = PaddleGraph(if_layer, graph_type="dygraph")
if_layer.add_block(block)
if_layer.inputs["input-0"] = inputs_name[0]
graph.add_layer(
"fluid.layers.reshape",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
graph.add_layer(
"prim.if", {'input': inputs_name[0] + "_cond"},
outputs=[inputs_name[0] + "_if2"])
if_layer = graph.layers[list(graph.layers.keys())[-1]]
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"fluid.layers.cast",
inputs={"x": layer_outputs[0]},
outputs=layer_outputs,
dtype=string("bool"))
if_layer.add_block(block)
block = PaddleGraph(if_layer, graph_type="dygraph")
if_layer.add_block(block)
if_layer.inputs["input-0"] = layer_outputs[0]
return current_inputs, current_outputs
def aten_rsub(mapper, graph, node):
""" 构造数值相减的PaddleLayer,计算公式为:out = y - alpha * x。
TorchScript示例:
%31 : Tensor = aten::rsub(%30, %13, %7)
参数含义:
%31 (Tensor): 相减结果。
%30 (Tensor): 输入Tensor x。
%13 (int/float): 输入数值 y。
%7 (int/float): alpha。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%30
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%13
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 处理输入2,即%7
mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
layer_inputs["alpha"] = inputs_name[2]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.rsub", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_ScalarImplicit(mapper, graph, node):
""" 构造获取scalar的PaddleLayer。
TorchScript示例:
%89 : Scalar = aten::ScalarImplicit(%end.1)
参数含义:
%89 (Scalar): 输出,得到的Scalar。
%end.1 (-): 组要转换的数据。
【注意】由于Paddle无Scalar,所以最后转换为Tensor。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%end.1
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
input_type = list(node.inputs())[0].type()
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
if str(input_type) == "Tensor":
graph.add_layer(
"prim.equal", inputs=layer_inputs, outputs=layer_outputs)
else:
raise Exception(
"The input type {} of aten::ScalarImplicit is not implemented yet!"
).format(input_type)
return current_inputs, current_outputs
def aten_select(mapper, graph, node):
""" 构造选取特定维度Variable的PaddleLayer。
TorchScript示例:
%19 : Tensor = aten::select(%18, %8, %7)
参数含义:
%19 (Tensor): 输出,选取的Tensor。
%18 (Tensor): 需要选取的Tensor。
%8 (int): select的维度。
%7 (int): select的第n个向量。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%18
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 处理输入1,即%8
layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
# 处理输入2,即%75
mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
layer_inputs["index"] = inputs_name[2]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"prim.select",
inputs=layer_inputs,
outputs=current_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten__set_item(mapper, graph, node):
""" 构造对dict加入元素的PaddleLayer。
TorchScript示例:
= aten::_set_item(%features.1, %out_name.1, %x.3)
参数含义:
%features.1 (list): dict。
%out_name.1 (-): dict的key。
%x.3 (-): dict的value。
"""
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = []
# 处理输入0,即%features.1
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["dict"] = inputs_name[0]
# 处理输入1,即%out_name.1
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["key"] = inputs_name[1]
# 处理输入2,即%x.3
mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
layer_inputs["value"] = inputs_name[2]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.set_item", inputs=layer_inputs, outputs=[])
return current_inputs, current_outputs
def aten_sigmoid(mapper, graph, node):
""" 构造sigmoid激活的PaddleLayer。
TorchScript示例:
%55 : Tensor = aten::sigmoid(%54)
参数含义:
%55 (Tensor): 输出,sigmoid后的结果。
%54 (Tensor): 需要tanh的Tensor。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%54
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"fluid.layers.sigmoid", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_sin(mapper, graph, node):
""" 构造数学计算sin的PaddleLayer。
TorchScript示例:
%94 : Tensor = aten::sin(%sinusoid_inp.1)
参数含义:
%94 (Tensor): 输出,sin之后的结果。
%sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%sinusoid_inp.1
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
graph.add_layer("paddle.sin", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_size(mapper, graph, node):
""" 构造获取shape的PaddleLayer。
TorchScript示例:
%73 : int[] = aten::size(%x.12, %10)
参数含义:
%73 (list): 输出,shape的list。
%x.12 (Tensor): 需要获取shape的Tensor。
%10 (int): 非必须,代表维度。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%x.12
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
if len(inputs_name) > 1:
# 处理输入1,即%12
if inputs_name[1] in mapper.attrs:
layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["dim"] = inputs_name[1]
current_inputs.append(inputs_name[1])
graph.add_layer(
"prim.shape_dim",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
graph.add_layer(
"fluid.layers.shape", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_slice(mapper, graph, node):
""" 构造切分list或Variable的PaddleLayer。
TorchScript示例:
%83 : int[] = aten::slice(%73, %_81, %82, %75, %77)
参数含义:
%83 (list/Tensor): 输出,切分后的list。
%73 (list/Tensor): 需要切分的list。
%_81 (int): 切分的维度,不一定存在。
%82 (int): 切分的开始索引。
%75 (int): 切分的结束索引。
%77 (int): 切分的步长。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
if len(inputs_name) == 5:
# 处理输入0,即%73
mapper._check_input(graph, inputs_node[0], inputs_name[0],
current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%_81
if inputs_name[1] in mapper.attrs:
graph.add_layer(
"prim.list",
inputs={},
outputs=[inputs_name[1] + "_list"],
input0=mapper.attrs[inputs_name[1]])
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
graph.add_layer(
"prim.list",
inputs={"input0": inputs_name[1]},
outputs=[inputs_name[1] + "_list"])
current_inputs.append(inputs_name[1])
layer_inputs["axes"] = inputs_name[1] + "_list"
current_inputs.append(inputs_name[1] + "_list")
current_outputs.append(inputs_name[1] + "_list")
# 处理输入2,即%82
if inputs_name[2] in mapper.attrs:
graph.add_layer(
"prim.list",
inputs={},
outputs=[inputs_name[2] + "_list"],
input0=mapper.attrs[inputs_name[2]])
else:
mapper._check_input(graph, inputs_node[2], inputs_name[2],
current_outputs)
graph.add_layer(
"prim.list",
inputs={"input0": inputs_name[2]},
outputs=[inputs_name[2] + "_list"])
current_inputs.append(inputs_name[2])
layer_inputs["starts"] = inputs_name[2] + "_list"
current_inputs.append(inputs_name[2] + "_list")
current_outputs.append(inputs_name[2] + "_list")
# 处理输入3,即%85
if inputs_name[3] in mapper.attrs:
graph.add_layer(
"prim.list",
inputs={},
outputs=[inputs_name[3] + "_list"],
input0=mapper.attrs[inputs_name[3]])
else:
mapper._check_input(graph, inputs_node[3], inputs_name[3],
current_outputs)
graph.add_layer(
"prim.list",
inputs={"input0": inputs_name[3]},
outputs=[inputs_name[3] + "_list"])
current_inputs.append(inputs_name[3])
layer_inputs["ends"] = inputs_name[3] + "_list"
current_inputs.append(inputs_name[3] + "_list")
current_outputs.append(inputs_name[3] + "_list")
# 处理输入4,即%77
if inputs_name[4] in mapper.attrs:
graph.add_layer(
"prim.list",
inputs={},
outputs=[inputs_name[4] + "_list"],
input0=mapper.attrs[inputs_name[4]])
else:
mapper._check_input(graph, inputs_node[4], inputs_name[4],
current_outputs)
graph.add_layer(
"prim.list",
inputs={"input0": inputs_name[4]},
outputs=[inputs_name[4] + "_list"])
current_inputs.append(inputs_name[4])
layer_inputs["strides"] = inputs_name[4] + "_list"
current_inputs.append(inputs_name[4] + "_list")
current_outputs.append(inputs_name[4] + "_list")
graph.add_layer(
"fluid.layers.strided_slice",
inputs=layer_inputs,
outputs=layer_outputs)
else:
# 处理输入0,即%73
mapper._check_input(graph, inputs_node[0], inputs_name[0],
current_outputs)
layer_inputs["input"] = inputs_name[0]
# 处理输入1,即%82
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["start"] = inputs_name[1]
# 处理输入2,即%75
mapper._check_input(graph, inputs_node[2], inputs_name[2],
current_outputs)
layer_inputs["end"] = inputs_name[2]
# 处理输入3,即%77
mapper._check_input(graph, inputs_node[3], inputs_name[3],
current_outputs)
layer_inputs["step"] = inputs_name[3]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"prim.slice", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_softmax(mapper, graph, node):
""" 构造softmax激活的PaddleLayer。
TorchScript示例:
%input2.1 : Tensor = aten::softmax(%input.5, %80, %72)
参数含义:
%input2.1 (Tensor): 激活后结果。
%input.5 (Tensor): 需要激活的Tensor。
%80 (int): 指定对输入Tensor进行运算的轴。
%72 (str): 类型,默认为None。
"""
if "softmax" in mapper.dygraph_name_id:
mapper.dygraph_name_id["softmax"] += 1
else:
mapper.dygraph_name_id["softmax"] = 0
softmax_name = "softmax" + str(mapper.dygraph_name_id["softmax"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [softmax_name, output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%x.31
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
graph.add_layer(
"paddle.nn.Softmax",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_softplus(mapper, graph, node):
""" 构造softplus激活的PaddleLayer。
TorchScript示例:
%54 : Tensor = aten::softplus(%x.31, %30, %29)
参数含义:
%54 (Tensor): 激活后结果。
%x.31 (Tensor): 需要激活的Tensor。
%30 (int): beta。
%29 (int): 阈值。
"""
if "softplus" in mapper.dygraph_name_id:
mapper.dygraph_name_id["softplus"] += 1
else:
mapper.dygraph_name_id["softplus"] = 0
softplus_name = "softplus" + str(mapper.dygraph_name_id["softplus"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [softplus_name, output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%x.31
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
layer_attrs["beta"] = mapper.attrs[inputs_name[1]]
layer_attrs["threshold"] = mapper.attrs[inputs_name[2]]
graph.add_layer(
"paddle.nn.Softplus",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_sqrt(mapper, graph, node):
""" 构构造sqrt的PaddleLayer。
TorchScript示例:
%787 : Tensor = aten::sqrt(%786)
参数含义:
%787 (Tensor): 输出,取sqrt的Tensor。
%786 (Tensor): 需要获取sqrt的Tensor。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%786
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"fluid.layers.sqrt", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_squeeze(mapper, graph, node):
""" 构造删除位数为1的维度的PaddleLayer。
TorchScript示例:
%12 : Tensor = aten::squeeze(%start_logits.1, %4)
参数含义:
%12 (Tensor): 输出,删除维度后的Tensor。
%start_logits.1 (Tensor): 需要删除维度的Tensor。
%4 (int): 维度。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%start_logits.1
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%4
if inputs_name[1] in mapper.attrs:
layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["axis"] = inputs_name[1]
current_inputs.append(inputs_name[1])
graph.add_layer(
"paddle.tensor.squeeze",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_stack(mapper, graph, node):
""" 构造堆叠Tensor的PaddleLayer。
TorchScript示例:
%x.222 : Tensor = aten::stack(%32, %7)
参数含义:
%x.222 (Tensor): 输出,堆叠后的结果。
%i.12 (Tensor): 需要堆叠的Tensor组成的Tensor。
%7 (int): 堆叠的轴。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%13
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%12
if inputs_name[1] in mapper.attrs:
layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["axis"] = inputs_name[1]
current_inputs.append(inputs_name[1])
graph.add_layer(
"paddle.stack",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_sub(mapper, graph, node):
""" 构造数值相减的PaddleLayer。
TorchScript示例:
%840 : int = aten::sub(%839, %836)
参数含义:
%840 (-): 相减结果。
%839 (-): 输入数值 x。
%836 (-): 输入数值 y。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%839
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%836
mapper._check_input(
graph, inputs_node[1], inputs_name[1], current_outputs, add_dim=True)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.sub", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_t(mapper, graph, node):
""" 构造矩阵转置的PaddleLayer。
TorchScript示例:
%840 : int = aten::sub(%839, %836)
参数含义:
%109 (Tensor): 输出,转置后的矩阵。
%102 (Tensor): 需要转置的Tensor。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%x.12
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"fluid.layers.transpose",
inputs=layer_inputs,
outputs=layer_outputs,
perm=[1, 0])
return current_inputs, current_outputs
def aten_tanh(mapper, graph, node):
""" 构造tanh激活的PaddleLayer。
TorchScript示例:
%55 : Tensor = aten::tanh(%54)
参数含义:
%55 (Tensor): 输出,tanh后的结果。
%54 (Tensor): 需要tanh的Tensor。
"""
if "tanh" in mapper.dygraph_name_id:
mapper.dygraph_name_id["tanh"] += 1
else:
mapper.dygraph_name_id["tanh"] = 0
tanh_name = "tanh" + str(mapper.dygraph_name_id["tanh"])
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [tanh_name, output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%result.5
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"paddle.nn.Tanh", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_split(mapper, graph, node):
""" 构造分割Tensor的PaddleLayer。
TorchScript示例:
%160 : Tensor[] = aten::split(%159, %135, %123)
参数含义:
%160 (Tensor): 输出,分割后的矩阵。
%159 (Tensor): 需要分割的Tensor。
%135 (int): 分割的数量。
%723 (int): 轴。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%159
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 处理输入2,即%723
mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
layer_inputs["dim"] = inputs_name[2]
# 处理输入1,即%135
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
input_type = list(node.inputs())[0].type()
if "[]" in str(input_type):
layer_inputs["num_or_sections"] = inputs_name[1]
else:
layer_attrs["num_or_sections"] = 1
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"fluid.layers.split",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_transpose(mapper, graph, node):
""" 构造矩阵转置的PaddleLayer。
TorchScript示例:
%715 : Tensor = aten::transpose(%x.21, %704, %705)
参数含义:
%715 (Tensor): 输出,转置后的矩阵。
%x.21 (Tensor): 需要转置的Tensor。
%704 (int): 转置的维度1。
%705 (int): 转置的维度2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%x.21
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%704
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
dim1 = inputs_name[1]
# 处理输入2,即%705
mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
dim2 = inputs_name[2]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"fluid.layers.shape",
inputs={"input": inputs_name[0]},
outputs=[output_name + "_shape"])
current_outputs.append(output_name + "_shape")
graph.add_layer(
"prim.len",
inputs={"input": output_name + "_shape"},
outputs=[output_name + "_len"])
current_outputs.append(output_name + "_len")
current_inputs.append(output_name + "_shape")
graph.add_layer(
"prim.len2list",
inputs={"len": output_name + "_len"},
outputs=[output_name + "_list"])
current_outputs.append(output_name + "_list")
current_inputs.append(output_name + "_len")
graph.add_layer(
"prim.check_dim",
inputs={"len": output_name + "_len",
"dim": dim1},
outputs=[dim1 + "_new"])
graph.add_layer(
"prim.check_dim",
inputs={"len": output_name + "_len",
"dim": dim2},
outputs=[dim2 + "_new"])
graph.add_layer(
"prim.replaceitem",
inputs={
"list": output_name + "_list",
"index": dim1 + "_new",
"item": dim2 + "_new"
},
outputs=[])
graph.add_layer(
"prim.replaceitem",
inputs={
"list": output_name + "_list",
"index": dim2 + "_new",
"item": dim1 + "_new"
},
outputs=[])
graph.add_layer(
"fluid.layers.transpose",
inputs=layer_inputs,
outputs=layer_outputs,
perm=output_name + "_list")
return current_inputs, current_outputs
def aten_to(mapper, graph, node):
""" 构造类型转换的PaddleLayer。
TorchScript示例:
%30 : Tensor = aten::to(%extended_attention_mask.1, %12, %5, %5, %4)
参数含义:
%30 (Tensor): 转换后的Tensor。
%extended_attention_mask.1 (Tensor): 需要转换的Tensor。
%12 (int): 转换的类型。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%13
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%12
if len(inputs_name) == 6:
layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
else:
layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
graph.add_layer(
"fluid.layers.cast",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_type_as(mapper, graph, node):
""" 构造转换Tensor类型的PaddleLayer。
TorchScript示例:
%57 : Tensor = aten::type_as(%56, %mask.1)
参数含义:
%57 (Tensor): 输出,改变类型后的Tensor。
%56 (Tensor): 需要改变类型的Tensor。
%mask.1 (Tensor): 转换成与该Tensor相一致的类型。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%56
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入0,即%mask.1
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
graph.add_layer(
"prim.type",
inputs={"input": inputs_name[1]},
outputs=[inputs_name[1] + "_type"])
layer_inputs["dtype"] = inputs_name[1] + "_type"
current_inputs.append(inputs_name[1])
graph.add_layer(
"fluid.layers.cast", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_unsqueeze(mapper, graph, node):
""" 构造插入维度的PaddleLayer。
TorchScript示例:
%13 : Tensor = aten::unsqueeze(%12, %7)
参数含义:
%13 (Tensor): 输出,插入维度后的Tensor。
%12 (Tensor): 需要插入维度的Tensor。
%7 (int): 维度。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%13
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%12
if inputs_name[1] in mapper.attrs:
layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["axis"] = inputs_name[1]
current_inputs.append(inputs_name[1])
graph.add_layer(
"paddle.tensor.unsqueeze",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_upsample_bilinear2d(mapper, graph, node):
""" 构造使用bilinear上采样的PaddleLayer。
TorchScript示例:
%4997 : Tensor = aten::upsample_bilinear2d(%x.13, %4963, %5421, %4995, %4996)
参数含义:
%4997 (Tensor): 输出,上采样后的Tensor。
%x.13 (Tensor): 需要上采样的Tensor。
%4963 (list): 上采样后的大小。
%5421 (bool): 若为True,则将输入和输出张量的4个角落像素的中心对齐,并保留角点像素的值。
%4995 (float): 高度的乘数因子。
%4995 (float): 宽度的乘数因子。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%x.13
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%4963
if inputs_name[1] in mapper.attrs:
layer_attrs["size"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["size"] = inputs_name[1]
current_inputs.append(inputs_name[1])
graph.add_layer(
"prim.isinstance",
inputs={"input": inputs_name[1]},
outputs=[inputs_name[1] + "_isinstance"],
cls="paddle.fluid.Variable")
graph.add_layer(
"prim.if", {"input": inputs_name[1] + "_isinstance"},
outputs=[inputs_name[0] + "_if1"])
if_layer = graph.layers[list(graph.layers.keys())[-1]]
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"prim.var2list",
inputs={"input": inputs_name[1]},
outputs=[inputs_name[1]])
if_layer.add_block(block)
block = PaddleGraph(if_layer, graph_type="dygraph")
if_layer.add_block(block)
if_layer.inputs["input-0"] = inputs_name[1]
# 处理输入2,即%5421
if inputs_name[2] in mapper.attrs:
layer_attrs["align_corners"] = mapper.attrs[inputs_name[2]]
else:
mapper._check_input(graph, inputs_node[2], inputs_name[2],
current_outputs)
layer_inputs["align_corners"] = inputs_name[2]
current_inputs.append(inputs_name[2])
# 处理输入3和4,构造assert
list_layer_inputs = {}
mapper._check_input(graph, inputs_node[3], inputs_name[3], current_outputs)
list_layer_inputs["key"] = inputs_name[3]
current_inputs.append(inputs_name[3])
mapper._check_input(graph, inputs_node[4], inputs_name[4], current_outputs)
list_layer_inputs["value"] = inputs_name[4]
current_inputs.append(inputs_name[4])
graph.add_layer(
"prim.assert",
inputs=list_layer_inputs,
outputs=[output_name + "_assert"],
type="eq")
layer_inputs["scale_factor"] = inputs_name[3]
layer_attrs["align_mode"] = 0
graph.add_layer(
"paddle.nn.functional.interpolate",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_view(mapper, graph, node):
""" 构造调整大小的PaddleLayer。
TorchScript示例:
%input.152 : Tensor = aten::view(%x.20, %430)
参数含义:
%input.152 (Tensor): 输出,view后的Tensor。
%x.20 (Tensor): 需要view的Tensor。
%430 (list): 形状大小组成的list。
【注意】view 函数只能用于contiguous后的Tensor上,
也就是只能用于内存中连续存储的Tensor。
如果对Tensor调用过transpose,permute等操作的话会使该Tensor在内存中变得不再连续,
此时就不能再调用view函数。因此,需要先使用contiguous来返回一个contiguous copy。
reshape则不需要依赖目标Tensor是否在内存中是连续的。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%x.20
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入、输出的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%430
if inputs_name[1] in mapper.attrs:
layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["shape"] = inputs_name[1]
current_inputs.append(inputs_name[1])
graph.add_layer(
"prim.type",
inputs={"input": inputs_name[0]},
outputs=[inputs_name[0] + "_type"])
graph.add_layer(
"prim.str",
inputs={"input": inputs_name[0] + "_type"},
outputs=[inputs_name[0] + "_type"])
graph.add_layer(
"prim.eq",
inputs={"x": inputs_name[0] + "_type"},
outputs=[inputs_name[0] + "_cond"],
y=string("VarType.BOOL"))
graph.add_layer(
"prim.if", {'input': inputs_name[0] + "_cond"},
outputs=[inputs_name[0] + "_if1"])
if_layer = graph.layers[list(graph.layers.keys())[-1]]
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"fluid.layers.cast",
inputs={"x": inputs_name[0]},
outputs=[inputs_name[0]],
dtype=string("int32"))
if_layer.add_block(block)
block = PaddleGraph(if_layer, graph_type="dygraph")
if_layer.add_block(block)
if_layer.inputs["input-0"] = inputs_name[0]
graph.add_layer(
"fluid.layers.reshape",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
graph.add_layer(
"prim.if", {'input': inputs_name[0] + "_cond"},
outputs=[inputs_name[0] + "_if2"])
if_layer = graph.layers[list(graph.layers.keys())[-1]]
block = PaddleGraph(if_layer, graph_type="dygraph")
block.add_layer(
"fluid.layers.cast",
inputs={"x": layer_outputs[0]},
outputs=layer_outputs,
dtype=string("bool"))
if_layer.add_block(block)
block = PaddleGraph(if_layer, graph_type="dygraph")
if_layer.add_block(block)
if_layer.inputs["input-0"] = layer_outputs[0]
return current_inputs, current_outputs
def aten_warn(mapper, graph, node):
""" 构造warning的PaddleLayer。
TorchScript示例:
= aten::warn(%3, %2)
参数含义:
%3 (str): warning的提示字符串。
%2 (int): warning的stacklevel。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%3
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%2
if inputs_name[1] in mapper.attrs:
layer_attrs["stacklevel"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["stacklevel"] = inputs_name[1]
current_inputs.append(inputs_name[1])
graph.add_layer(
"prim.warnings",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_where(mapper, graph, node):
""" 构造返回一个根据输入condition, 选择x或y的元素组成的多维Tensor的PaddleLayer,该节点实现out = x + y。
TorchScript示例:
%input.4 : Tensor = aten::where(%209, %w0.2, %210)
参数含义:
%input.4 (Tensor): 选择的结果。
%209 (Tensor): 条件。
%w0.2 (Tensor): 输入数值 x。
%210 (Tensor): 输入数值 y。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%209
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["condition"] = inputs_name[0]
# 处理输入1,即%w0.2
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["x"] = inputs_name[1]
# 处理输入1,即%w0.2
mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
layer_inputs["y"] = inputs_name[2]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("paddle.where", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_zeros(mapper, graph, node):
""" 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。
TorchScript示例:
%input.49 : Tensor = aten::zeros(%23, %8, %6, %24, %5)
参数含义:
%input.49 (Tensor): 输出,全0的Tensor。
%23 (list): 形状。
%8 (int): 类型dtype。
%6 (int): layout。
%4995 (Device): 设备。
%4995 (bool): 是否计算梯度。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
current_inputs = []
# 处理输入0,即%23,代表end
if inputs_name[0] in mapper.attrs:
layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
else:
mapper._check_input(graph, inputs_node[0], inputs_name[0],
current_outputs)
layer_inputs["shape"] = inputs_name[0]
current_inputs.append(inputs_name[0])
# 处理输入1,即%8,代表dtype
layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
graph.add_layer(
"paddle.zeros",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_zeros_like(mapper, graph, node):
""" 构造创建与输入Tensor形状一致的、数据类型且值全为0的Tensor的PaddleLayer。
TorchScript示例:
%782 : Tensor = aten::zeros_like(%n.2, %655, %670, %662, %671, %672)
参数含义:
%782 (Tensor): 输出,全0的Tensor。
%n.2 (Tensor): 标准Tensor。
%655 (int): 类型dtype。
%670 (int): layout。
%662 (Device): 设备。
%671 (bool): 是否计算梯度。
%672 (memory_format): 存储类型。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%n.2
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%655,代表dtype
layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
graph.add_layer(
"paddle.zeros_like",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import numpy as np
from x2paddle.core.util import *
def prim_Constant(mapper, graph, node):
""" 构造constant的PaddleLayer,该节点实现常量赋值。
TorchScript示例:
%2 : int = prim::Constant[value=-1]()
参数含义:
%2 (常量类型由赋值类型定义,该示例中为int型): 常量赋值结果输出。
"""
output_name = mapper._get_outputs_name(node)[0]
output = list(node.outputs())[0]
value = output.toIValue()
output_type = output.type()
if isinstance(value, str):
value = string(value)
if str(output_type) == "Tensor":
value = "{}".format(value)
if "inf" in str(value):
t = str(type(value)).split("'")[1]
if str(value).startswith("-"):
value = "-{}({})".format(t, string(str(value)[1:]))
else:
value = "{}({})".format(t, string(str(value)))
if "9223372036854775807" in str(value):
import math
value = int(math.pow(2, 31) - 1)
mapper.attrs[output_name] = value
graph.add_layer(
"prim.constant", inputs={}, outputs=[output_name], value=value)
return [], [output_name]
def prim_data(mapper, graph, node):
""" 构造Tensor的PaddleLayer。
TorchScript示例:
%4336 : Tensor = prim::data(%out.6)
参数含义:
%4336 (Tensor): 输出Tensor。
%out.6 (Tensor): 原始Tensor。
【注意】Paddle中无此用法,所以此处翻译成赋值。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%4336
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def prim_GetAttr(mapper, graph, node):
""" 获取attribute信息。
TorchScript示例:
%27 : Tensor? = prim::GetAttr[name="bias"](%7)
参数含义:
%7 (Tensor): 输入Tensor。
%27 (Tensor): 输入Tensor。
"""
current_node = node
field_name_list = [node.s('name')]
while True:
input_node = list(node.inputs())[0].node()
try:
field_name_list.insert(0, input_node.s('name'))
node = input_node
except Exception:
break
attr_name = ".".join(field_name_list)
output_name = mapper._get_outputs_name(current_node, attr_name)[0]
part_script = mapper.script
for field_name in field_name_list:
if hasattr(part_script, field_name):
param = getattr(part_script, field_name)
if isinstance(param, torch.Tensor):
param = param.detach().numpy()
if len(param.shape) == 0:
param = np.reshape(param, 1)
if str(param.dtype) == "uint8":
param = param.astype("int32")
mapper.pytorch_params[output_name] = param
part_script = param
return [], [output_name]
def prim_If(mapper, graph, node):
""" 构造if控制流的PaddleLayer。
TorchScript示例:
%input.5 : Tensor = prim::If(%107)
block0():
%109 : Tensor = aten::t(%102)
%ret.2 : Tensor = aten::addmm(%103, %101, %109, %104, %104)
-> (%ret.2)
block1():
%111 : Tensor = aten::t(%102)
...
-> (%output.4)
参数含义:
%107 (bool): if判断条件。
%input.5 (Tensor): if控制流的输出,与%output.4对应。
"""
outputs_name = mapper._get_outputs_name(node)
node_outputs = outputs_name.copy()
current_outputs = outputs_name.copy()
input_node = list(node.inputs())[0].node()
script_input_unique_id = list(node.inputs())[0].unique()
input_node_name = mapper.outputs_info[script_input_unique_id]
mapper._check_input(graph, input_node, input_node_name, current_outputs)
graph.add_layer("prim.if", {'input': input_node_name}, node_outputs)
current_layer = list(graph.layers.values())[-1]
block0 = list(node.blocks())[0]
block0_graph, graph_inputs0 = mapper.traverse(block0, current_layer)
len0 = 0
for i, input_name in enumerate(graph_inputs0):
current_layer.inputs['input-{}'.format(i)] = input_name
len0 = i
current_layer.add_block(block0_graph)
block1 = list(node.blocks())[1]
block1_graph, graph_inputs1 = mapper.traverse(block1, current_layer)
for i, input_name in enumerate(graph_inputs1):
current_layer.inputs['input-{}'.format(len0 + 1 + i)] = input_name
current_layer.add_block(block1_graph)
return list(current_layer.inputs.values()), current_outputs
def prim_ListConstruct(mapper, graph, node):
""" 构造list的PaddleLayer。
TorchScript示例:
%86 : int[] = prim::ListConstruct(%84, %85)
参数含义:
%86 (list): list节点输出。
%84 (int/其他): list第一个元素信息。
%85 (int/其他): list第二个元素信息。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理每个输入
for i, input_name in enumerate(inputs_name):
layer_inputs["input{}".format(i)] = input_name
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.list", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def prim_ListUnpack(mapper, graph, node):
""" 构造获取list中元素的PaddleLayer。
TorchScript示例:
%x1.4 : Tensor, %x2.4 : Tensor = prim::ListUnpack(%4354)
参数含义:
%x1.4 (Tensor): 输出,list的第一个元素。
%x2.4 (Tensor): 输出,list的第二个元素。
%4354 (list): 列表。
"""
outputs_name = mapper._get_outputs_name(node)
layer_outputs = outputs_name.copy()
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = layer_outputs.copy()
# 处理输入0,即%4354
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"prim.list_unpack", inputs=layer_inputs, outputs=layer_outputs)
mapper.split_len[list(layer_inputs.values())[0]] = len(layer_outputs)
return current_inputs, current_outputs
def prim_Loop(mapper, graph, node):
""" 构造loop循环的PaddleLayer。
TorchScript示例:
%x : Tensor = prim::Loop(%4, %3, %x.3)
block0(%i : int, %x.12 : Tensor):
%72 : int[] = prim::Constant[value=[6, 6]]()
...
%x.5 : Tensor = aten::adaptive_avg_pool2d(%x.12, %_output_size.1)
-> (%3, %x.5)
参数含义:
%4 (int): 循环次数。
%3 (bool): 是否进入退出。
%x.3 (Tensor): 循环中修改的Tensor。
%x (Tensor): loop循环的输出,与%x.5对应。
"""
node_outputs = mapper._get_outputs_name(node)
loop_inputs = {}
block = list(node.blocks())[0]
loop_outputs = node_outputs.copy()
for i, block_input_ivalue in enumerate(block.inputs()):
if i == 0:
block_input_node_name = '_x' + str(mapper.output_index)
else:
block_input_node_name = 'x' + str(mapper.output_index)
unique_id = block_input_ivalue.unique()
if unique_id not in mapper.outputs_info:
mapper.outputs_info[unique_id] = block_input_node_name
mapper.output_index += 1
if i == 0:
loop_input_node = list(node.inputs())[0].node()
script_loop_input_unique_id = list(node.inputs())[0].unique()
loop_input_node_name = mapper.outputs_info[
script_loop_input_unique_id]
mapper._check_input(graph, loop_input_node, loop_input_node_name,
node_outputs)
loop_inputs['input'] = loop_input_node_name
loop_outputs.append(block_input_node_name)
node_outputs.append(block_input_node_name)
else:
loop_input_node = list(node.inputs())[i + 1].node()
script_loop_input_unique_id = list(node.inputs())[i + 1].unique()
loop_input_node_name = mapper.outputs_info[
script_loop_input_unique_id]
mapper._check_input(graph, loop_input_node, loop_input_node_name,
node_outputs)
graph.add_layer(
"prim.equal",
inputs={'input': loop_input_node_name},
outputs=[block_input_node_name])
node_outputs.append(block_input_node_name)
graph.add_layer("prim.loop", inputs=loop_inputs, outputs=loop_outputs)
current_layer = list(graph.layers.values())[-1]
block_graph, graph_inputs = mapper.traverse(block, current_layer)
for i, input_name in enumerate(graph_inputs):
if input_name == loop_outputs[1]:
continue
current_layer.inputs['input-{}'.format(i)] = input_name
current_layer.add_block(block_graph)
return list(current_layer.inputs.values()), node_outputs
def prim_min(mapper, graph, node):
""" 构造min的PaddleLayer。
TorchScript示例:
%87 : int = prim::min(%86)
参数含义:
%86 (list): 输入。
%87 (int): 输出。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%86
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.min", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def prim_NumToTensor(mapper, graph, node):
""" 构造转为Tensor的PaddleLayer。
TorchScript示例:
%other.2 : Tensor = prim::NumToTensor(%1736)
参数含义:
%other.2 (Tensor): 输出。
%1736 (-): 输入。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%86
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
if inputs_node[0].kind() == "aten::size":
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"prim_equal", inputs=layer_inputs, outputs=layer_outputs)
else:
layer_inputs["value"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
input_type = list(node.inputs())[0].type()
layer_attrs["dtype"] = input_type
layer_attrs["persistable"] = True
layer_attrs["shape"] = [1]
graph.add_layer(
"fluid.layers.create_global_var",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def prim_RaiseException(mapper, graph, node):
""" 构造抛出异常的PaddleLayer。
TorchScript示例:
= prim::RaiseException(%76)
参数含义:
%76 (str): 异常信息。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%76
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"prim.exception", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def prim_requires_grad(mapper, graph, node):
""" 构造是否计算梯度的PaddleLayer。
TorchScript示例:
%356 : bool = prim::requires_grad(%tensor.31)
参数含义:
%356 (bool): 输出,当前Tensor是否计算梯度。
%tensor.31 (Tensor): 输入的Tensor。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%86
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"prim.requires_grad", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def prim_SetAttr(mapper, graph, node):
""" 设置attribute信息。
TorchScript示例:
= prim::SetAttr[name="num_batches_tracked"](%260, %277)
参数含义:
%260 (-): 属性名前缀。
%277 (-): 需要设置的值。
"""
output_name = mapper._get_outputs_name(node)[0]
field_name_list = []
tmp_node = node
while True:
input_node = list(tmp_node.inputs())[0].node()
try:
field_name_list.insert(0, input_node.s('name'))
tmp_node = input_node
except Exception:
break
field_name_list.append(node.s('name'))
inputs_name, inputs_node = mapper._get_inputs_name(node)
param = {
"Tensor": "self." + ".".join(field_name_list).replace(".", "_"),
"parent_layer_id": graph.parent_layer.id
}
mapper.pytorch_params[".".join(field_name_list)] = param
graph.add_layer(
"prim.set_attr",
inputs={"input": inputs_name[1]},
outputs=["self." + ".".join(field_name_list).replace(".", "_")])
return [], [output_name]
def prim_shape(mapper, graph, node):
""" 构造获取shape的PaddleLayer。
TorchScript示例:
%4701 : int[] = prim::shape(%result.1)
参数含义:
%4701 (list): 输出,shape信息。
%result.1 (Tensor): 需要获取shape的值。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%input.8
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"fluid.layers.shape", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def prim_TupleConstruct(mapper, graph, node):
""" 构造tuple的PaddleLayer。
TorchScript示例:
%4492 : (Tensor, Tensor?) = prim::TupleConstruct(%x.46, %aux)
参数含义:
%4492 (tuple): 输出,tuple。
%x.46 (Tensor/其他): tuple第一个元素信息。
%aux (Tensor/其他): tuple第二个元素信息。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理每个输入
for i, input_name in enumerate(inputs_name):
layer_inputs["input{}".format(i)] = input_name
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.tuple", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def prim_TupleUnpack(mapper, graph, node):
""" 构造获取tuple元素的PaddleLayer。
TorchScript示例:
%x.223 : Tensor, %aux.3 : Tensor? = prim::TupleUnpack(%4492)
参数含义:
%x.223 (Tensor/其他): 输出,tuple第一个元素信息。
%aux.3 (Tensor/其他): 输出,tuple第二个元素信息。
%4492 (tuple): 需要获取元素的tuple。
"""
outputs_name = mapper._get_outputs_name(node)
layer_outputs = outputs_name
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = outputs_name
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer(
"prim.tuple_unpack", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def prim_unchecked_cast(mapper, graph, node):
""" 构造确认类型的PaddleLayer。
TorchScript示例:
%size.64 : int[] = prim::unchecked_cast(%size.63)
参数含义:
%size.64 (-): 输出。
%size.63 (-): 输入。
【注意】Paddle中无此用法,所以此处翻译成赋值。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%size.63
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def prim_Uninitialized(mapper, graph, node):
""" 构造表示编译器永远不会使用的值的PaddleLayer,该节点转换为None。
TorchScript示例:
%345 : bool = prim::Uninitialized()
参数含义:
%345 (bool): 输出,为赋值的bool。
"""
output_name = mapper._get_outputs_name(node)[0]
output = list(node.outputs())[0]
mapper.attrs[output_name] = None
graph.add_layer(
"prim.constant", inputs={}, outputs=[output_name], value=None)
return [], [output_name]
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def gen_codes(code_list, indent=0):
indent_blank = " " * indent
codes = []
for code_line in code_list:
if code_line.strip() == "":
codes.append('\n')
else:
codes.append(indent_blank + code_line + '\n')
return codes
def get_value(layer, key):
""" 进行optimizer后可能把inputs的value直接用数值代替(ConstantFuser),
会把input换成attr,所以需要此处的操作。
"""
if key in layer.inputs:
return layer.inputs[key]
else:
return str(layer.attrs[key])
def prim_add(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} + {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_add_(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} + {} * {}".format(layer.outputs[0],
get_value(layer, "x"),
layer.attrs["alpha"],
get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_and(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} and {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_append(layer, indent=1, init_func=[], forward_func=[]):
line = "{}.append({})".format(
get_value(layer, "list"), get_value(layer, "element"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_assert(layer, indent=1, init_func=[], forward_func=[]):
if layer.attrs["type"] == "eq":
values = get_value(layer, "key")
if "value" in layer.attrs:
values = layer.attrs["value"]
if isinstance(values, list):
s = ""
for v in values:
s += "{} == {} or ".format(get_value(layer, "key"), v)
if len(s) > 0:
s = s[:-4]
line = "assert {}, \'The {} must be {}!\'".format(
s, get_value(layer, "key"), get_value(layer, "value"))
else:
line = "assert {} == {}, \'The {} must be {}!\'".format(
get_value(layer, "key"),
get_value(layer, "value"),
get_value(layer, "key"), get_value(layer, "value"))
else:
raise Exception("Not implement yet!")
forward_func.extend(gen_codes([line], indent=indent))
def prim_check_dim(layer, indent=1, init_func=[], forward_func=[]):
lines = []
lines.append("if {} < 0:".format(get_value(layer, "dim")))
lines.append(" {} = {} + {}".format(layer.outputs[
0], get_value(layer, "dim"), get_value(layer, "len")))
lines.append("else:")
lines.append(" {} = {}".format(layer.outputs[0], get_value(layer,
"dim")))
forward_func.extend(gen_codes(lines, indent=indent))
def prim_constant(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {}".format(layer.outputs[0], layer.attrs["value"])
forward_func.extend(gen_codes([line], indent=indent))
def prim_contain(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} in {}".format(layer.outputs[0],
get_value(layer, "element"),
get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_dict(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = dict()".format(layer.outputs[0])
forward_func.extend(gen_codes([line], indent=indent))
def prim_div(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} / {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_eq(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} == {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_equal(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {}".format(layer.outputs[0], get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_exception(layer, indent=1, init_func=[], forward_func=[]):
line = "raise RaiseException({})".format(get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_float(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = float({})".format(layer.outputs[0], get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_floor(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = math.floor({})".format(layer.outputs[0],
get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_floordiv(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} // {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_getitem(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {}[{}]".format(layer.outputs[0],
get_value(layer, "list"),
get_value(layer, "index"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_gt(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} > {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_if(layer, indent=1, init_func=[], forward_func=[]):
line = "if {} :".format(get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
block = layer.blocks[0]
b_init_lines, b_forward_lines = block.gen_dygraph_code(indent=indent + 1)
init_func.extend(b_init_lines)
forward_func.extend(b_forward_lines)
block = layer.blocks[1]
if len(block.layers) > 0:
b_init_lines, b_forward_lines = block.gen_dygraph_code(
indent=indent + 1)
if len(b_forward_lines) != 0:
line = "else:"
forward_func.extend(gen_codes([line], indent=indent))
init_func.extend(b_init_lines)
forward_func.extend(b_forward_lines)
def prim_int(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = int({})".format(layer.outputs[0], get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_is(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} is {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_isinstance(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = isinstance({}, {})".format(layer.outputs[0],
get_value(layer, "input"),
layer.attrs["cls"])
forward_func.extend(gen_codes([line], indent=indent))
def prim_isnot(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} is not {}".format(layer.outputs[0],
get_value(layer, "x"),
get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_le(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} <= {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_len(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = len({})".format(layer.outputs[0], get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_len2list(layer, indent=1, init_func=[], forward_func=[]):
lines = []
lines.append("{} = []".format(layer.outputs[0]))
lines.append("for i in range({}):".format(get_value(layer, "len")))
lines.append(" {}.append(i)".format(layer.outputs[0]))
forward_func.extend(gen_codes(lines, indent=indent))
def prim_lt(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} < {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_list(layer, indent=1, init_func=[], forward_func=[]):
input_len = len(layer.inputs) + len(layer.attrs)
inputs_list = list()
for i in range(input_len):
inputs_list.append(get_value(layer, "input{}".format(i)))
inputs_str = ', '.join(inputs_list)
line = "{} = [{}]".format(layer.outputs[0], inputs_str)
forward_func.extend(gen_codes([line], indent=indent))
def prim_list_unpack(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {}".format(", ".join(layer.outputs), get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_loop(layer, indent=1, init_func=[], forward_func=[]):
loop_range = get_value(layer, "input")
line = "for {} in range({}):".format(layer.outputs[1], loop_range)
forward_func.extend(gen_codes([line], indent=indent))
block = layer.blocks[0]
b_init_lines, b_forward_lines = block.gen_dygraph_code(indent=indent + 1)
init_func.extend(b_init_lines)
forward_func.extend(b_forward_lines)
def prim_min(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = min({})".format(layer.outputs[0], get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_mul(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} * {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_ne(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} != {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_neg(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = -{}".format(layer.outputs[0], get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_not(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = not {}".format(layer.outputs[0], get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_or(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} or {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_replaceitem(layer, indent=1, init_func=[], forward_func=[]):
line = "{}[{}] = {}".format(
get_value(layer, "list"),
get_value(layer, "index"), get_value(layer, "item"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_requires_grad(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = not {}.stop_gradient".format(layer.outputs[0],
get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_rsub(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} - {} * {}".format(layer.outputs[0],
get_value(layer, "y"),
get_value(layer, "x"),
get_value(layer, "alpha"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_select(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {}[".format(layer.outputs[0], get_value(layer, "input"))
for dim in range(layer.attrs["dim"]):
line += ":, "
line += (get_value(layer, "index") + "]")
forward_func.extend(gen_codes([line], indent=indent))
def prim_set_attr(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {}".format(layer.outputs[0], get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_set_item(layer, indent=1, init_func=[], forward_func=[]):
line = "{}[{}] = {}".format(
get_value(layer, "dict"),
get_value(layer, "key"), get_value(layer, "value"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_shape_dim(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = fluid.layers.shape({})[{}]".format(layer.outputs[0],
get_value(layer, "input"),
get_value(layer, "dim"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_slice(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {}[{}: {}: {}]".format(layer.outputs[0],
get_value(layer, "input"),
get_value(layer, "start"),
get_value(layer, "end"),
get_value(layer, "step"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_str(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = str({})".format(layer.outputs[0], get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_sub(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} - {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_tuple(layer, indent=1, init_func=[], forward_func=[]):
input_len = len(layer.inputs) + len(layer.attrs)
inputs_list = list()
for i in range(input_len):
inputs_list.append(get_value(layer, "input{}".format(i)))
inputs_str = ', '.join(inputs_list)
line = "{} = ({})".format(layer.outputs[0], inputs_str)
forward_func.extend(gen_codes([line], indent=indent))
def prim_tuple_unpack(layer, indent=1, init_func=[], forward_func=[]):
outputs_str = ', '.join(layer.outputs)
line = "{} = {}".format(outputs_str, get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_type(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {}.dtype".format(layer.outputs[0], get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_var2list(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {}.numpy().tolist()".format(layer.outputs[0],
get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_warnings(layer, indent=1, init_func=[], forward_func=[]):
lines = ["import warnings"]
line = "warnings.warn({}, stacklevel={})".format(
get_value(layer, "input"), layer.attrs["stacklevel"])
lines.append(line)
forward_func.extend(gen_codes(lines, indent=indent))
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import numpy as np
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
from x2paddle.core.program import PaddleGraph
from x2paddle.op_mapper.pytorch2paddle import prim
from x2paddle.op_mapper.pytorch2paddle import aten
class PyTorchOpMapper(OpMapper):
def __init__(self, decoder):
super(PyTorchOpMapper, self).__init__()
self.script = decoder.script
self.paddle_params = dict()
self.outputs_info = {} # key为output unique id,value为当前节点的输出名字
self.pytorch_params = {} # key为节点名,value为参数
self.attrs = {} # key为节点名,value为属性值
self.output_index = 0
self.dygraph_name_id = {} # 动态图__init__输出名字中的id,key为kernel类型,value为id
self.split_len = {} # split的长度
# 转换
self.check_op(decoder.graph)
self.graph, _ = self.traverse(decoder.graph)
def check_op(self, script_graph):
def _update_op_list(graph):
for node in graph.nodes():
op_list.append(node.kind())
for block in node.blocks():
_update_op_list(block)
op_list = list()
_update_op_list(script_graph)
op_list = list(set(op_list))
unsupported_op_list = []
for op in op_list:
func_name = op.replace('::', '_')
if not (hasattr(prim, func_name) or hasattr(aten, func_name)):
unsupported_op_list.append(op)
if len(unsupported_op_list) > 0:
raise Exception("The kind {} in model is not supported yet.".format(
unsupported_op_list))
def traverse(self, script_graph, parent_layer=None):
# 用于获取graph的输入
def _update_graph_inputs(kind, inputs, outputs):
# extend只能放更新graph_inputs之前的情况:
# 1. loop的输出i也是输入;i是输入的原因是:子图中为父图得到的。
# 2. 在_check_input中需要使用to_variable。
# extend只能放更新graph_inputs之后的情况:
# 使用了append。
if kind != "aten::append":
current_node_outputs.extend(outputs)
for name in inputs:
if name not in current_node_outputs:
graph_inputs.append(name)
if kind == "aten::append":
current_node_outputs.extend(outputs)
# 初始化
graph = PaddleGraph(parent_layer, graph_type="dygraph")
current_node_outputs = []
graph_inputs = []
# 转换输入节点
if isinstance(script_graph, torch._C.Graph):
for i, ivalue in enumerate(script_graph.inputs()):
node = ivalue.node()
if str(ivalue.type()) != "Tensor":
graph.set_name(str(ivalue.type()).split(".")[-1])
continue
inputs, outputs = self.data(graph, node, ivalue.unique())
# 转换中间节点
for node in script_graph.nodes():
kind = node.kind()
func_name = kind.replace('::', '_')
if hasattr(prim, func_name):
func = getattr(prim, func_name)
inputs, outputs = func(self, graph, node)
_update_graph_inputs(kind, inputs, outputs)
elif hasattr(aten, func_name):
func = getattr(aten, func_name)
inputs, outputs = func(self, graph, node)
_update_graph_inputs(kind, inputs, outputs)
# 转换输出节点
if hasattr(script_graph, 'returnNode'):
for i, ivalue in enumerate(script_graph.returnNode().inputs()):
if parent_layer.kernel == "prim.loop" and i == 0:
continue
node = ivalue.node()
script_unique_id = ivalue.unique()
inputs, outputs = self.equal(
graph,
node,
uid=script_unique_id,
parent_layer=parent_layer,
index=i)
_update_graph_inputs("equal", inputs, outputs)
# 设置graph的参数和输出节点
if isinstance(script_graph, torch._C.Graph):
graph.set_parameters(self.paddle_params)
if hasattr(script_graph, 'return_node'):
inputs_name, inputs_node = self._get_inputs_name(
script_graph.return_node())
graph.outputs = inputs_name
# 更新split参数
for layer in graph.layers.values():
if layer.kernel == "fluid.layers.split" and "num_or_sections" in layer.attrs:
layer.attrs["num_or_sections"] = self.split_len[layer.outputs[
0]]
return graph, graph_inputs
def _get_outputs_name(self, node, attr_name=None):
outputs_name = []
for output_ivalue in node.outputs():
script_unique_id = output_ivalue.unique()
if attr_name is None:
output_name = 'x' + str(self.output_index)
if script_unique_id in self.outputs_info:
output_name = self.outputs_info[script_unique_id]
else:
output_name = attr_name.replace(".", "_")
self.outputs_info[script_unique_id] = output_name
self.output_index += 1
outputs_name.append(output_name)
# if或loop节点没有输出的情况
if len(list(node.outputs())) == 0:
output_name = '_x' + str(self.output_index)
self.output_index += 1
outputs_name.append(output_name)
return outputs_name
def _check_input(self,
graph,
node,
output_name,
node_outputs,
add_dim=False):
if node.kind() == "prim::GetAttr":
param = self.pytorch_params[output_name]
if isinstance(param, np.ndarray):
if add_dim:
param = param[np.newaxis, :]
self.paddle_params[output_name] = param
graph.add_layer(
"fluid.dygraph.base.to_variable",
inputs={},
outputs=[output_name],
value="params[{}]".format(string(output_name)))
else:
if isinstance(param, dict) and "Tensor" in param and \
"parent_layer_id" in param:
if graph.parent_layer is not None:
# 当某个param被2个控制流(if-else)赋值时,else不可以引用if中的赋值结果
id1 = param["parent_layer_id"]
id2 = graph.parent_layer.id
id1_part = id1.split(".")
id2_part = id2.split(".")
if len(id1_part) >= len(id2_part):
for i in range(len(id1_part)):
if id1_part[i] == id2_part[i]:
continue
else:
if id1_part[i] == "0" and id2_part[
i] == "1":
if add_dim:
param = param[np.newaxis, :]
self.paddle_params[output_name] = param
graph.add_layer(
"fluid.dygraph.base.to_variable",
inputs={},
outputs=[output_name],
value="params[{}]".format(
string(output_name)))
node_outputs.append(output_name)
return
# 若if-else外,则可直接引用if-else中的赋值结果
graph.add_layer(
"prim.constant",
inputs={},
outputs=[output_name],
value=param["Tensor"])
else:
graph.add_layer(
"prim.constant",
inputs={},
outputs=[output_name],
value=string(param)
if isinstance(param, str) else param)
node_outputs.append(output_name)
def _get_inputs_name(self, node):
inputs_name = []
inputs_node = []
for script_input_ivalue in node.inputs():
script_input_node = script_input_ivalue.node()
script_input_unique_id = script_input_ivalue.unique()
input_name = self.outputs_info[script_input_unique_id]
inputs_node.append(script_input_node)
inputs_name.append(input_name)
return inputs_name, inputs_node
def data(self, graph, node, uid):
for output_ivalue in node.outputs():
script_unique_id = output_ivalue.unique()
if script_unique_id in self.outputs_info or script_unique_id != uid:
continue
node_name = 'x' + str(self.output_index)
self.outputs_info[script_unique_id] = node_name
self.output_index += 1
output_name = self.outputs_info[uid]
graph.add_layer(
"fluid.dygraph.base.to_variable",
inputs={},
outputs=[node_name],
value=output_name)
return [], [output_name]
def equal(self, graph, node, uid=None, parent_layer=None, index=None):
if parent_layer is not None and index is not None:
# block的输出
input_node_name = self.outputs_info[uid]
control_output_id = index
if parent_layer.kernel == "prim.loop":
control_output_id = index - 1
output_node_name = parent_layer.outputs[control_output_id]
current_outputs = [output_node_name]
self._check_input(graph, node, input_node_name, current_outputs)
graph.add_layer(
"prim.equal",
inputs={'input': input_node_name},
outputs=[output_node_name])
return [input_node_name], current_outputs
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .adaptive_pool2d_fuser import AdaptivePool2dFuser
from .adaptive_pool2d_fuse_pass import AdaptivePool2dFusePass
from .batchnorm2d_fuser import BatchNorm2dFuser
from .batchnorm2d_fuse_pass import BatchNorm2dFusePass
from .constant_fuser import ConstantFuser
from .constant_fuse_pass import ConstantFusePass
from .dropout_fuser import DropoutFuser
from .dropout_fuse_pass import DropoutFusePass
from .fc_fuser import FcFuser
from .fc_fuse_pass import FcFusePass
from .interpolate_bilinear_fuser import InterpolateBilinearFuser
from .interpolate_bilinear_fuse_pass import InterpolateBilinearFusePass
from .reshape_fuser import ReshapeFuser
from .reshape_fuse_pass import ReshapeFusePass
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.optimizer.pytorch_optimizer.pass_ import Pass
from x2paddle.optimizer.pytorch_optimizer.fusion import AdaptivePool2dFuser
from x2paddle.optimizer.pytorch_optimizer.pass_manager import pass_register
@pass_register
class AdaptivePool2dFusePass(Pass):
name = "adaptive_pool2d_fuse_pass"
def __init__(self):
Pass.__init__(self)
def apply(self, graph):
fuser = AdaptivePool2dFuser()
fuser.operate(graph, match_kind="topo")
# 用于注册
adaptive_pool2d_fuse_pass = AdaptivePool2dFusePass()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from x2paddle.optimizer.pytorch_optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *
class AdaptivePool2dFuser(FuseBase):
def __init__(self):
super(AdaptivePool2dFuser, self).__init__(graph_type="dygraph")
def build_pattern(self):
""" 描述需要替换的adaptive pool2d图结构。
adaptive pool2d层模式python实现代码示例:
x68 = fluid.layers.shape(input=x60)
x69 = len(x68)
x70 = x69 <= 2
if x70 :
raise RaiseException('Exception')
x73 = []
x74 = x68[-2: 2147483647: 1]
x75 = len(x74)
x76 = [2, x75]
x77 = min(x76)
for _x79 in range(x77):
x80 = [6, 6][_x79]
x73.append(x80)
x81 = fluid.layers.adaptive_pool2d(input=x60, pool_size=x73, pool_type='avg')
"""
def gen_name(id):
return "x" + str(id)
self.pattern.add_layer(
"fluid.layers.shape",
inputs={'input': "pool-input-0"},
outputs=[gen_name(1)])
self.pattern.add_layer(
"prim.len", inputs={"input": gen_name(1)}, outputs=[gen_name(6)])
self.pattern.add_layer(
"prim.le", inputs={"x": gen_name(6)}, outputs=[gen_name(8)], y=2)
self.pattern.add_layer("prim.if", {'input': gen_name(8)}, [gen_name(9)])
if_layer = self.pattern.layers[list(self.pattern.layers.keys())[-1]]
pattern_block0 = PaddleGraph(if_layer, graph_type="dygraph")
pattern_block0.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(9)],
input="Exception")
if_layer.add_block(pattern_block0)
pattern_block1 = PaddleGraph(if_layer, graph_type="dygraph")
if_layer.add_block(pattern_block1)
self.pattern.add_layer("prim.list", inputs={}, outputs=[gen_name(10)])
self.pattern.add_layer(
"prim.slice",
inputs={"input": gen_name(1), },
outputs=[gen_name(12)],
start=-1,
end=100,
step=1)
self.pattern.add_layer(
"prim.len", inputs={"input": gen_name(12)}, outputs=[gen_name(14)])
self.pattern.add_layer(
"prim.list",
inputs={"input1": gen_name(14)},
outputs=[gen_name(15)],
input0=2)
self.pattern.add_layer(
"prim.min", inputs={"input": gen_name(15)}, outputs=[gen_name(16)])
self.pattern.add_layer("prim.loop", {'input': gen_name(16)},
[gen_name(17), gen_name(18)])
loop_layer = self.pattern.layers[list(self.pattern.layers.keys())[-1]]
pattern_block = PaddleGraph(loop_layer, graph_type="dygraph")
pattern_block.add_layer(
"prim.getitem",
inputs={"index": gen_name(18)},
outputs=[gen_name(19)],
list=[6, 6])
pattern_block.add_layer(
"prim.append",
inputs={"list": gen_name(10),
"index": gen_name(19)},
outputs=[gen_name(20)])
loop_layer.inputs["input-0"] = gen_name(10)
loop_layer.add_block(pattern_block)
pool_attrs = {'pool_type': string("avg")}
self.pattern.add_layer(
"fluid.layers.adaptive_pool2d",
inputs={'input': "pool-input-0",
"pool_size": gen_name(10)},
outputs=[gen_name(21)],
**pool_attrs)
self.pattern.build(inputs={"input-0": "pool-input-0", })
def insert_new_layer(self, graph, parameters, matches):
parameters = graph.parameters
new_layer = self.gen_new_layer(parameters, matches)
new_layer_id = list(matches.keys())[0]
graph.layers[new_layer_id] = new_layer
matches.pop(new_layer_id)
def gen_new_layer(self, parameters, matches):
layers_id = list(matches.keys())
layer = matches[layers_id[11]]
pool_size = layer.attrs["list"]
layer = matches[layers_id[0]]
input_name = layer.inputs["input"]
layer = matches[layers_id[-1]]
output_name = layer.outputs[0]
pool_type = layer.attrs["pool_type"]
attrs = dict()
attrs["pool_size"] = pool_size
attrs["pool_type"] = pool_type
new_layer = PaddleLayer(
layers_id[0],
"fluid.layers.adaptive_pool2d",
inputs={"input": input_name},
outputs=[output_name],
**attrs)
return new_layer
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.optimizer.pytorch_optimizer.pass_ import Pass
from x2paddle.optimizer.pytorch_optimizer.fusion import BatchNorm2dFuser
from x2paddle.optimizer.pytorch_optimizer.pass_manager import pass_register
@pass_register
class BatchNorm2dFusePass(Pass):
name = "batchnorm2d_fuse_pass"
def __init__(self):
Pass.__init__(self)
def apply(self, graph):
fuser = BatchNorm2dFuser()
fuser.operate(graph, match_kind="topo")
# 用于注册
batchnorm2d_fuse_pass = BatchNorm2dFusePass()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from x2paddle.optimizer.pytorch_optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *
class BatchNorm2dFuser(FuseBase):
def __init__(self):
super(BatchNorm2dFuser, self).__init__(graph_type="dygraph")
def build_pattern(self):
""" 描述需要替换的batchnorm2d图结构。
batchnorm2d层模式python实现代码示例:
x336 = fluid.layers.shape(input=x334)
x336 = len(x336)
x337 = x336 != 4
if x337 :
raise RaiseException('Exception')
if False :
x351 = fluid.layers.shape(input=x334)
x352 = x351[0]
x353 = len(x351)
x354 = x353 - 2
x357 = x352
for _x356 in range(x354):
x358 = _x356 + 2
x359 = x351[x358]
x360 = x357 * x359
x355 = x360
x361 = x355 == 1
if x361 :
raise RaiseException('Exception')
x364 = self.batchnorm7(x334)
"""
def gen_name(id):
return "x" + str(id)
self.pattern.add_layer(
"fluid.layers.shape",
inputs={'input': "bn-input-0"},
outputs=[gen_name(0)])
self.pattern.add_layer(
"prim.len", inputs={'input': gen_name(0)}, outputs=[gen_name(0)])
self.pattern.add_layer(
"prim.ne", inputs={"x": gen_name(0)}, outputs=[gen_name(1)], y=4)
self.pattern.add_layer("prim.if", {'input': gen_name(1)}, [gen_name(2)])
if_layer1 = self.pattern.layers[list(self.pattern.layers.keys())[-1]]
pattern_block0 = PaddleGraph(if_layer1, graph_type="dygraph")
pattern_block0.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(3)],
input="Exception")
if_layer1.add_block(pattern_block0)
pattern_block1 = PaddleGraph(if_layer1, graph_type="dygraph")
if_layer1.add_block(pattern_block1)
self.pattern.add_layer("prim.if", {}, [gen_name(4)], input=False)
if_layer2 = self.pattern.layers[list(self.pattern.layers.keys())[-1]]
pattern_block0 = PaddleGraph(if_layer2, graph_type="dygraph")
pattern_block0.add_layer(
"fluid.layers.shape",
inputs={'input': "bn-input-0"},
outputs=[gen_name(5)])
pattern_block0.add_layer(
"prim.getitem",
inputs={"list": gen_name(5)},
outputs=[gen_name(6)],
index=0)
pattern_block0.add_layer(
"prim.len", inputs={"input": gen_name(5)}, outputs=[gen_name(7)])
pattern_block0.add_layer(
"prim.sub", inputs={"x": gen_name(7)}, outputs=[gen_name(8)], y=2)
pattern_block0.add_layer(
"prim.equal", inputs={"input": gen_name(6)}, outputs=[gen_name(9)])
pattern_block0.add_layer(
"prim.loop",
inputs={"input": gen_name(8)},
outputs=[gen_name(8.1), gen_name(10)])
loop_layer = pattern_block0.layers[list(pattern_block0.layers.keys())[
-1]]
pattern_block0_block0 = PaddleGraph(loop_layer, graph_type="dygraph")
pattern_block0_block0.add_layer(
"prim.add", inputs={"x": gen_name(10)}, outputs=[gen_name(11)], y=2)
pattern_block0_block0.add_layer(
"prim.getitem",
inputs={"list": gen_name(5),
"index": gen_name(11)},
outputs=[gen_name(12)])
pattern_block0_block0.add_layer(
"prim.mul",
inputs={"x": gen_name(9),
"y": gen_name(12)},
outputs=[gen_name(13)])
pattern_block0_block0.add_layer(
"prim.equal",
inputs={"input": gen_name(13)},
outputs=[gen_name(8.1)])
loop_layer.inputs["input-1"] = gen_name(5)
loop_layer.inputs["input-2"] = gen_name(9)
loop_layer.add_block(pattern_block0_block0)
pattern_block0.add_layer(
"prim.eq", inputs={"x": gen_name(8.1)}, outputs=[gen_name(14)], y=1)
pattern_block0.add_layer(
"prim.if", inputs={"input": gen_name(14)}, outputs=[gen_name(15)])
if_layer21 = pattern_block0.layers[list(pattern_block0.layers.keys())[
-1]]
pattern_block0_block0 = PaddleGraph(if_layer21, graph_type="dygraph")
pattern_block0_block0.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(15)],
input="Exception")
if_layer21.add_block(pattern_block0_block0)
pattern_block0_block1 = PaddleGraph(if_layer21, graph_type="dygraph")
if_layer21.add_block(pattern_block0_block1)
if_layer2.add_block(pattern_block0)
pattern_block1 = PaddleGraph(if_layer2, graph_type="dygraph")
if_layer2.add_block(pattern_block1)
if_layer2.inputs["input-0"] = "bn-input-0"
self.pattern.add_layer(
"paddle.nn.BatchNorm",
inputs={"input": "bn-input-0"},
outputs=[gen_name(16), gen_name(17)],
is_test=True,
num_channels=160,
momentum=0.1,
epsilon=0.001)
self.pattern.build(inputs={"input-0": "bn-input-0"})
def insert_new_layer(self, graph, parameters, matches):
new_layer = self.gen_new_layer(parameters, matches)
new_layer_id = list(matches.keys())[0]
graph.layers[new_layer_id] = new_layer
matches.pop(new_layer_id)
# for layer in matches.values():
# print(layer.outputs)
# print("-------")
def gen_new_layer(self, parameters, matches):
layers_id = list(matches.keys())
layer = matches[layers_id[-1]]
return layer
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.optimizer.pytorch_optimizer.pass_ import Pass
from x2paddle.optimizer.pytorch_optimizer.fusion import ConstantFuser
from x2paddle.optimizer.pytorch_optimizer.pass_manager import pass_register
@pass_register
class ConstantFusePass(Pass):
name = "constant_fuse_pass"
def __init__(self):
Pass.__init__(self)
def apply(self, graph):
fuser = ConstantFuser()
fuser.operate(graph, match_kind="topo")
# 用于注册
constant_fuse_pass = ConstantFuser()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from x2paddle.optimizer.pytorch_optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *
class ConstantFuser(FuseBase):
def __init__(self):
super(ConstantFuser, self).__init__(graph_type="dygraph")
def build_pattern(self):
""" 描述需要替换的constant图结构。
constant层模式python实现代码示例:
x3 = 10
for _x70 in range(x3):
...
"""
self.pattern.add_layer(
"prim.constant", inputs={}, outputs=["x1"], value=2)
self.pattern.build()
self.pattern.outputs = ["x1"]
def insert_new_layer(self, graph, parameters, matches):
def replace_value(layer_connect, match_name, match_value):
for k, v in layer_connect.inputs.items():
if v == match_name:
layer_connect.inputs.pop(k)
layer_connect.attrs[k] = match_value
break
for k, v in layer_connect.attrs.items():
if v == match_name:
layer_connect.attrs[k] = match_value
break
if layer_connect.kernel == "prim.loop" or \
layer_connect.kernel == "prim.if":
for block in layer_connect.blocks:
for b_layer_id, b_layer in block.layers.items():
if block.edges_in.get(b_layer_id, 0) != 0 and \
-1 in block.edges_in[b_layer_id]:
replace_value(b_layer, match_name, match_value)
layer_id = list(matches.keys())[0]
layer = list(matches.values())[0]
layer_output_name = layer.outputs[0]
layer_value = layer.attrs["value"]
if graph.edges_out.get(layer_id, 0) != 0:
for layer_id_out in graph.edges_out[layer_id]:
layer_connect = graph.layers[layer_id_out]
replace_value(layer_connect, layer_output_name, layer_value)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.optimizer.pytorch_optimizer.pass_ import Pass
from x2paddle.optimizer.pytorch_optimizer.fusion import DropoutFuser
from x2paddle.optimizer.pytorch_optimizer.pass_manager import pass_register
@pass_register
class DropoutFusePass(Pass):
name = "dropout_fuse_pass"
def __init__(self):
Pass.__init__(self)
def apply(self, graph):
fuser = DropoutFuser()
fuser.operate(graph, match_kind="topo")
# 用于注册
dropout_fuse_pass = DropoutFuser()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from x2paddle.optimizer.pytorch_optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *
class DropoutFuser(FuseBase):
def __init__(self):
super(DropoutFuser, self).__init__(graph_type="dygraph")
def build_pattern(self):
""" 描述需要替换的constant图结构。
constant层模式python实现代码示例:
x3 = 10
for _x70 in range(x3):
...
"""
self.pattern.add_layer(
"paddle.nn.Dropout",
inputs={"input": "dropout-input-0"},
outputs=["dropout0", "x1"])
self.pattern.build(inputs={"input-0": "dropout-input-0"})
self.pattern.outputs = ["dropout0", "x1"]
def insert_new_layer(self, graph, parameters, matches):
def replace_value(layer_connect, match_name, match_input):
for k, v in layer_connect.inputs.items():
if v == match_name:
layer_connect.inputs[k] = match_input
break
if layer_connect.kernel == "prim.loop" or \
layer_connect.kernel == "prim.if":
for block in layer_connect.blocks:
for b_layer_id, b_layer in block.layers.items():
if block.edges_in.get(b_layer_id, 0) != 0 and \
-1 in block.edges_in[b_layer_id]:
replace_value(b_layer, match_name, match_input)
layer_id = list(matches.keys())[0]
layer = list(matches.values())[0]
layer_output_name = layer.outputs[1]
layer_input = layer.inputs["input"]
if graph.edges_out.get(layer_id, 0) != 0:
for layer_id_out in graph.edges_out[layer_id]:
layer_connect = graph.layers[layer_id_out]
replace_value(layer_connect, layer_output_name, layer_input)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.optimizer.pytorch_optimizer.pass_ import Pass
from x2paddle.optimizer.pytorch_optimizer.fusion import FcFuser
from x2paddle.optimizer.pytorch_optimizer.pass_manager import pass_register
@pass_register
class FcFusePass(Pass):
name = "fc_fuse_pass"
def __init__(self):
Pass.__init__(self)
def apply(self, graph):
fuser = FcFuser()
fuser.operate(graph, match_kind="topo")
# 用于注册
fc_fuse_pass = FcFusePass()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from x2paddle.optimizer.pytorch_optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *
class FcFuser(FuseBase):
def __init__(self):
self.linear_index = 0
super(FcFuser, self).__init__(graph_type="dygraph")
def build_pattern(self):
""" 描述需要替换的fc图结构。
fc层模式python实现代码示例:
x133 = x128.shape
x133 = len(x133)
x134 = x133 == 2
if x134 :
classifier_6_weight = self.classifier_6_weight
x136 = fluid.layers.transpose(x=classifier_6_weight, perm=[1, 0])
classifier_6_bias = self.classifier_6_bias
x137 = paddle.addmm(input=classifier_6_bias, x=x128, y=x136, beta=1, alpha=1)
x135 = x137
else:
classifier_6_weight = self.classifier_6_weight
x138 = fluid.layers.transpose(x=classifier_6_weight, perm=[1, 0])
x139 = fluid.layers.matmul(x=x128, y=x138)
classifier_6_bias = self.classifier_6_bias
x140 = x139 + 1 * classifier_6_bias
x135 = x140
"""
def gen_name(id):
return "x" + str(id)
self.pattern.add_layer(
"fluid.layers.shape",
inputs={'input': "fc-input-0"},
outputs=[gen_name(2)])
self.pattern.add_layer(
"prim.len", inputs={'input': gen_name(2)}, outputs=[gen_name(2)])
self.pattern.add_layer(
"prim.eq",
inputs={"eq0": gen_name(2)},
outputs=[gen_name(3)],
eq1=2)
self.pattern.add_layer("prim.if", {'input': gen_name(3)}, [gen_name(4)])
self.pattern.outputs.append(gen_name(4))
if_layer1 = self.pattern.layers[list(self.pattern.layers.keys())[-1]]
pattern_block0 = PaddleGraph(if_layer1, graph_type="dygraph")
pattern_block0.add_layer(
"fluid.dygraph.base.to_variable",
inputs={},
outputs=[gen_name(5)],
value="params[{}]".format(string(gen_name(5))))
pattern_block0.add_layer(
"fluid.layers.transpose",
inputs={"x": gen_name(5)},
outputs=[gen_name(6)],
perm=[1, 0])
pattern_block0.add_layer(
"fluid.dygraph.base.to_variable",
inputs={},
outputs=[gen_name(7)],
value="params[{}]".format(string(gen_name(7))))
pattern_block0.add_layer(
"paddle.addmm",
inputs={"input": gen_name(7),
"x": "fc-input-0",
"y": gen_name(6)},
outputs=[gen_name(8)],
beta=1,
alpha=1)
if_layer1.inputs["input-0"] = "fc-input-0"
self.pattern.inputs.append("fc-input-0")
pattern_block0.add_layer(
"prim.equal", inputs={'input': gen_name(8)}, outputs=[gen_name(4)])
if_layer1.add_block(pattern_block0)
pattern_block1 = PaddleGraph(if_layer1, graph_type="dygraph")
pattern_block1.add_layer(
"fluid.dygraph.base.to_variable",
inputs={},
outputs=[gen_name(5)],
value="params[{}]".format(string(gen_name(5))))
pattern_block1.add_layer(
"fluid.layers.transpose",
inputs={"x": gen_name(5)},
outputs=[gen_name(6)],
perm=[1, 0])
pattern_block1.add_layer(
"paddle.matmul",
inputs={"x": "fc-input-0",
"y": gen_name(6)},
outputs=[gen_name(9)])
if_layer1.inputs["input-1"] = "fc-input-0"
pattern_block1.add_layer(
"fluid.dygraph.base.to_variable",
inputs={},
outputs=[gen_name(12)],
value="params[{}]".format(string(gen_name(12))))
pattern_block1.add_layer(
"prim.add_",
inputs={"x": gen_name(9),
"y": gen_name(12)},
outputs=[gen_name(13)],
alpha=1)
pattern_block1.add_layer(
"prim.equal", inputs={'input': gen_name(13)},
outputs=[gen_name(4)])
if_layer1.add_block(pattern_block1)
self.pattern.build(inputs={"input-0": "fc-input-0"})
def insert_new_layer(self, graph, parameters, matches):
new_layer = self.gen_new_layer(parameters, matches)
new_layer_id = list(matches.keys())[0]
graph.layers[new_layer_id] = new_layer
matches.pop(new_layer_id)
def gen_new_layer(self, parameters, matches):
layers_id = list(matches.keys())
layer = matches[layers_id[0]]
input_name = layer.inputs["input"]
layer = matches[layers_id[3]]
output_name = layer.outputs[0]
layer = matches[layers_id[4]]
weight_name = layer.attrs["value"][8:-2]
layer = matches[layers_id[6]]
bias_name = layer.attrs["value"][8:-2]
attrs = dict()
attrs["in_features"] = parameters[weight_name].shape[1]
attrs["out_features"] = parameters[weight_name].shape[0]
linear_name = "linear{}".format(self.linear_index)
self.linear_index += 1
parameters["{}.weight".format(linear_name)] = parameters[
weight_name].transpose((1, 0))
parameters["{}.bias".format(linear_name)] = np.squeeze(parameters[
bias_name])
new_layer = PaddleLayer(
layers_id[0],
"paddle.nn.Linear",
inputs={"input": input_name},
outputs=[linear_name, output_name],
**attrs)
return new_layer
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.optimizer.pytorch_optimizer.pass_ import Pass
from x2paddle.optimizer.pytorch_optimizer.fusion import InterpolateBilinearFuser
from x2paddle.optimizer.pytorch_optimizer.pass_manager import pass_register
@pass_register
class InterpolateBilinearFusePass(Pass):
name = "interpolate_bilinear_fuse_pass"
def __init__(self):
Pass.__init__(self)
def apply(self, graph):
fuser = InterpolateBilinearFuser()
fuser.operate(graph, match_kind="topo")
# 用于注册
interpolate_bilinear_fuse_pass = InterpolateBilinearFusePass()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from x2paddle.optimizer.pytorch_optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *
class InterpolateBilinearFuser(FuseBase):
def __init__(self):
super(InterpolateBilinearFuser, self).__init__(graph_type="dygraph")
import torch
torch_version = torch.__version__
torch_version_part = torch_version.split(".")
if int(torch_version_part[0]) == 1 and int(torch_version_part[1]) > 5:
self.version_gt_150 = True
else:
self.version_gt_150 = False
def build_pattern(self):
""" 描述需要替换的双线性插值图结构。
interpolate_bilinear层模式python实现代码示例:
x3016 = fluid.layers.shape(input=x3005)
x3016 = len(x3016)
x3017 = x3016 - 2
x3018 = []
for _x3020 in range(x3017):
x3018.append(None)
x3021 = (x3005, x8, None, None)
x3022 = fluid.layers.shape(input=x3005)
x3022 = len(x3022)
x3023 = x3022 == 3
if x3023 :
raise RaiseException('Exception')
x3024 = None
else:
x3026 = fluid.layers.shape(input=x3005)
x3026 = len(x3026)
x3027 = x3026 == 4
if x3027 :
x3044, x3045, x3046, x3047 = x3021
x3048 = x3045 is None
if x3048 :
x3051 = x3046 is None
x3049 = x3051
x3050 = x3045
else:
x3052 = x3045
x3049 = False
x3050 = x3052
if x3049 :
raise RaiseException('Exception')
x3055 = x3050 is not None
if x3055 :
x3058 = x3050
x3059 = x3046 is not None
x3056 = x3059
x3057 = x3058
else:
x3056 = False
x3057 = x3050
if x3056 :
raise RaiseException('Exception')
x3060 = None
x3061 = None
else:
x3060 = x3046
x3061 = x3057
x3063 = x3060 is not None
if x3063 :
x3065 = x3060
x3066 = len(x3065)
x3067 = x3066 != 2
if x3067 :
raise RaiseException('Exception')
x3064 = x3065
else:
x3064 = x3060
x3070 = x3061 is not None
if x3070 :
x3072 = x3061
x3071 = x3072
else:
x3071 = None
if x3070 :
x3073 = x3071
else:
x3074 = x3064 is not None
if x3074 :
x3076 = x3064
x3075 = x3076
else:
raise RaiseException('Exception')
x3075 = None
x3078 = x3047 is None
if x3078 :
x3080 = len(x3075)
x3081 = x3080 > 0
x3086 = 0
for x3083 in range(2147483647):
x3087 = x3075[x3086]
x3088 = math.floor(x3087)
x3089 = x3088 != x3087
if x3089 :
x3090 = False
x3091 = x3089
else:
x3090 = None
x3091 = None
if x3089 :
x3092 = x3090
x3093 = x3091
else:
x3092 = True
x3093 = x3089
x3094 = x3086 + 1
x3095 = x3094 < x3080
x3096 = x3095 and x3092
x3082 = x3093
x3083 = x3094
if x3082 :
import warnings
warnings.warn('The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. ', stacklevel=2)
x3099 = []
for _x3101 in range(2):
x3102 = _x3101 + 2
x3103 = fluid.layers.shape(x3044)[x3102]
x3104 = float(x3103)
x3105 = x3075[_x3101]
x3106 = x3104 * x3105
x3107 = math.floor(x3106)
x3099.append(x3107)
x3073 = x3099
x3108 = x3018[0]
x3109 = x3018[1]
x3073_isinstance = isinstance(x3073, paddle.fluid.Variable)
if x3073_isinstance :
x3073 = x3073.numpy().tolist()
assert x3108 == x3109, 'The x3108 must be x3109!'
x3110 = paddle.nn.functional.interpolate(x=x3005, size=x3073, scale_factor=x3108, align_corners=False, align_mode=0)
x3028 = x3110
else:
x3111 = fluid.layers.shape(input=x3005)
x3111 = len(x3111)
x3112 = x3111 == 5
if x3112 :
raise RaiseException('Exception')
else:
raise RaiseException('Exception')
x3028 = None
x3024 = x3028
"""
def gen_name(id):
return "x" + str(id)
if self.version_gt_150:
self.pattern.add_layer(
"fluid.layers.shape",
inputs={"input": "interpolate-input-0"},
outputs=[gen_name(9)])
self.pattern.add_layer(
"prim.len",
inputs={"input": gen_name(9)},
outputs=[gen_name(9)])
self.pattern.add_layer(
"prim.sub",
inputs={"x": gen_name(9)},
outputs=[gen_name(10)],
y=2)
self.pattern.add_layer(
"prim.list", inputs={}, outputs=[gen_name(11)])
self.pattern.add_layer(
"prim.loop",
inputs={"input": gen_name(10)},
outputs=[gen_name(12.1), gen_name(12.2)])
loop_layer = self.pattern.layers[list(self.pattern.layers.keys())[
-1]]
pattern_block = PaddleGraph(loop_layer, graph_type="dygraph")
pattern_block.add_layer(
"prim.append",
inputs={"list": gen_name(11)},
outputs=[],
element=None)
loop_layer.inputs["input-0"] = gen_name(11)
loop_layer.add_block(pattern_block)
self.pattern.add_layer(
"prim.tuple",
inputs={
"input0": "interpolate-input-0",
"input1": "interpolate-input-1",
},
outputs=[gen_name(13)],
input2=None,
input3=None)
self.pattern.add_layer(
"fluid.layers.shape",
inputs={"input": "interpolate-input-0"},
outputs=[gen_name(14)])
self.pattern.add_layer(
"prim.len",
inputs={"input": gen_name(14)},
outputs=[gen_name(14)])
self.pattern.add_layer(
"prim.eq",
inputs={"x": gen_name(14)},
outputs=[gen_name(15)],
y=3)
self.pattern.add_layer(
"prim.if",
inputs={"input": gen_name(15)},
outputs=[gen_name(16)])
if_layer1 = self.pattern.layers[list(self.pattern.layers.keys())[
-1]]
pattern_block = PaddleGraph(if_layer1, graph_type="dygraph")
pattern_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(17)],
input="Exception")
pattern_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(16)], input=None)
if_layer1.add_block(pattern_block)
pattern_block = PaddleGraph(if_layer1, graph_type="dygraph")
pattern_block.add_layer(
"fluid.layers.shape",
inputs={"input": "interpolate-input-0"},
outputs=[gen_name(18)])
pattern_block.add_layer(
"prim.len",
inputs={"input": gen_name(18)},
outputs=[gen_name(18)])
pattern_block.add_layer(
"prim.eq",
inputs={"x": gen_name(18)},
outputs=[gen_name(19)],
y=4)
pattern_block.add_layer(
"prim.if",
inputs={"input": gen_name(19)},
outputs=[gen_name(20)])
if_layer2 = pattern_block.layers[list(pattern_block.layers.keys())[
-1]]
pattern_block_block = PaddleGraph(if_layer2, graph_type="dygraph")
pattern_block_block.add_layer(
"prim.tuple_unpack",
inputs={"input": gen_name(13)},
outputs=[
gen_name(34), gen_name(35), gen_name(36), gen_name(37)
])
pattern_block_block.add_layer(
"prim.is",
inputs={"x": gen_name(35)},
outputs=[gen_name(38)],
y=None)
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(38)},
outputs=[gen_name(39), gen_name(40)])
if_layer3 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer3, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.is",
inputs={"x": gen_name(36)},
outputs=[gen_name(41)],
y=None)
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(41)},
outputs=[gen_name(39)])
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(35)},
outputs=[gen_name(40)])
if_layer3.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer3, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(35)},
outputs=[gen_name(42)])
pattern_block_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(39)], input=False)
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(35)},
outputs=[gen_name(40)])
if_layer3.add_block(pattern_block_block_block)
if_layer3.inputs.update({
"input-0": gen_name(36),
'input-1': gen_name(35),
'input-2': gen_name(35),
})
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(39)},
outputs=[gen_name(43)])
if_layer4 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer4, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(44)],
input="Exception")
if_layer4.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer4, graph_type="dygraph")
if_layer4.add_block(pattern_block_block_block)
pattern_block_block.add_layer(
"prim.isnot",
inputs={"x": gen_name(40)},
outputs=[gen_name(45)],
y=None)
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(45)},
outputs=[gen_name(46), gen_name(47)])
if_layer5 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer5, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(40)},
outputs=[gen_name(48)])
pattern_block_block_block.add_layer(
"prim.isnot",
inputs={"x": gen_name(36)},
outputs=[gen_name(49)],
y=None)
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(49)},
outputs=[gen_name(46)])
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(48)},
outputs=[gen_name(47)])
if_layer5.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer5, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(46)], input=False)
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(40)},
outputs=[gen_name(47)])
if_layer5.add_block(pattern_block_block_block)
if_layer5.inputs.update({
"input-0": gen_name(40),
"input-1": gen_name(36),
"input-3": gen_name(40)
})
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(46)},
outputs=[gen_name(50), gen_name(51)])
if_layer6 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer6, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(52)],
input="Exception")
pattern_block_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(50)], input=None)
pattern_block_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(51)], input=None)
if_layer6.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer6, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(36)},
outputs=[gen_name(50)])
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(47)},
outputs=[gen_name(51)])
if_layer6.add_block(pattern_block_block_block)
if_layer6.inputs.update({
"input-0": gen_name(36),
"input-1": gen_name(47)
})
pattern_block_block.add_layer(
"prim.isnot",
inputs={"x": gen_name(50)},
outputs=[gen_name(53)],
y=None)
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(53)},
outputs=[gen_name(54)])
if_layer7 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer7, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(50)},
outputs=[gen_name(55)])
pattern_block_block_block.add_layer(
"prim.len",
inputs={"input": gen_name(55)},
outputs=[gen_name(56)])
pattern_block_block_block.add_layer(
"prim.ne",
inputs={"x": gen_name(56)},
outputs=[gen_name(57)],
y=2)
pattern_block_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(57)},
outputs=[gen_name(58)])
if_layer8 = pattern_block_block_block.layers[list(
pattern_block_block_block.layers.keys())[-1]]
pattern_block_block_block_block = PaddleGraph(
if_layer8, graph_type="dygraph")
pattern_block_block_block_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(59)],
input="Exception")
if_layer8.add_block(pattern_block_block_block_block)
pattern_block_block_block_block = PaddleGraph(
if_layer8, graph_type="dygraph")
if_layer8.add_block(pattern_block_block_block_block)
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(55)},
outputs=[gen_name(54)])
if_layer7.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer7, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(50)},
outputs=[gen_name(54)])
if_layer7.add_block(pattern_block_block_block)
if_layer7.inputs.update({
"input-0": gen_name(50),
"input-1": gen_name(50)
})
pattern_block_block.add_layer(
"prim.isnot",
inputs={"x": gen_name(51)},
outputs=[gen_name(60)],
y=None)
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(60)},
outputs=[gen_name(61)])
if_layer9 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer9, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(51)},
outputs=[gen_name(62)])
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(62)},
outputs=[gen_name(61)])
if_layer9.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer9, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.isnot",
inputs={"x": gen_name(54)},
outputs=[gen_name(64)],
y=None)
pattern_block_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(64)},
outputs=[gen_name(65)])
if_layer11 = pattern_block_block_block.layers[list(
pattern_block_block_block.layers.keys())[-1]]
pattern_block_block_block_block = PaddleGraph(
if_layer11, graph_type="dygraph")
pattern_block_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(54)},
outputs=[gen_name(66)])
pattern_block_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(66)},
outputs=[gen_name(65)])
if_layer11.add_block(pattern_block_block_block_block)
pattern_block_block_block_block = PaddleGraph(
if_layer11, graph_type="dygraph")
pattern_block_block_block_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(67)],
input="Exception")
pattern_block_block_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(65)], input=None)
if_layer11.add_block(pattern_block_block_block_block)
if_layer11.inputs.update({"input-0": gen_name(54), })
pattern_block_block_block.add_layer(
"prim.is",
inputs={"x": gen_name(37)},
outputs=[gen_name(68)],
y=None)
pattern_block_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(68)},
outputs=[gen_name(69)])
if_layer12 = pattern_block_block_block.layers[list(
pattern_block_block_block.layers.keys())[-1]]
pattern_block_block_block_block = PaddleGraph(
if_layer12, graph_type="dygraph")
pattern_block_block_block_block.add_layer(
"prim.len",
inputs={"input": gen_name(65)},
outputs=[gen_name(70)])
pattern_block_block_block_block.add_layer(
"prim.gt",
inputs={"x": gen_name(70)},
outputs=[gen_name(71)],
y=0)
pattern_block_block_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(72)], input=0)
pattern_block_block_block_block.add_layer(
"prim.loop",
inputs={},
outputs=[gen_name(74), gen_name(75), gen_name(76.1)],
input=2147483647)
loop_layer = pattern_block_block_block_block.layers[list(
pattern_block_block_block_block.layers.keys())[-1]]
pattern_loop_block = PaddleGraph(loop_layer, graph_type="dygraph")
pattern_loop_block.add_layer(
"prim.getitem",
inputs={"list": gen_name(65),
"element": gen_name(72)},
outputs=[gen_name(74.1)])
pattern_loop_block.add_layer(
"prim.floor",
inputs={"input": gen_name(74.1)},
outputs=[gen_name(75.1)])
pattern_loop_block.add_layer(
"prim.ne",
inputs={"x": gen_name(75.1),
"y": gen_name(74.1)},
outputs=[gen_name(76)])
pattern_loop_block.add_layer(
"prim.if",
inputs={"input": gen_name(76)},
outputs=[gen_name(77)])
if_layer13 = pattern_loop_block.layers[list(
pattern_loop_block.layers.keys())[-1]]
pattern_loop_block_block = PaddleGraph(
if_layer13, graph_type="dygraph")
pattern_loop_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(77)], input=False)
if_layer13.add_block(pattern_loop_block_block)
pattern_loop_block_block = PaddleGraph(
if_layer13, graph_type="dygraph")
pattern_loop_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(77)], input=True)
if_layer13.add_block(pattern_loop_block_block)
pattern_loop_block.add_layer(
"prim.add",
inputs={"x": gen_name(72)},
outputs=[gen_name(81)],
y=1)
pattern_loop_block.add_layer(
"prim.lt",
inputs={"x": gen_name(81),
"y": gen_name(70)},
outputs=[gen_name(82)])
pattern_loop_block.add_layer(
"prim.and",
inputs={"x": gen_name(82),
"y": gen_name(77)},
outputs=[gen_name(83)])
pattern_loop_block.add_layer(
"prim.equal",
inputs={"input": gen_name(76)},
outputs=[gen_name(74)])
pattern_loop_block.add_layer(
"prim.equal",
inputs={"input": gen_name(81)},
outputs=[gen_name(75)])
loop_layer.add_block(pattern_loop_block)
loop_layer.inputs.update({
"input-0": gen_name(65),
"input-1": gen_name(72),
"input-2": gen_name(72),
"input-3": gen_name(70)
})
pattern_block_block_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(74)},
outputs=[gen_name(84)])
if_layer15 = pattern_block_block_block_block.layers[list(
pattern_block_block_block_block.layers.keys())[-1]]
pattern_block_block_block_block_block = PaddleGraph(
if_layer15, graph_type="dygraph")
pattern_block_block_block_block_block.add_layer(
"prim.warnings",
inputs={},
outputs=[gen_name(85)],
stacklevel=2,
input="...")
if_layer15.add_block(pattern_block_block_block_block_block)
pattern_block_block_block_block_block = PaddleGraph(
if_layer15, graph_type="dygraph")
if_layer15.add_block(pattern_block_block_block_block_block)
if_layer12.add_block(pattern_block_block_block_block)
pattern_block_block_block_block = PaddleGraph(
if_layer12, graph_type="dygraph")
if_layer12.add_block(pattern_block_block_block_block)
if_layer12.inputs.update({
"input-0": gen_name(65),
"input-1": gen_name(65),
})
pattern_block_block_block.add_layer(
"prim.list", inputs={}, outputs=[gen_name(86)])
pattern_block_block_block.add_layer(
"prim.loop",
inputs={},
outputs=[gen_name(87), gen_name(88)],
input=2)
loop_layer = pattern_block_block_block.layers[list(
pattern_block_block_block.layers.keys())[-1]]
pattern_loop_block = PaddleGraph(loop_layer, graph_type="dygraph")
pattern_loop_block.add_layer(
"prim.add",
inputs={"x": gen_name(88)},
outputs=[gen_name(89)],
y=2)
pattern_loop_block.add_layer(
"prim.shape_dim",
inputs={"input": gen_name(34),
"dim": gen_name(89)},
outputs=[gen_name(90)])
pattern_loop_block.add_layer(
"prim.float",
inputs={"input": gen_name(90)},
outputs=[gen_name(91)])
pattern_loop_block.add_layer(
"prim.getitem",
inputs={"list": gen_name(65),
"element": gen_name(88)},
outputs=[gen_name(92)])
pattern_loop_block.add_layer(
"prim.mul",
inputs={"x": gen_name(91),
"y": gen_name(92)},
outputs=[gen_name(93)])
pattern_loop_block.add_layer(
"prim.floor",
inputs={"input": gen_name(93)},
outputs=[gen_name(94)])
pattern_loop_block.add_layer(
"prim.append",
inputs={"list": gen_name(86),
"element": gen_name(94)},
outputs=[])
loop_layer.add_block(pattern_loop_block)
loop_layer.inputs.update({
"input-0": gen_name(34),
"input-1": gen_name(65),
"input-2": gen_name(86)
})
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(86)},
outputs=[gen_name(61)])
if_layer9.add_block(pattern_block_block_block)
if_layer9.inputs.update({
"input-0": gen_name(51),
"input-1": gen_name(54),
"input-2": gen_name(54),
"input-3": gen_name(37),
"input-4": gen_name(34)
})
pattern_block_block.add_layer(
"prim.getitem",
inputs={"list": gen_name(11)},
outputs=[gen_name(95)],
element=0)
pattern_block_block.add_layer(
"prim.getitem",
inputs={"list": gen_name(11)},
outputs=[gen_name(96)],
element=1)
pattern_block_block.add_layer(
"prim.isinstance",
inputs={"input": gen_name(61)},
outputs=["interpolate-input-0_isinstance"],
cls="paddle.fluid.Variable")
pattern_block_block.add_layer(
"prim.if", {"input": "interpolate-input-0_isinstance"},
outputs=["interpolate-input-0_if1"])
if_layer_isinstance = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer_isinstance, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.var2list",
inputs={"input": gen_name(61)},
outputs=[gen_name(61)])
if_layer_isinstance.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer_isinstance, graph_type="dygraph")
if_layer_isinstance.add_block(pattern_block_block_block)
if_layer_isinstance.inputs["input-0"] = gen_name(61)
pattern_block_block.add_layer(
"prim.assert",
inputs={"key": gen_name(95),
"value": gen_name(96)},
outputs=[gen_name(97) + "_assert"],
type="eq")
pattern_block_block.add_layer(
"paddle.nn.functional.interpolate",
inputs={
"input": "interpolate-input-0",
"size": gen_name(61),
"scale_factor": gen_name(95)
},
outputs=[gen_name(97)],
align_corners=False,
align_mode=0)
pattern_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(97)},
outputs=[gen_name(20)])
if_layer2.add_block(pattern_block_block)
pattern_block_block = PaddleGraph(if_layer2, graph_type="dygraph")
pattern_block_block.add_layer(
"fluid.layers.shape",
inputs={"input": "interpolate-input-0"},
outputs=[gen_name(98)])
pattern_block_block.add_layer(
"prim.len",
inputs={"input": gen_name(98)},
outputs=[gen_name(98)])
pattern_block_block.add_layer(
"prim.eq",
inputs={"x": gen_name(98)},
outputs=[gen_name(99)],
y=5)
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(99)},
outputs=[gen_name(100)])
if_layer16 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer16, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(101)],
input="Exception")
if_layer16.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer16, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(102)],
input="Exception")
if_layer16.add_block(pattern_block_block_block)
pattern_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(20)], input=None)
if_layer2.add_block(pattern_block_block)
if_layer2.inputs.update({
"input-0": gen_name(13),
"input-1": gen_name(13),
"input-2": "interpolate-input-0",
"input-3": gen_name(11),
"input-5": gen_name(11),
})
pattern_block.add_layer(
"prim.equal",
inputs={"input": gen_name(20)},
outputs=[gen_name(16)])
if_layer1.add_block(pattern_block)
if_layer1.inputs.update({
"input-2": "interpolate-input-0",
"input-4": gen_name(13),
"input-7": gen_name(11),
"input-9": gen_name(11),
"input-11": "interpolate-input-0",
"input-12": "interpolate-input-0",
})
self.pattern.build(inputs={
"input-0": "interpolate-input-0",
"input-1": "interpolate-input-1"
})
else:
self.pattern.add_layer(
"fluid.layers.shape",
inputs={"input": "interpolate-input-0"},
outputs=[gen_name(9)])
self.pattern.add_layer(
"prim.len",
inputs={"input": gen_name(9)},
outputs=[gen_name(9)])
self.pattern.add_layer(
"prim.sub",
inputs={"x": gen_name(9)},
outputs=[gen_name(10)],
y=2)
self.pattern.add_layer(
"prim.list", inputs={}, outputs=[gen_name(11)])
self.pattern.add_layer(
"prim.loop",
inputs={"input": gen_name(10)},
outputs=[gen_name(12.1), gen_name(12.2)])
loop_layer = self.pattern.layers[list(self.pattern.layers.keys())[
-1]]
pattern_block = PaddleGraph(loop_layer, graph_type="dygraph")
pattern_block.add_layer(
"prim.append",
inputs={"list": gen_name(11)},
outputs=[],
element=None)
loop_layer.inputs["input-0"] = gen_name(11)
loop_layer.add_block(pattern_block)
self.pattern.add_layer(
"prim.tuple",
inputs={
"input0": "interpolate-input-0",
"input1": "interpolate-input-1",
},
outputs=[gen_name(13)],
input2=None,
input3=None)
self.pattern.add_layer(
"fluid.layers.shape",
inputs={"input": "interpolate-input-0"},
outputs=[gen_name(14)])
self.pattern.add_layer(
"prim.len",
inputs={"input": gen_name(14)},
outputs=[gen_name(14)])
self.pattern.add_layer(
"prim.eq",
inputs={"x": gen_name(14)},
outputs=[gen_name(15)],
y=3)
self.pattern.add_layer(
"prim.if",
inputs={"input": gen_name(15)},
outputs=[gen_name(16)])
if_layer1 = self.pattern.layers[list(self.pattern.layers.keys())[
-1]]
pattern_block = PaddleGraph(if_layer1, graph_type="dygraph")
pattern_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(17)],
input="Exception")
pattern_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(16)], input=None)
if_layer1.add_block(pattern_block)
pattern_block = PaddleGraph(if_layer1, graph_type="dygraph")
pattern_block.add_layer(
"fluid.layers.shape",
inputs={"input": "interpolate-input-0"},
outputs=[gen_name(18)])
pattern_block.add_layer(
"prim.len",
inputs={"input": gen_name(18)},
outputs=[gen_name(18)])
pattern_block.add_layer(
"prim.eq",
inputs={"x": gen_name(18)},
outputs=[gen_name(19)],
y=4)
pattern_block.add_layer(
"prim.if",
inputs={"input": gen_name(19)},
outputs=[gen_name(20)])
if_layer2 = pattern_block.layers[list(pattern_block.layers.keys())[
-1]]
pattern_block_block = PaddleGraph(if_layer2, graph_type="dygraph")
pattern_block_block.add_layer(
"prim.tuple_unpack",
inputs={"input": gen_name(13)},
outputs=[
gen_name(34), gen_name(35), gen_name(36), gen_name(37)
])
pattern_block_block.add_layer(
"prim.is",
inputs={"x": gen_name(35)},
outputs=[gen_name(38)],
y=None)
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(38)},
outputs=[gen_name(39), gen_name(40)])
if_layer3 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer3, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.is",
inputs={"x": gen_name(36)},
outputs=[gen_name(41)],
y=None)
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(41)},
outputs=[gen_name(39)])
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(35)},
outputs=[gen_name(40)])
if_layer3.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer3, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(35)},
outputs=[gen_name(42)])
pattern_block_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(39)], input=False)
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(35)},
outputs=[gen_name(40)])
if_layer3.add_block(pattern_block_block_block)
if_layer3.inputs.update({
"input-0": gen_name(36),
'input-1': gen_name(35),
'input-2': gen_name(35),
})
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(39)},
outputs=[gen_name(43)])
if_layer4 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer4, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(44)],
input="Exception")
if_layer4.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer4, graph_type="dygraph")
if_layer4.add_block(pattern_block_block_block)
pattern_block_block.add_layer(
"prim.isnot",
inputs={"x": gen_name(40)},
outputs=[gen_name(45)],
y=None)
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(45)},
outputs=[gen_name(46), gen_name(47)])
if_layer5 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer5, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(40)},
outputs=[gen_name(48)])
pattern_block_block_block.add_layer(
"prim.isnot",
inputs={"x": gen_name(36)},
outputs=[gen_name(49)],
y=None)
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(49)},
outputs=[gen_name(46)])
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(48)},
outputs=[gen_name(47)])
if_layer5.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer5, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(46)], input=False)
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(40)},
outputs=[gen_name(47)])
if_layer5.add_block(pattern_block_block_block)
if_layer5.inputs.update({
"input-0": gen_name(40),
"input-1": gen_name(36),
"input-3": gen_name(40)
})
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(46)},
outputs=[gen_name(50), gen_name(51)])
if_layer6 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer6, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(52)],
input="Exception")
pattern_block_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(50)], input=None)
pattern_block_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(51)], input=None)
if_layer6.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer6, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(36)},
outputs=[gen_name(50)])
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(47)},
outputs=[gen_name(51)])
if_layer6.add_block(pattern_block_block_block)
if_layer6.inputs.update({
"input-0": gen_name(36),
"input-1": gen_name(47)
})
pattern_block_block.add_layer(
"prim.isnot",
inputs={"x": gen_name(50)},
outputs=[gen_name(53)],
y=None)
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(53)},
outputs=[gen_name(54)])
if_layer7 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer7, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(50)},
outputs=[gen_name(55)])
pattern_block_block_block.add_layer(
"prim.len",
inputs={"input": gen_name(55)},
outputs=[gen_name(56)])
pattern_block_block_block.add_layer(
"prim.ne",
inputs={"x": gen_name(56)},
outputs=[gen_name(57)],
y=2)
pattern_block_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(57)},
outputs=[gen_name(58)])
if_layer8 = pattern_block_block_block.layers[list(
pattern_block_block_block.layers.keys())[-1]]
pattern_block_block_block_block = PaddleGraph(
if_layer8, graph_type="dygraph")
pattern_block_block_block_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(59)],
input="Exception")
if_layer8.add_block(pattern_block_block_block_block)
pattern_block_block_block_block = PaddleGraph(
if_layer8, graph_type="dygraph")
if_layer8.add_block(pattern_block_block_block_block)
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(55)},
outputs=[gen_name(54)])
if_layer7.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer7, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(50)},
outputs=[gen_name(54)])
if_layer7.add_block(pattern_block_block_block)
if_layer7.inputs.update({
"input-0": gen_name(50),
"input-1": gen_name(50)
})
pattern_block_block.add_layer(
"prim.isnot",
inputs={"x": gen_name(51)},
outputs=[gen_name(60)],
y=None)
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(60)},
outputs=[gen_name(61)])
if_layer9 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer9, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(51)},
outputs=[gen_name(62)])
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(62)},
outputs=[gen_name(61)])
if_layer9.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer9, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(61)], input=None)
if_layer9.add_block(pattern_block_block_block)
if_layer9.inputs.update({"input-0": gen_name(51)})
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(60)},
outputs=[gen_name(63)])
if_layer10 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer10, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(61)},
outputs=[gen_name(63)])
if_layer10.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer10, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.isnot",
inputs={"x": gen_name(54)},
outputs=[gen_name(64)],
y=None)
pattern_block_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(64)},
outputs=[gen_name(65)])
if_layer11 = pattern_block_block_block.layers[list(
pattern_block_block_block.layers.keys())[-1]]
pattern_block_block_block_block = PaddleGraph(
if_layer11, graph_type="dygraph")
pattern_block_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(54)},
outputs=[gen_name(66)])
pattern_block_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(66)},
outputs=[gen_name(65)])
if_layer11.add_block(pattern_block_block_block_block)
pattern_block_block_block_block = PaddleGraph(
if_layer11, graph_type="dygraph")
pattern_block_block_block_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(67)],
input="Exception")
pattern_block_block_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(65)], input=None)
if_layer11.add_block(pattern_block_block_block_block)
if_layer11.inputs.update({"input-0": gen_name(54), })
pattern_block_block_block.add_layer(
"prim.is",
inputs={"x": gen_name(37)},
outputs=[gen_name(68)],
y=None)
pattern_block_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(68)},
outputs=[gen_name(69)])
if_layer12 = pattern_block_block_block.layers[list(
pattern_block_block_block.layers.keys())[-1]]
pattern_block_block_block_block = PaddleGraph(
if_layer12, graph_type="dygraph")
pattern_block_block_block_block.add_layer(
"prim.len",
inputs={"input": gen_name(65)},
outputs=[gen_name(70)])
pattern_block_block_block_block.add_layer(
"prim.gt",
inputs={"x": gen_name(70)},
outputs=[gen_name(71)],
y=0)
pattern_block_block_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(72)], input=0)
pattern_block_block_block_block.add_layer(
"prim.loop",
inputs={},
outputs=[gen_name(74), gen_name(75), gen_name(76.1)],
input=2147483647)
loop_layer = pattern_block_block_block_block.layers[list(
pattern_block_block_block_block.layers.keys())[-1]]
pattern_loop_block = PaddleGraph(loop_layer, graph_type="dygraph")
pattern_loop_block.add_layer(
"prim.getitem",
inputs={"list": gen_name(65),
"element": gen_name(72)},
outputs=[gen_name(74.1)])
pattern_loop_block.add_layer(
"prim.floor",
inputs={"input": gen_name(74.1)},
outputs=[gen_name(75.1)])
pattern_loop_block.add_layer(
"prim.ne",
inputs={"x": gen_name(75.1),
"y": gen_name(74.1)},
outputs=[gen_name(76)])
pattern_loop_block.add_layer(
"prim.if",
inputs={"input": gen_name(76)},
outputs=[gen_name(77), gen_name(78)])
if_layer13 = pattern_loop_block.layers[list(
pattern_loop_block.layers.keys())[-1]]
pattern_loop_block_block = PaddleGraph(
if_layer13, graph_type="dygraph")
pattern_loop_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(77)], input=False)
pattern_loop_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(76)},
outputs=[gen_name(78)])
if_layer13.add_block(pattern_loop_block_block)
pattern_loop_block_block = PaddleGraph(
if_layer13, graph_type="dygraph")
pattern_loop_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(77)], input=None)
pattern_loop_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(78)], input=None)
if_layer13.add_block(pattern_loop_block_block)
if_layer13.inputs.update({"input-0": gen_name(76), })
pattern_loop_block.add_layer(
"prim.if",
inputs={"input": gen_name(76)},
outputs=[gen_name(79), gen_name(80)])
if_layer14 = pattern_loop_block.layers[list(
pattern_loop_block.layers.keys())[-1]]
pattern_loop_block_block = PaddleGraph(
if_layer14, graph_type="dygraph")
pattern_loop_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(77)},
outputs=[gen_name(79)])
pattern_loop_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(78)},
outputs=[gen_name(80)])
if_layer14.add_block(pattern_loop_block_block)
pattern_loop_block_block = PaddleGraph(
if_layer14, graph_type="dygraph")
pattern_loop_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(79)], input=True)
pattern_loop_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(76)},
outputs=[gen_name(80)])
if_layer14.add_block(pattern_loop_block_block)
if_layer14.inputs.update({
"input-0": gen_name(77),
"input-1": gen_name(78),
"input-2": gen_name(76)
})
pattern_loop_block.add_layer(
"prim.add",
inputs={"x": gen_name(72)},
outputs=[gen_name(81)],
y=1)
pattern_loop_block.add_layer(
"prim.lt",
inputs={"x": gen_name(81),
"y": gen_name(70)},
outputs=[gen_name(82)])
pattern_loop_block.add_layer(
"prim.and",
inputs={"x": gen_name(82),
"y": gen_name(79)},
outputs=[gen_name(83)])
pattern_loop_block.add_layer(
"prim.equal",
inputs={"input": gen_name(80)},
outputs=[gen_name(74)])
pattern_loop_block.add_layer(
"prim.equal",
inputs={"input": gen_name(81)},
outputs=[gen_name(75)])
loop_layer.add_block(pattern_loop_block)
loop_layer.inputs.update({
"input-0": gen_name(65),
"input-1": gen_name(72),
"input-2": gen_name(72),
"input-3": gen_name(70)
})
pattern_block_block_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(74)},
outputs=[gen_name(84)])
if_layer15 = pattern_block_block_block_block.layers[list(
pattern_block_block_block_block.layers.keys())[-1]]
pattern_block_block_block_block_block = PaddleGraph(
if_layer15, graph_type="dygraph")
pattern_block_block_block_block_block.add_layer(
"prim.warnings",
inputs={},
outputs=[gen_name(85)],
stacklevel=2,
input="...")
if_layer15.add_block(pattern_block_block_block_block_block)
pattern_block_block_block_block_block = PaddleGraph(
if_layer15, graph_type="dygraph")
if_layer15.add_block(pattern_block_block_block_block_block)
if_layer12.add_block(pattern_block_block_block_block)
pattern_block_block_block_block = PaddleGraph(
if_layer12, graph_type="dygraph")
if_layer12.add_block(pattern_block_block_block_block)
if_layer12.inputs.update({
"input-0": gen_name(65),
"input-1": gen_name(65),
})
pattern_block_block_block.add_layer(
"prim.list", inputs={}, outputs=[gen_name(86)])
pattern_block_block_block.add_layer(
"prim.loop",
inputs={},
outputs=[gen_name(87), gen_name(88)],
input=2)
loop_layer = pattern_block_block_block.layers[list(
pattern_block_block_block.layers.keys())[-1]]
pattern_loop_block = PaddleGraph(loop_layer, graph_type="dygraph")
pattern_loop_block.add_layer(
"prim.add",
inputs={"x": gen_name(88)},
outputs=[gen_name(89)],
y=2)
pattern_loop_block.add_layer(
"prim.shape_dim",
inputs={"input": gen_name(34),
"dim": gen_name(89)},
outputs=[gen_name(90)])
pattern_loop_block.add_layer(
"prim.float",
inputs={"input": gen_name(90)},
outputs=[gen_name(91)])
pattern_loop_block.add_layer(
"prim.getitem",
inputs={"list": gen_name(65),
"element": gen_name(88)},
outputs=[gen_name(92)])
pattern_loop_block.add_layer(
"prim.mul",
inputs={"x": gen_name(91),
"y": gen_name(92)},
outputs=[gen_name(93)])
pattern_loop_block.add_layer(
"prim.floor",
inputs={"input": gen_name(93)},
outputs=[gen_name(94)])
pattern_loop_block.add_layer(
"prim.append",
inputs={"list": gen_name(86),
"element": gen_name(94)},
outputs=[])
loop_layer.add_block(pattern_loop_block)
loop_layer.inputs.update({
"input-0": gen_name(34),
"input-1": gen_name(65),
"input-2": gen_name(86)
})
pattern_block_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(86)},
outputs=[gen_name(63)])
if_layer10.add_block(pattern_block_block_block)
if_layer10.inputs.update({
"input-0": gen_name(61),
"input-1": gen_name(54),
"input-2": gen_name(54),
"input-3": gen_name(37),
"input-4": gen_name(34)
})
pattern_block_block.add_layer(
"prim.getitem",
inputs={"list": gen_name(11)},
outputs=[gen_name(95)],
element=0)
pattern_block_block.add_layer(
"prim.getitem",
inputs={"list": gen_name(11)},
outputs=[gen_name(96)],
element=1)
pattern_block_block.add_layer(
"prim.isinstance",
inputs={"input": gen_name(63)},
outputs=["interpolate-input-0_isinstance"],
cls="paddle.fluid.Variable")
pattern_block_block.add_layer(
"prim.if", {"input": "interpolate-input-0_isinstance"},
outputs=["interpolate-input-0_if1"])
if_layer_isinstance = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer_isinstance, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.var2list",
inputs={"input": gen_name(63)},
outputs=[gen_name(63)])
if_layer_isinstance.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer_isinstance, graph_type="dygraph")
if_layer_isinstance.add_block(pattern_block_block_block)
if_layer_isinstance.inputs["input-0"] = gen_name(63)
pattern_block_block.add_layer(
"prim.assert",
inputs={"key": gen_name(95),
"value": gen_name(96)},
outputs=[gen_name(97) + "_assert"],
type="eq")
pattern_block_block.add_layer(
"paddle.nn.functional.interpolate",
inputs={
"input": "interpolate-input-0",
"size": gen_name(63),
"scale_factor": gen_name(95)
},
outputs=[gen_name(97)],
align_corners=False,
align_mode=0)
pattern_block_block.add_layer(
"prim.equal",
inputs={"input": gen_name(97)},
outputs=[gen_name(20)])
if_layer2.add_block(pattern_block_block)
pattern_block_block = PaddleGraph(if_layer2, graph_type="dygraph")
pattern_block_block.add_layer(
"fluid.layers.shape",
inputs={"input": "interpolate-input-0"},
outputs=[gen_name(98)])
pattern_block_block.add_layer(
"prim.len",
inputs={"input": gen_name(98)},
outputs=[gen_name(98)])
pattern_block_block.add_layer(
"prim.eq",
inputs={"x": gen_name(98)},
outputs=[gen_name(99)],
y=5)
pattern_block_block.add_layer(
"prim.if",
inputs={"input": gen_name(99)},
outputs=[gen_name(100)])
if_layer16 = pattern_block_block.layers[list(
pattern_block_block.layers.keys())[-1]]
pattern_block_block_block = PaddleGraph(
if_layer16, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(101)],
input="Exception")
if_layer16.add_block(pattern_block_block_block)
pattern_block_block_block = PaddleGraph(
if_layer16, graph_type="dygraph")
pattern_block_block_block.add_layer(
"prim.exception",
inputs={},
outputs=[gen_name(102)],
input="Exception")
if_layer16.add_block(pattern_block_block_block)
pattern_block_block.add_layer(
"prim.equal", inputs={}, outputs=[gen_name(20)], input=None)
if_layer2.add_block(pattern_block_block)
if_layer2.inputs.update({
"input-0": gen_name(13),
"input-1": gen_name(13),
"input-2": "interpolate-input-0",
"input-3": gen_name(11),
"input-5": gen_name(11),
})
pattern_block.add_layer(
"prim.equal",
inputs={"input": gen_name(20)},
outputs=[gen_name(16)])
if_layer1.add_block(pattern_block)
if_layer1.inputs.update({
"input-2": "interpolate-input-0",
"input-4": gen_name(13),
"input-7": gen_name(11),
"input-9": gen_name(11),
"input-11": "interpolate-input-0",
"input-12": "interpolate-input-0",
})
self.pattern.build(inputs={
"input-0": "interpolate-input-0",
"input-1": "interpolate-input-1"
})
def insert_new_layer(self, graph, parameters, matches):
new_layers = self.gen_new_layer(parameters, matches)
new_layer_id = list(matches.keys())[0]
graph.layers[new_layer_id] = new_layers[0]
matches.pop(new_layer_id)
new_layer_id = list(matches.keys())[0]
graph.layers[new_layer_id] = new_layers[1]
block_layer = new_layers[1].blocks[0].layers.pop(
list(new_layers[1].blocks[0].layers.keys())[-1])
new_layers[1].blocks[0].layers[new_layer_id + ".0.0"] = block_layer
matches.pop(new_layer_id)
new_layer_id = list(matches.keys())[0]
graph.layers[new_layer_id] = new_layers[2]
matches.pop(new_layer_id)
def gen_new_layer(self, parameters, matches):
layers = list()
layers_id = list(matches.keys())
layer = matches[layers_id[6]]
size = layer.inputs["input1"]
layer = matches[layers_id[92]]
layer.inputs["input"] = size
layers.append(layer)
layer = matches[layers_id[93]]
block_layer = layer.blocks[0].layers[list(layer.blocks[0].layers.keys())
[0]]
block_layer.inputs["input"] = size
block_layer.outputs[0] = size
layer.inputs["input-0"] = size
layers.append(layer)
layer = matches[layers_id[-1]]
outputs = layer.outputs
layer = matches[layers_id[96]]
layer.inputs.pop("scale_factor")
layer.inputs["size"] = size
layer.outputs = outputs
layers.append(layer)
return layers
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.optimizer.pytorch_optimizer.pass_ import Pass
from x2paddle.optimizer.pytorch_optimizer.fusion import ReshapeFuser
from x2paddle.optimizer.pytorch_optimizer.pass_manager import pass_register
@pass_register
class ReshapeFusePass(Pass):
name = "reshape_fuse_pass"
def __init__(self):
Pass.__init__(self)
def apply(self, graph):
fuser = ReshapeFuser()
fuser.operate(graph, match_kind="edge")
# 用于注册
reshape_fuse_pass = ReshapeFusePass()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from x2paddle.optimizer.pytorch_optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *
class ReshapeFuser(FuseBase):
def __init__(self):
super(ReshapeFuser, self).__init__(graph_type="dygraph")
def build_pattern(self):
""" 描述需要替换的reshape图结构。
reshape层模式python实现代码示例:
x165 = int(x164)
x166 = [x158, x159, x165]
x167 = fluid.layers.reshape(x=x157, shape=x166)
"""
def gen_name(id):
return "x" + str(id)
self.pattern.add_layer(
"prim.int",
inputs={"input": "reshape-input-0"},
outputs=[gen_name(0)])
self.pattern.add_layer(
"prim.list",
inputs={
"input0": "reshape-input-1",
"input1": "reshape-input-2",
"input2": gen_name(0)
},
outputs=[gen_name(1)])
self.pattern.add_layer(
"fluid.layers.reshape",
inputs={"x": "reshape-input-3",
"shape": gen_name(1)},
outputs=[gen_name(2)])
self.pattern.build(inputs={
"input-0": "reshape-input-0",
"input-1": "reshape-input-1",
"input-2": "reshape-input-2",
"input-3": "reshape-input-3",
})
def insert_new_layer(self, graph, parameters, matches):
self.update_layer(matches)
matches.pop(list(matches.keys())[1])
matches.pop(list(matches.keys())[1])
def update_layer(self, matches):
layers_id = list(matches.keys())
layer = matches[layers_id[0]]
int_input_name = layer.inputs["input"]
output_name = layer.outputs[0]
layer = matches[layers_id[1]]
for key, input_name in layer.inputs.items():
if input_name == output_name:
layer.inputs[key] = int_input_name
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.optimizer.pytorch_optimizer.fusion import *
from x2paddle.optimizer.pytorch_optimizer.pass_manager import PassManager
class GraphOptimizer(object):
def __init__(self):
self.passes = [
"constant_fuse_pass", "batchnorm2d_fuse_pass",
"interpolate_bilinear_fuse_pass", "fc_fuse_pass",
"adaptive_pool2d_fuse_pass", "reshape_fuse_pass",
"dropout_fuse_pass"
]
def optimize(self, graph):
for pass_name in self.passes:
pass_ = PassManager.lookup(pass_name)()
pass_.apply(graph)
print("{} done!".format(pass_name))
return graph
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class Pass(object):
name = "pass"
def __init__(self):
pass
def apply(self, graph):
raise NotImplementedError("The apply function must be implemented!")
@classmethod
def get_name(cls):
return cls.name
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class PassManager(object):
""" pass管理器。
"""
# pass_map存储name与其对应的pass
pass_map = dict()
def __init__(self):
pass
@staticmethod
def add_new_pass(name, pass_):
if name not in PassManager.pass_map:
PassManager.pass_map[name] = pass_
@staticmethod
def clear():
PassManager.passes = list()
@staticmethod
def lookup(name):
return PassManager.pass_map[name]
def pass_register(cls):
name = cls.get_name()
PassManager.add_new_pass(name, cls)
return cls
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.core.program import PaddleGraph
class PatternMatcher(object):
def __init__(self, pattern):
self.pattern = pattern
# matches的每个match是按照拓扑排序组成layer的dict
self.matches = list()
def operate(self, graph, match_kind="topo"):
if match_kind == "topo":
self.detect_patterns_by_topo(graph)
elif match_kind == "edge":
self.detect_patterns_by_edge(graph)
self.remove_overlapped_match()
return self.matches
def detect_patterns_by_topo(self, graph):
""" 找到与模式匹配的子图,
并将子图的id以拓扑排序存放到subgraph_id2layers。
"""
def get_subgraph(pattern, graph, start_index, is_subblock=False):
pattern_index = 0
pattern_id2layers = pattern.get_global_layers()
pattern_ids = list(pattern_id2layers.keys())
subgraph_id2layers = dict()
graph_layers = dict(list(graph.layers.items())[start_index:])
for layer_id, layer in graph_layers.items():
pattern_layer = pattern.layers[list(pattern.layers.keys())[
pattern_index]]
if layer.kernel == pattern_layer.kernel:
subgraph_id2layers[layer_id] = layer
pattern_layer_id = pattern_layer.id
# 判断输入连接是否一致
if layer_id in graph.edges_in:
if pattern_layer_id not in pattern.edges_in:
if pattern_index == 0 or is_subblock:
return False
else:
subgraph_id2layers.pop(layer_id)
continue
else:
if len(graph.edges_in[layer_id]) != len(
pattern.edges_in[pattern_layer_id]):
if pattern_index == 0 or is_subblock:
return False
else:
subgraph_id2layers.pop(layer_id)
continue
layer_in = graph.edges_in[layer_id]
pattern_layer_in = pattern.edges_in[pattern_layer_id]
for i in range(len(layer_in)):
layer_id_in = layer_in[i]
pattern_layer_id_in = pattern_layer_in[i]
if pattern_layer_id_in != -1:
subgraph_ids = list(subgraph_id2layers.keys())
if layer_id_in not in subgraph_ids:
return False
if pattern_ids.index(pattern_layer_id_in) == \
subgraph_ids.index(layer_id_in):
# 判断pattern输入在pattern_ids的索引
# 和graph输入在subgraph_ids的索引一致
continue
if pattern_index == 0 or is_subblock:
return False
else:
subgraph_id2layers.pop(layer_id)
continue
# 判断subgraph中的节点是否被外部图使用到(如若被使用到则无效)
if layer_id in graph.edges_out:
if pattern_layer_id not in pattern.edges_out:
if not set(pattern_layer.outputs).issubset(
pattern.outputs):
# 若pattern当前layer的输出是pattern的输出,则是正确的
if pattern_index == 0 or is_subblock:
return False
else:
subgraph_id2layers.pop(layer_id)
continue
else:
if len(graph.edges_out[layer_id]) != len(
pattern.edges_out[pattern_layer_id]):
# 如果在每个节点edges_in相同的情况下,edges_out数目相同则说明无节点在subgraph外被用到
if not set(pattern_layer.outputs).issubset(
pattern.outputs):
# 若pattern当前layer的输出是pattern的输出,则是正确的
if pattern_index == 0 or is_subblock:
return False
else:
subgraph_id2layers.pop(layer_id)
continue
# 当为控制流时的处理
if layer.kernel == "prim.if" or layer.kernel == "prim.loop":
if len(pattern_layer.blocks) != len(layer.blocks):
if pattern_index == 0 or is_subblock:
return False
else:
subgraph_id2layers.pop(layer_id)
continue
is_subblock_match = True
for i, b in enumerate(pattern_layer.blocks):
match_info = get_subgraph(
pattern_layer.blocks[i],
layer.blocks[i],
0,
is_subblock=True)
if match_info is not False:
subgraph_id2layers.update(match_info)
else:
is_subblock_match = False
break
if not is_subblock_match:
if pattern_index == 0 or is_subblock:
return False
else:
index = list(subgraph_id2layers.keys()).index(
layer_id)
for key in list(subgraph_id2layers.keys())[
index:]:
subgraph_id2layers.pop(key)
continue
pattern_index += 1
if pattern_index == len(pattern.layers):
return subgraph_id2layers
else:
if pattern_index == 0 or is_subblock:
return False
else:
continue
if pattern_index == len(pattern.layers):
return subgraph_id2layers
return False
for i, (layer_id, layer) in enumerate(graph.layers.items()):
match_info = get_subgraph(self.pattern, graph, i)
if match_info:
self.matches.append(match_info)
for j, block in enumerate(layer.blocks):
if len(block.layers) > 0:
self.detect_patterns_by_topo(layer.blocks[j])
def detect_patterns_by_edge(self, graph, ignore_list_inputs=True):
"""当遇见顺序没有强制规定的pattern时使用该方式
"""
def get_subgraph(pattern, graph, start_index):
pattern_id2layers = pattern.get_global_layers()
pattern_ids = list(pattern_id2layers.keys())
pattern_layer_id = pattern_ids[0]
subgraph_id2layers = dict()
graph_layers = dict(list(graph.layers.items())[start_index:])
layer_id = list(graph_layers.keys())[0]
def update(layer_id, pattern_layer_id):
layer = graph_layers[layer_id]
pattern_layer = pattern_id2layers[pattern_layer_id]
if layer.kernel != pattern_layer.kernel:
return False
subgraph_id2layers[layer_id] = layer
for i, pattern_layer_id_in in enumerate(pattern.edges_in[
pattern_layer_id]):
if pattern_layer_id_in == -1 or ignore_list_inputs:
continue
layer_id_in = graph.edges_in[layer_id][i]
subgraph_ids = list(subgraph_id2layers.keys())
if layer_id_in not in subgraph_ids:
return False
if pattern.edges_out.get(pattern_layer_id, 0) != 0:
if len(pattern.edges_out[pattern_layer_id]) != \
len(graph.edges_out[layer_id]):
return False
for i, pattern_layer_id_out in enumerate(pattern.edges_out[
pattern_layer_id]):
if pattern_layer_id_out in pattern_ids:
new_layer_id_out = graph.edges_out[layer_id][i]
for j, new_new_layer_id_in in enumerate(
graph.edges_in[new_layer_id_out]):
if new_new_layer_id_in not in subgraph_id2layers:
if ignore_list_inputs:
continue
new_new_pattern_layer_id_in = pattern.edges_in[
pattern_layer_id_out][j]
if new_new_pattern_layer_id_in == -1:
continue
update(new_new_layer_id_in,
new_new_pattern_layer_id_in)
update(new_layer_id_out, pattern_layer_id_out)
while len(subgraph_id2layers) != len(pattern_id2layers):
out = update(layer_id, pattern_layer_id)
if out == False:
return False
else:
if len(subgraph_id2layers) == len(pattern_id2layers):
return subgraph_id2layers
else:
return False
for i, (layer_id, layer) in enumerate(graph.layers.items()):
match_info = get_subgraph(self.pattern, graph, i)
if match_info:
self.matches.append(match_info)
for j, block in enumerate(layer.blocks):
if len(block.layers) > 0:
self.detect_patterns_by_edge(layer.blocks[j])
def remove_overlapped_match(self):
""" 如果2个子图有重叠,只取前一个子图。
"""
match_ids = []
for i, match in enumerate(self.matches):
is_overlapped = False
for id in match.keys():
if id in match_ids:
self.matches.pop(i)
is_overlapped = True
break
if not is_overlapped:
match_ids.extend(list(match.keys()))
def get_subgraph(prefix_layer_id, suffix_layer_id, graph):
""" 根据prefix_layer_id和suffix_layer_id获取需要子图。
Args:
prefix_layer_id (str): 起初为一个空字符串,之后为suffix_layer_id分割出来的前缀。
suffix_layer_id (str): 起初为以一个layer的id,之后将分割部分给prefix_layer_id;例如”57.0.1“;
graph (x2paddle.core.program.PaddleGraph): 需要进行pass的子图。
"""
id_part = suffix_layer_id.split(".")
if len(id_part) == 1:
return graph
if prefix_layer_id == "":
layer_id = id_part[0]
prefix_layer_id += ".".join(id_part[:2])
else:
layer_id = prefix_layer_id + "." + id_part[0]
prefix_layer_id += ("." + ".".join(id_part[:2]))
subgraph = graph.layers[layer_id].blocks[int(id_part[1])]
suffix_layer_id = ".".join(id_part[2:])
return get_subgraph(prefix_layer_id, suffix_layer_id, subgraph)
class FuseBase(object):
def __init__(self, graph_type):
self.pattern = PaddleGraph(graph_type=graph_type)
def operate(self, graph, match_kind="topo"):
parameters = graph.parameters
self.build_pattern()
self.perform_pattern_matcher(graph, match_kind)
for match in self.matches:
first_layer_id = list(match.keys())[0]
subgraph = get_subgraph("", first_layer_id, graph)
self.insert_new_layer(subgraph, parameters, match)
self.delete_inter_layer(graph)
graph.build()
def perform_pattern_matcher(self, graph, match_kind="topo"):
""" 执行模式匹配,找到匹配的子图。
"""
pattern_matcher = PatternMatcher(self.pattern)
self.matches = pattern_matcher.operate(graph, match_kind)
def delete_inter_layer(self, graph):
""" 删除不需要的中间layer及其对应参数。
"""
for match in self.matches:
first_layer_id = list(match.keys())[0]
subgraph = get_subgraph("", first_layer_id, graph)
for layer_id, layer in match.items():
if layer.kernel == "fluid.dygraph.base.to_variable" and \
layer.attrs["value"].startswith("params["):
param_name = layer.attrs["value"][8:-2]
if param_name in graph.parameters:
graph.parameters.pop(param_name)
if layer_id in subgraph.layers:
# layer_id可能是属于子图的,此时删除父layer,即删除整个子图
subgraph.layers.pop(layer_id)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册