未验证 提交 58e1668e 编写于 作者: J Jason 提交者: GitHub

Merge pull request #291 from PaddlePaddle/develop_code-format

code format
- repo: local - repo: https://github.com/PaddlePaddle/mirrors-yapf.git
sha: 0d79c0c469bab64f7229c9aca2b1186ef47f0e37
hooks: hooks:
- id: yapf - id: yapf
name: yapf
entry: yapf
language: system
args: [-i, --style .style.yapf]
files: \.py$ files: \.py$
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks
sha: a11d9314b22d8f8c7556443875b731ef05965464 sha: a11d9314b22d8f8c7556443875b731ef05965464
hooks: hooks:
...@@ -18,6 +14,7 @@ ...@@ -18,6 +14,7 @@
- id: check-symlinks - id: check-symlinks
- id: check-added-large-files - id: check-added-large-files
- repo: local - repo: local
hooks: hooks:
- id: copyright_checker - id: copyright_checker
name: copyright_checker name: copyright_checker
......
language: python language: python
python: python:
- '2.7'
- '3.5' - '3.5'
- '3.6'
script: script:
- if [[ $TRAVIS_PYTHON_VERSION != 2.7 ]]; then /bin/bash ./tools/check_code_style.sh; fi - if [[ $TRAVIS_PYTHON_VERSION != 2.7 ]]; then /bin/bash ./tools/check_code_style.sh; fi
......
...@@ -11,8 +11,7 @@ setuptools.setup( ...@@ -11,8 +11,7 @@ setuptools.setup(
version=x2paddle.__version__, version=x2paddle.__version__,
author="dltp-sz", author="dltp-sz",
author_email="dltp-sz@baidu.com", author_email="dltp-sz@baidu.com",
description= description="a toolkit for converting trained model to PaddlePaddle from other deep learning frameworks.",
"a toolkit for converting trained model to PaddlePaddle from other deep learning frameworks.",
long_description=long_description, long_description=long_description,
long_description_content_type="text/plain", long_description_content_type="text/plain",
url="https://github.com/PaddlePaddle/x2paddle", url="https://github.com/PaddlePaddle/x2paddle",
...@@ -23,6 +22,4 @@ setuptools.setup( ...@@ -23,6 +22,4 @@ setuptools.setup(
"Operating System :: OS Independent", "Operating System :: OS Independent",
], ],
license='Apache 2.0', license='Apache 2.0',
entry_points={'console_scripts': [ entry_points={'console_scripts': ['x2paddle=x2paddle.convert:main', ]})
'x2paddle=x2paddle.convert:main',
]})
...@@ -5,10 +5,12 @@ model_dir = sys.argv[1] ...@@ -5,10 +5,12 @@ model_dir = sys.argv[1]
new_model_dir = sys.argv[2] new_model_dir = sys.argv[2]
exe = fluid.Executor(fluid.CPUPlace()) exe = fluid.Executor(fluid.CPUPlace())
[inference_program, feed_target_names, [inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(dirname=model_dir, executor=exe) fetch_targets] = fluid.io.load_inference_model(
dirname=model_dir, executor=exe)
print(feed_target_names) print(feed_target_names)
fluid.io.save_inference_model(dirname=new_model_dir, fluid.io.save_inference_model(
dirname=new_model_dir,
feeded_var_names=feed_target_names, feeded_var_names=feed_target_names,
target_vars=fetch_targets, target_vars=fetch_targets,
executor=exe, executor=exe,
......
...@@ -48,8 +48,7 @@ def arg_parser(): ...@@ -48,8 +48,7 @@ def arg_parser():
"-f", "-f",
type=_text_type, type=_text_type,
default=None, default=None,
help= help="define which deeplearning framework(tensorflow/caffe/onnx/paddle2onnx)"
"define which deeplearning framework(tensorflow/caffe/onnx/paddle2onnx)"
) )
parser.add_argument( parser.add_argument(
"--caffe_proto", "--caffe_proto",
...@@ -126,7 +125,6 @@ def tf2paddle(model_path, ...@@ -126,7 +125,6 @@ def tf2paddle(model_path,
optimizer.merge_bias() optimizer.merge_bias()
optimizer.optimize_sub_graph() optimizer.optimize_sub_graph()
# optimizer.merge_batch_norm() # optimizer.merge_batch_norm()
# optimizer.merge_prelu() # optimizer.merge_prelu()
else: else:
......
...@@ -46,8 +46,9 @@ class Layer(object): ...@@ -46,8 +46,9 @@ class Layer(object):
for input in self.inputs: for input in self.inputs:
if isinstance(input, GraphNode): if isinstance(input, GraphNode):
if hasattr(input, "index"): if hasattr(input, "index"):
in_list += (input.layer_name + in_list += (
"[{}]".format(input.index) + ", ") input.layer_name + "[{}]".format(input.index) + ", "
)
else: else:
in_list += (input.layer_name + ", ") in_list += (input.layer_name + ", ")
elif isinstance(input, six.string_types): elif isinstance(input, six.string_types):
...@@ -71,8 +72,8 @@ class Layer(object): ...@@ -71,8 +72,8 @@ class Layer(object):
layer_code = layer_code + key + "={}, ".format(input) layer_code = layer_code + key + "={}, ".format(input)
elif isinstance(self.inputs, GraphNode): elif isinstance(self.inputs, GraphNode):
if hasattr(self.inputs, "index"): if hasattr(self.inputs, "index"):
layer_code += (self.inputs.layer_name + layer_code += (
"[{}]".format(self.inputs.index)) self.inputs.layer_name + "[{}]".format(self.inputs.index))
else: else:
layer_code += (self.inputs.layer_name) layer_code += (self.inputs.layer_name)
if self.op != "=": if self.op != "=":
......
...@@ -64,10 +64,8 @@ def run_net(param_dir="./"): ...@@ -64,10 +64,8 @@ def run_net(param_dir="./"):
b = os.path.exists(os.path.join(param_dir, var.name)) b = os.path.exists(os.path.join(param_dir, var.name))
return b return b
fluid.io.load_vars(exe, fluid.io.load_vars(
param_dir, exe, param_dir, fluid.default_main_program(), predicate=if_exist)
fluid.default_main_program(),
predicate=if_exist)
class OpMapper(object): class OpMapper(object):
...@@ -98,8 +96,8 @@ class OpMapper(object): ...@@ -98,8 +96,8 @@ class OpMapper(object):
def add_codes(self, codes, indent=0): def add_codes(self, codes, indent=0):
if isinstance(codes, list): if isinstance(codes, list):
for code in codes: for code in codes:
self.paddle_codes += (self.tab * indent + code.strip('\n') + self.paddle_codes += (
'\n') self.tab * indent + code.strip('\n') + '\n')
elif isinstance(codes, str): elif isinstance(codes, str):
self.paddle_codes += (self.tab * indent + codes.strip('\n') + '\n') self.paddle_codes += (self.tab * indent + codes.strip('\n') + '\n')
else: else:
...@@ -135,20 +133,21 @@ class OpMapper(object): ...@@ -135,20 +133,21 @@ class OpMapper(object):
os.path.join(os.path.join(py_code_dir, var.name))) os.path.join(os.path.join(py_code_dir, var.name)))
return b return b
fluid.io.load_vars(exe, fluid.io.load_vars(
exe,
py_code_dir, py_code_dir,
fluid.default_main_program(), fluid.default_main_program(),
predicate=if_exist) predicate=if_exist)
if params_merge: if params_merge:
fluid.io.save_inference_model(dirname=os.path.join( fluid.io.save_inference_model(
save_dir, "inference_model"), dirname=os.path.join(save_dir, "inference_model"),
feeded_var_names=input_names, feeded_var_names=input_names,
target_vars=outputs, target_vars=outputs,
executor=exe, executor=exe,
params_filename="__params__") params_filename="__params__")
else: else:
fluid.io.save_inference_model(dirname=os.path.join( fluid.io.save_inference_model(
save_dir, "inference_model"), dirname=os.path.join(save_dir, "inference_model"),
feeded_var_names=input_names, feeded_var_names=input_names,
target_vars=outputs, target_vars=outputs,
executor=exe, executor=exe,
......
...@@ -49,13 +49,11 @@ class CaffeResolver(object): ...@@ -49,13 +49,11 @@ class CaffeResolver(object):
class CaffeGraphNode(GraphNode): class CaffeGraphNode(GraphNode):
def __init__(self, layer, type_str, layer_name=None): def __init__(self, layer, type_str, layer_name=None):
if layer_name is None: if layer_name is None:
super(CaffeGraphNode, super(CaffeGraphNode, self).__init__(
self).__init__(layer, layer, layer.name.replace('/', '_').replace('-', '_'))
layer.name.replace('/', '_').replace('-', '_'))
else: else:
super(CaffeGraphNode, super(CaffeGraphNode, self).__init__(
self).__init__(layer, layer, layer_name.replace('/', '_').replace('-', '_'))
layer_name.replace('/', '_').replace('-', '_'))
self.layer_type = type_str self.layer_type = type_str
self.fluid_code = FluidCode() self.fluid_code = FluidCode()
self.data = None self.data = None
...@@ -268,8 +266,8 @@ class CaffeDecoder(object): ...@@ -268,8 +266,8 @@ class CaffeDecoder(object):
c_i = blob.channels c_i = blob.channels
h = blob.height h = blob.height
w = blob.width w = blob.width
data = np.asarray(list(blob.data), data = np.asarray(
dtype=np.float32).reshape(c_o, c_i, h, w) list(blob.data), dtype=np.float32).reshape(c_o, c_i, h, w)
transformed.append(data) transformed.append(data)
return transformed return transformed
此差异已折叠。
...@@ -71,9 +71,8 @@ class ONNXGraphNode(GraphNode): ...@@ -71,9 +71,8 @@ class ONNXGraphNode(GraphNode):
if attr.type == onnx.AttributeProto.TENSOR: if attr.type == onnx.AttributeProto.TENSOR:
dtype = np.dtype(TENSOR_TYPE_TO_NP_TYPE[attr.t.data_type]) dtype = np.dtype(TENSOR_TYPE_TO_NP_TYPE[attr.t.data_type])
data = attr.t.raw_data data = attr.t.raw_data
value = np.frombuffer(data, value = np.frombuffer(
dtype=dtype, data, dtype=dtype, count=(len(data) // dtype.itemsize))
count=(len(data) // dtype.itemsize))
elif attr.type == onnx.AttributeProto.STRING: elif attr.type == onnx.AttributeProto.STRING:
value = attr.s value = attr.s
value = value.decode() if isinstance(value, bytes) else value value = value.decode() if isinstance(value, bytes) else value
...@@ -205,9 +204,8 @@ class ONNXGraph(Graph): ...@@ -205,9 +204,8 @@ class ONNXGraph(Graph):
self.node_map[name].weight = weight self.node_map[name].weight = weight
self.node_map[name].embeded_as = [] self.node_map[name].embeded_as = []
else: else:
self.node_map[name] = ONNXGraphDataNode(initializer, self.node_map[name] = ONNXGraphDataNode(
layer_name=name, initializer, layer_name=name, is_global_input=False)
is_global_input=False)
self.node_map[name].weight = weight self.node_map[name].weight = weight
self.node_map[name].embeded_as = [] self.node_map[name].embeded_as = []
...@@ -494,8 +492,8 @@ class ONNXDecoder(object): ...@@ -494,8 +492,8 @@ class ONNXDecoder(object):
sess = rt.InferenceSession(model_path) sess = rt.InferenceSession(model_path)
for ipt in sess.get_inputs(): for ipt in sess.get_inputs():
datatype = datatype_map[ipt.type] datatype = datatype_map[ipt.type]
input_dict[ipt.name] = np.random.random( input_dict[ipt.name] = np.random.random(ipt.shape).astype(
ipt.shape).astype(datatype) datatype)
res = sess.run(None, input_feed=input_dict) res = sess.run(None, input_feed=input_dict)
except: except:
......
...@@ -120,13 +120,13 @@ class TFGraph(Graph): ...@@ -120,13 +120,13 @@ class TFGraph(Graph):
def build(self): def build(self):
for layer in self.model.node: for layer in self.model.node:
self.node_map[layer.name.replace('/', '_').replace( self.node_map[layer.name.replace('/', '_').replace(
'-', '_')] = TFGraphNode(layer, data_format=self.tf_data_format) '-', '_')] = TFGraphNode(
layer, data_format=self.tf_data_format)
for layer_name, node in self.node_map.items(): for layer_name, node in self.node_map.items():
for in_node in node.layer.input: for in_node in node.layer.input:
in_node = in_node.replace('/', in_node = in_node.replace('/', '_').replace('-', '_').replace(
'_').replace('-', '^', '')
'_').replace('^', '')
if in_node not in self.node_map: if in_node not in self.node_map:
if in_node.strip().split(':')[0] in self.node_map: if in_node.strip().split(':')[0] in self.node_map:
self.connect(in_node.strip().split(':')[0], layer_name) self.connect(in_node.strip().split(':')[0], layer_name)
...@@ -390,10 +390,10 @@ class TFDecoder(object): ...@@ -390,10 +390,10 @@ class TFDecoder(object):
shape=shape, shape=shape,
name="x2paddle_{}".format(layer.name)) name="x2paddle_{}".format(layer.name))
except: except:
x2paddle_input = tf.placeholder(dtype=dtype, x2paddle_input = tf.placeholder(
dtype=dtype,
shape=shape, shape=shape,
name="x2paddle_{}".format( name="x2paddle_{}".format(layer.name))
layer.name))
input_map["{}:0".format(layer.name)] = x2paddle_input input_map["{}:0".format(layer.name)] = x2paddle_input
if shape.count(None) > 0: if shape.count(None) > 0:
......
...@@ -122,7 +122,8 @@ def convolutiondepthwise_layer(inputs, ...@@ -122,7 +122,8 @@ def convolutiondepthwise_layer(inputs,
c_out = num_output if num_output is not None else input_shape[0][1] c_out = num_output if num_output is not None else input_shape[0][1]
group = int(c_in / (c_in / c_out)) if c_in > c_out else int(c_in / group = int(c_in / (c_in / c_out)) if c_in > c_out else int(c_in /
(c_out / c_in)) (c_out / c_in))
out = fluid.layers.conv2d(input, out = fluid.layers.conv2d(
input,
dilation=[dila_h, dila_w], dilation=[dila_h, dila_w],
filter_size=[k_h, k_w], filter_size=[k_h, k_w],
stride=[s_h, s_w], stride=[s_h, s_w],
...@@ -142,7 +143,8 @@ def convolutiondepthwise_weights(name, data=None): ...@@ -142,7 +143,8 @@ def convolutiondepthwise_weights(name, data=None):
return weights_name return weights_name
register(kind='ConvolutionDepthwise', register(
kind='ConvolutionDepthwise',
shape=convolutiondepthwise_shape, shape=convolutiondepthwise_shape,
layer=convolutiondepthwise_layer, layer=convolutiondepthwise_layer,
weights=convolutiondepthwise_weights) weights=convolutiondepthwise_weights)
...@@ -37,8 +37,8 @@ def detectionoutput_layer(inputs, ...@@ -37,8 +37,8 @@ def detectionoutput_layer(inputs,
pbv = fluid.layers.reshape(x=pbv, shape=[-1, 4]) pbv = fluid.layers.reshape(x=pbv, shape=[-1, 4])
mbox_loc = inputs[0] mbox_loc = inputs[0]
mbox_loc = fluid.layers.reshape(x=mbox_loc, shape=[-1, pb.shape[0], 4]) mbox_loc = fluid.layers.reshape(x=mbox_loc, shape=[-1, pb.shape[0], 4])
mbox_conf_flatten = fluid.layers.reshape(x=mbox_conf_flatten, mbox_conf_flatten = fluid.layers.reshape(
shape=[0, pb.shape[0], -1]) x=mbox_conf_flatten, shape=[0, pb.shape[0], -1])
default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0} default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
fields = ['eta', 'top_k', 'nms_threshold'] fields = ['eta', 'top_k', 'nms_threshold']
...@@ -64,7 +64,8 @@ def detectionoutput_weights(name, data=None): ...@@ -64,7 +64,8 @@ def detectionoutput_weights(name, data=None):
return weights_name return weights_name
register(kind='DetectionOutput', register(
kind='DetectionOutput',
shape=detectionoutput_shape, shape=detectionoutput_shape,
layer=detectionoutput_layer, layer=detectionoutput_layer,
weights=detectionoutput_weights) weights=detectionoutput_weights)
...@@ -20,9 +20,8 @@ def normalize_layer(inputs, ...@@ -20,9 +20,8 @@ def normalize_layer(inputs,
attr=name + '_scale') attr=name + '_scale')
scale_param = fluid.layers.reshape(x=scale_param, \ scale_param = fluid.layers.reshape(x=scale_param, \
shape=[1] if channel_shared else [input_shape[0][1]]) shape=[1] if channel_shared else [input_shape[0][1]])
out = fluid.layers.elementwise_mul(x=l2_norm, out = fluid.layers.elementwise_mul(
y=scale_param, x=l2_norm, y=scale_param, axis=-1 if channel_shared else 1)
axis=-1 if channel_shared else 1)
return out return out
...@@ -31,7 +30,8 @@ def normalize_weights(name, data=None): ...@@ -31,7 +30,8 @@ def normalize_weights(name, data=None):
return weights_name return weights_name
register(kind='Normalize', register(
kind='Normalize',
shape=normalize_shape, shape=normalize_shape,
layer=normalize_layer, layer=normalize_layer,
weights=normalize_weights) weights=normalize_weights)
...@@ -23,7 +23,8 @@ def permute_weights(name, data=None): ...@@ -23,7 +23,8 @@ def permute_weights(name, data=None):
return weights_name return weights_name
register(kind='Permute', register(
kind='Permute',
shape=permute_shape, shape=permute_shape,
layer=permute_layer, layer=permute_layer,
weights=permute_weights) weights=permute_weights)
...@@ -30,7 +30,8 @@ def priorbox_layer(inputs, ...@@ -30,7 +30,8 @@ def priorbox_layer(inputs,
steps = tuple(step) if type(step) is list or type(step) is tuple else (step, steps = tuple(step) if type(step) is list or type(step) is tuple else (step,
step) step)
box, variance_ = fluid.layers.prior_box(input, box, variance_ = fluid.layers.prior_box(
input,
image, image,
min_sizes=min_size, min_sizes=min_size,
max_sizes=max_size, max_sizes=max_size,
...@@ -53,7 +54,8 @@ def priorbox_weights(name, data=None): ...@@ -53,7 +54,8 @@ def priorbox_weights(name, data=None):
return weights_name return weights_name
register(kind='PriorBox', register(
kind='PriorBox',
shape=priorbox_shape, shape=priorbox_shape,
layer=priorbox_layer, layer=priorbox_layer,
weights=priorbox_weights) weights=priorbox_weights)
...@@ -23,8 +23,7 @@ def register(kind, shape, layer, weights): ...@@ -23,8 +23,7 @@ def register(kind, shape, layer, weights):
kind = [kind] kind = [kind]
else: else:
assert type( assert type(
kind kind) is list, 'invalid param "kind" for register, not a list or str'
) is list, 'invalid param "kind" for register, not a list or str'
for k in kind: for k in kind:
assert type( assert type(
......
...@@ -21,7 +21,8 @@ def roipooling_layer(inputs, ...@@ -21,7 +21,8 @@ def roipooling_layer(inputs,
input = inputs[0] input = inputs[0]
roi = inputs[1] roi = inputs[1]
roi = fluid.layers.slice(roi, axes=[1], starts=[1], ends=[5]) roi = fluid.layers.slice(roi, axes=[1], starts=[1], ends=[5])
out = fluid.layers.roi_pool(input, out = fluid.layers.roi_pool(
input,
roi, roi,
pooled_height=pooled_h, pooled_height=pooled_h,
pooled_width=pooled_w, pooled_width=pooled_w,
...@@ -34,7 +35,8 @@ def roipooling_weights(name, data=None): ...@@ -34,7 +35,8 @@ def roipooling_weights(name, data=None):
return weights_name return weights_name
register(kind='ROIPooling', register(
kind='ROIPooling',
shape=roipooling_shape, shape=roipooling_shape,
layer=roipooling_layer, layer=roipooling_layer,
weights=roipooling_weights) weights=roipooling_weights)
...@@ -30,7 +30,8 @@ def select_layer(inputs, ...@@ -30,7 +30,8 @@ def select_layer(inputs,
out = [] out = []
for i in range(len(slice_point)): for i in range(len(slice_point)):
out.append( out.append(
fluid.layers.slice(input, fluid.layers.slice(
input,
axes=[axis], axes=[axis],
starts=[slice_point[i]], starts=[slice_point[i]],
ends=[slice_point[i + 1]], ends=[slice_point[i + 1]],
...@@ -45,7 +46,8 @@ def select_weights(name, data=None): ...@@ -45,7 +46,8 @@ def select_weights(name, data=None):
return weights_name return weights_name
register(kind='Select', register(
kind='Select',
shape=select_shape, shape=select_shape,
layer=select_layer, layer=select_layer,
weights=select_weights) weights=select_weights)
...@@ -17,7 +17,8 @@ def shufflechannel_weights(name, data=None): ...@@ -17,7 +17,8 @@ def shufflechannel_weights(name, data=None):
return weights_name return weights_name
register(kind='ShuffleChannel', register(
kind='ShuffleChannel',
shape=shufflechannel_shape, shape=shufflechannel_shape,
layer=shufflechannel_layer, layer=shufflechannel_layer,
weights=shufflechannel_weights) weights=shufflechannel_weights)
...@@ -33,8 +33,8 @@ def get_kernel_parameters(params): ...@@ -33,8 +33,8 @@ def get_kernel_parameters(params):
[s_h, s_w] = [params.stride] * 2 [s_h, s_w] = [params.stride] * 2
elif len(params.stride) > 0: elif len(params.stride) > 0:
s_h = params.stride_h if params.stride_h > 0 else params.stride[0] s_h = params.stride_h if params.stride_h > 0 else params.stride[0]
s_w = params.stride_w if params.stride_w > 0 else params.stride[ s_w = params.stride_w if params.stride_w > 0 else params.stride[len(
len(params.stride) - 1] params.stride) - 1]
elif params.stride_h > 0 or params.stride_w > 0: elif params.stride_h > 0 or params.stride_w > 0:
s_h = params.stride_h s_h = params.stride_h
s_w = params.stride_w s_w = params.stride_w
......
...@@ -24,21 +24,18 @@ def InstanceNormalization_layer(inputs, name=None): ...@@ -24,21 +24,18 @@ def InstanceNormalization_layer(inputs, name=None):
epsilon = 1e-5 epsilon = 1e-5
input_ = inputs[0] input_ = inputs[0]
mean = fluid.layers.reduce_mean(input_, dim=[2, 3], keep_dim=True) mean = fluid.layers.reduce_mean(input_, dim=[2, 3], keep_dim=True)
var = fluid.layers.reduce_mean(fluid.layers.square(input_ - mean), var = fluid.layers.reduce_mean(
dim=[2, 3], fluid.layers.square(input_ - mean), dim=[2, 3], keep_dim=True)
keep_dim=True)
if name is not None: if name is not None:
scale_name = name + "_scale" scale_name = name + "_scale"
offset_name = name + "_offset" offset_name = name + "_offset"
scale_param = inputs[1] scale_param = inputs[1]
offset_param = inputs[2] offset_param = inputs[2]
scale = fluid.layers.create_parameter(name=scale_param.name, scale = fluid.layers.create_parameter(
shape=input_.shape[1:2], name=scale_param.name, shape=input_.shape[1:2], dtype="float32")
dtype="float32") offset = fluid.layers.create_parameter(
offset = fluid.layers.create_parameter(name=offset_param.name, name=offset_param.name, shape=input_.shape[1:2], dtype="float32")
shape=input_.shape[1:2],
dtype="float32")
tmp = fluid.layers.elementwise_mul(x=(input_ - mean), y=scale, axis=1) tmp = fluid.layers.elementwise_mul(x=(input_ - mean), y=scale, axis=1)
tmp = tmp / fluid.layers.sqrt(var + epsilon) tmp = tmp / fluid.layers.sqrt(var + epsilon)
...@@ -51,7 +48,8 @@ def InstanceNormalization_weights(name, data=None): ...@@ -51,7 +48,8 @@ def InstanceNormalization_weights(name, data=None):
return weights_name return weights_name
register(kind='InstanceNormalization', register(
kind='InstanceNormalization',
shape=InstanceNormalization_shape, shape=InstanceNormalization_shape,
layer=InstanceNormalization_layer, layer=InstanceNormalization_layer,
child_func=None, child_func=None,
......
...@@ -36,8 +36,7 @@ def register(kind, shape, layer, child_func, weights): ...@@ -36,8 +36,7 @@ def register(kind, shape, layer, child_func, weights):
kind = [kind] kind = [kind]
else: else:
assert type( assert type(
kind kind) is list, 'invalid param "kind" for register, not a list or str'
) is list, 'invalid param "kind" for register, not a list or str'
for k in kind: for k in kind:
assert type( assert type(
......
...@@ -28,60 +28,49 @@ default_op_mapping_field_values['FILL_NAME_FIELD'] = True ...@@ -28,60 +28,49 @@ default_op_mapping_field_values['FILL_NAME_FIELD'] = True
default_op_mapping = { default_op_mapping = {
'Shape': ['shape', ['X'], ['Out']], 'Shape': ['shape', ['X'], ['Out']],
'Clip': [ 'Clip': [
'clip', ['X'], ['Out'], 'clip', ['X'], ['Out'], dict(), dict(
dict(), min=(_np.asarray(
dict( [255, 255, 127, 255], dtype=_np.uint8).view(_np.float32)[0]),
min=(_np.asarray([255, 255, 127, 255], max=(_np.asarray(
dtype=_np.uint8).view(_np.float32)[0]), [255, 255, 127, 127], dtype=_np.uint8).view(_np.float32)[0]), )
max=(_np.asarray([255, 255, 127, 127],
dtype=_np.uint8).view(_np.float32)[0]),
)
], ],
'Erf': ['erf', ['X'], ['Out']], 'Erf': ['erf', ['X'], ['Out']],
'Ceil': ['ceil', ['X'], ['Out']], 'Ceil': ['ceil', ['X'], ['Out']],
'ReduceMean': [ 'ReduceMean': [
'reduce_mean', ['X'], ['Out'], 'reduce_mean', ['X'], ['Out'], dict(
dict(axes='dim', keepdims='keep_dim'), axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
dict(keep_dim=1)
], ],
'ReduceSum': [ 'ReduceSum': [
'reduce_sum', ['X'], ['Out'], 'reduce_sum', ['X'], ['Out'], dict(
dict(axes='dim', keepdims='keep_dim'), axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
dict(keep_dim=1)
], ],
'ReduceMin': [ 'ReduceMin': [
'reduce_min', ['X'], ['Out'], 'reduce_min', ['X'], ['Out'], dict(
dict(axes='dim', keepdims='keep_dim'), axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
dict(keep_dim=1)
], ],
'ReduceMax': [ 'ReduceMax': [
'reduce_max', ['X'], ['Out'], 'reduce_max', ['X'], ['Out'], dict(
dict(axes='dim', keepdims='keep_dim'), axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
dict(keep_dim=1)
], ],
#active function #active function
'Relu': ['relu', ['X'], ['Out']], 'Relu': ['relu', ['X'], ['Out']],
'LeakyRelu': ['leaky_relu', ['X'], ['Out'], 'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)],
dict(), dict(alpha=.01)], 'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)],
'Elu': ['elu', ['X'], ['Out'],
dict(), dict(alpha=1.)],
'ThresholdedRelu': [ 'ThresholdedRelu': [
'thresholded_relu', ['X'], ['Out'], 'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'),
dict(alpha='threshold'),
dict(alpha=1.) dict(alpha=1.)
], ],
'Tanh': ['tanh', ['X'], ['Out']], 'Tanh': ['tanh', ['X'], ['Out']],
'Sigmoid': ['sigmoid', ['X'], ['Out']], 'Sigmoid': ['sigmoid', ['X'], ['Out']],
'HardSigmoid': [ 'HardSigmoid': [
'hard_sigmoid', ['X'], ['Out'], 'hard_sigmoid', ['X'], ['Out'], dict(
dict(alpha='slope', beta='offset'), alpha='slope', beta='offset'), dict(
dict(slope=.2, offset=.5) slope=.2, offset=.5)
], ],
'Softsign': ['softsign', ['X'], ['Out']], 'Softsign': ['softsign', ['X'], ['Out']],
'Softplus': ['softplus', ['X'], ['Out']], 'Softplus': ['softplus', ['X'], ['Out']],
'Exp': ['exp', ['X'], ['Out']], 'Exp': ['exp', ['X'], ['Out']],
'Softmax': ['softmax', ['X'], ['Out'], 'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)],
dict(), dict(axis=1)],
'Sqrt': ['sqrt', ['X'], ['Out']], 'Sqrt': ['sqrt', ['X'], ['Out']],
'Floor': ['floor', ['X'], ['Out']], 'Floor': ['floor', ['X'], ['Out']],
'Abs': ['abs', ['X'], ['Out']], 'Abs': ['abs', ['X'], ['Out']],
......
...@@ -140,8 +140,8 @@ class ONNXOpMapper(OpMapper): ...@@ -140,8 +140,8 @@ class ONNXOpMapper(OpMapper):
model.graph.ClearField('output') model.graph.ClearField('output')
model.graph.output.MergeFrom(model.graph.value_info) model.graph.output.MergeFrom(model.graph.value_info)
onnx.save(model, os.path.join(self.tmp_data_dir, onnx.save(model,
'onnx_model_infer.onnx')) os.path.join(self.tmp_data_dir, 'onnx_model_infer.onnx'))
sess = rt.InferenceSession( sess = rt.InferenceSession(
os.path.join(self.tmp_data_dir, 'onnx_model_infer.onnx')) os.path.join(self.tmp_data_dir, 'onnx_model_infer.onnx'))
res = sess.run(None, input_feed=inputs_dict) res = sess.run(None, input_feed=inputs_dict)
...@@ -217,8 +217,7 @@ class ONNXOpMapper(OpMapper): ...@@ -217,8 +217,7 @@ class ONNXOpMapper(OpMapper):
default_attrs, default_attrs,
input_perm, input_perm,
output_perm, output_perm,
fill_name_field, fill_name_field, ) = info
) = info
if fluid_op in default_ioa_constraint: if fluid_op in default_ioa_constraint:
for predicate, message in default_ioa_constraint[fluid_op]: for predicate, message in default_ioa_constraint[fluid_op]:
...@@ -429,10 +428,8 @@ class ONNXOpMapper(OpMapper): ...@@ -429,10 +428,8 @@ class ONNXOpMapper(OpMapper):
} }
node.fluid_code.add_layer( node.fluid_code.add_layer(
'roi_align', 'roi_align',
inputs={ inputs={'input': val_x,
'input': val_x, 'rois': val_rois},
'rois': val_rois
},
output=node, output=node,
param_attr=attr) param_attr=attr)
...@@ -449,10 +446,8 @@ class ONNXOpMapper(OpMapper): ...@@ -449,10 +446,8 @@ class ONNXOpMapper(OpMapper):
} }
node.fluid_code.add_layer( node.fluid_code.add_layer(
'roi_pool', 'roi_pool',
inputs={ inputs={'input': val_x,
'input': val_x, 'rois': val_rois},
'rois': val_rois
},
output=node, output=node,
param_attr=attr) param_attr=attr)
...@@ -527,10 +522,8 @@ class ONNXOpMapper(OpMapper): ...@@ -527,10 +522,8 @@ class ONNXOpMapper(OpMapper):
val_y = self.graph.get_input_node(node, idx=1, copy=True) val_y = self.graph.get_input_node(node, idx=1, copy=True)
node.fluid_code.add_layer( node.fluid_code.add_layer(
'greater_than', 'greater_than',
inputs={ inputs={'x': val_x,
'x': val_x, 'y': val_y},
'y': val_y
},
output=node, output=node,
param_attr=None) param_attr=None)
...@@ -549,8 +542,7 @@ class ONNXOpMapper(OpMapper): ...@@ -549,8 +542,7 @@ class ONNXOpMapper(OpMapper):
shape = val_output.out_shapes[0] shape = val_output.out_shapes[0]
if shape is None: if shape is None:
shape = list(value.shape) shape = list(value.shape)
_logger.warning( _logger.warning('in (Constant -> %s): '
'in (Constant -> %s): '
'attribute "shape" of %s not inferred, ' 'attribute "shape" of %s not inferred, '
'using value as 1-D tensor may lead to fails', 'using value as 1-D tensor may lead to fails',
val_output.layer_name, val_output.layer_name) val_output.layer_name, val_output.layer_name)
...@@ -616,10 +608,8 @@ class ONNXOpMapper(OpMapper): ...@@ -616,10 +608,8 @@ class ONNXOpMapper(OpMapper):
if axis == 0 and len(indices_shape) <= 1: if axis == 0 and len(indices_shape) <= 1:
node.fluid_code.add_layer( node.fluid_code.add_layer(
'gather', 'gather',
inputs={ inputs={'input': val_x,
'input': val_x, 'index': indices},
'index': indices
},
output=node, output=node,
param_attr=None) param_attr=None)
elif axis > 0 and len(indices_shape) <= 1: elif axis > 0 and len(indices_shape) <= 1:
...@@ -634,10 +624,8 @@ class ONNXOpMapper(OpMapper): ...@@ -634,10 +624,8 @@ class ONNXOpMapper(OpMapper):
param_attr=attr_trans) param_attr=attr_trans)
node.fluid_code.add_layer( node.fluid_code.add_layer(
'gather', 'gather',
inputs={ inputs={'input': name_trans,
'input': name_trans, 'index': indices},
'index': indices
},
output=node, output=node,
param_attr=None) param_attr=None)
node.fluid_code.add_layer( node.fluid_code.add_layer(
...@@ -649,9 +637,7 @@ class ONNXOpMapper(OpMapper): ...@@ -649,9 +637,7 @@ class ONNXOpMapper(OpMapper):
'reshape', 'reshape',
inputs=indices, inputs=indices,
output=indices, output=indices,
param_attr={'shape': [ param_attr={'shape': [reshape_shape, ]})
reshape_shape,
]})
perm = list(range(len(val_x.out_shapes[0]))) perm = list(range(len(val_x.out_shapes[0])))
perm = [axis] + perm[:axis] + perm[axis + 1:] perm = [axis] + perm[:axis] + perm[axis + 1:]
...@@ -664,10 +650,8 @@ class ONNXOpMapper(OpMapper): ...@@ -664,10 +650,8 @@ class ONNXOpMapper(OpMapper):
param_attr=attr_trans) param_attr=attr_trans)
node.fluid_code.add_layer( node.fluid_code.add_layer(
'gather', 'gather',
inputs={ inputs={'input': name_trans,
'input': name_trans, 'index': indices},
'index': indices
},
output=node, output=node,
param_attr=None) param_attr=None)
node.fluid_code.add_layer( node.fluid_code.add_layer(
...@@ -926,8 +910,10 @@ class ONNXOpMapper(OpMapper): ...@@ -926,8 +910,10 @@ class ONNXOpMapper(OpMapper):
def Sum(self, node): def Sum(self, node):
val_inps = node.layer.input val_inps = node.layer.input
inputs = { inputs = {
"x": self.graph.get_input_node(node, idx=0, copy=True), "x": self.graph.get_input_node(
"y": self.graph.get_input_node(node, idx=1, copy=True), node, idx=0, copy=True),
"y": self.graph.get_input_node(
node, idx=1, copy=True),
} }
node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node) node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
...@@ -1022,10 +1008,8 @@ class ONNXOpMapper(OpMapper): ...@@ -1022,10 +1008,8 @@ class ONNXOpMapper(OpMapper):
val_y = self.graph.get_input_node(node, idx=1, copy=True) val_y = self.graph.get_input_node(node, idx=1, copy=True)
node.fluid_code.add_layer( node.fluid_code.add_layer(
"equal", "equal",
inputs={ inputs={'x': val_x,
'x': val_x, 'y': val_y},
'y': val_y
},
output=node, output=node,
param_attr=None) param_attr=None)
...@@ -1055,29 +1039,23 @@ class ONNXOpMapper(OpMapper): ...@@ -1055,29 +1039,23 @@ class ONNXOpMapper(OpMapper):
mul_val_x = val_x.layer_name + '_mul' mul_val_x = val_x.layer_name + '_mul'
node.fluid_code.add_layer( node.fluid_code.add_layer(
"elementwise_mul", "elementwise_mul",
inputs={ inputs={'x': val_x,
'x': val_x, 'y': cast_condition},
'y': cast_condition
},
output=mul_val_x, output=mul_val_x,
param_attr=None) param_attr=None)
mul_val_y = val_y.layer_name + '_mul' mul_val_y = val_y.layer_name + '_mul'
node.fluid_code.add_layer( node.fluid_code.add_layer(
"elementwise_mul", "elementwise_mul",
inputs={ inputs={'x': val_y,
'x': val_y, 'y': cast_not_condition},
'y': cast_not_condition
},
output=mul_val_y, output=mul_val_y,
param_attr=None) param_attr=None)
node.fluid_code.add_layer( node.fluid_code.add_layer(
"elementwise_add", "elementwise_add",
inputs={ inputs={'x': mul_val_x,
'x': mul_val_x, 'y': mul_val_y},
'y': mul_val_y
},
output=node, output=node,
param_attr=None) param_attr=None)
...@@ -1106,7 +1084,8 @@ class ONNXOpMapper(OpMapper): ...@@ -1106,7 +1084,8 @@ class ONNXOpMapper(OpMapper):
output=flatten_name, output=flatten_name,
param_attr={'axis': 0}) param_attr={'axis': 0})
node.fluid_code.add_layer( node.fluid_code.add_layer(
"concat", inputs=flatten_names, output=node, param_attr={'axis': 0}) "concat", inputs=flatten_names, output=node,
param_attr={'axis': 0})
def Identity(self, node): def Identity(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True) val_x = self.graph.get_input_node(node, idx=0, copy=True)
...@@ -1280,11 +1259,11 @@ class ONNXOpMapper(OpMapper): ...@@ -1280,11 +1259,11 @@ class ONNXOpMapper(OpMapper):
output_size = [0, 0] output_size = [0, 0]
output_size[0] = (val_x.out_shapes[0][2] - output_size[0] = (val_x.out_shapes[0][2] - 1
1) * strides[0] - 2 * paddings[0] + dilations[0] * ( ) * strides[0] - 2 * paddings[0] + dilations[0] * (
kernel_shape[0] - 1) + 1 + out_padding[0] kernel_shape[0] - 1) + 1 + out_padding[0]
output_size[1] = (val_x.out_shapes[0][3] - output_size[1] = (val_x.out_shapes[0][3] - 1
1) * strides[1] - 2 * paddings[1] + dilations[1] * ( ) * strides[1] - 2 * paddings[1] + dilations[1] * (
kernel_shape[1] - 1) + 1 + out_padding[1] kernel_shape[1] - 1) + 1 + out_padding[1]
attr = { attr = {
'num_filters': num_out_channels, 'num_filters': num_out_channels,
...@@ -1367,29 +1346,23 @@ class ONNXOpMapper(OpMapper): ...@@ -1367,29 +1346,23 @@ class ONNXOpMapper(OpMapper):
'squeeze', 'squeeze',
inputs=val_x, inputs=val_x,
output=var_x0, output=var_x0,
param_attr={ param_attr={'axes': [1],
'axes': [1], 'name': string(var_x0)})
'name': string(var_x0)
})
var_w0 = node.layer_name + '_w0' var_w0 = node.layer_name + '_w0'
node.fluid_code.add_layer( node.fluid_code.add_layer(
'squeeze', 'squeeze',
inputs=val_w, inputs=val_w,
output=var_w0, output=var_w0,
param_attr={ param_attr={'axes': [0],
'axes': [0], 'name': string(var_w0)})
'name': string(var_w0)
})
var_fc = node.layer_name + '_fc' var_fc = node.layer_name + '_fc'
var_mm = (node.layer_name + '_mm') if val_b else var_fc var_mm = (node.layer_name + '_mm') if val_b else var_fc
node.fluid_code.add_layer( node.fluid_code.add_layer(
'matmul', 'matmul',
inputs={ inputs={'x': var_x0,
'x': var_x0, 'y': var_w0},
'y': var_w0
},
output=var_mm, output=var_mm,
param_attr={ param_attr={
'transpose_x': 0, 'transpose_x': 0,
...@@ -1402,10 +1375,8 @@ class ONNXOpMapper(OpMapper): ...@@ -1402,10 +1375,8 @@ class ONNXOpMapper(OpMapper):
'squeeze', 'squeeze',
inputs=val_r, inputs=val_r,
output=var_r0, output=var_r0,
param_attr={ param_attr={'axes': [0],
'axes': [0], 'name': string(var_r0)})
'name': string(var_r0)
})
var_r0t = node.layer_name + '_r0t' var_r0t = node.layer_name + '_r0t'
...@@ -1413,10 +1384,8 @@ class ONNXOpMapper(OpMapper): ...@@ -1413,10 +1384,8 @@ class ONNXOpMapper(OpMapper):
'transpose', 'transpose',
inputs=var_r0, inputs=var_r0,
output=var_r0t, output=var_r0t,
param_attr={ param_attr={'perm': [1, 0],
'perm': [1, 0], 'name': string(var_r0t)})
'name': string(var_r0t)
})
if val_b: if val_b:
var_bi = node.layer_name + '_bi' var_bi = node.layer_name + '_bi'
var_bh = node.layer_name + '_bh' var_bh = node.layer_name + '_bh'
...@@ -1434,10 +1403,8 @@ class ONNXOpMapper(OpMapper): ...@@ -1434,10 +1403,8 @@ class ONNXOpMapper(OpMapper):
'squeeze', 'squeeze',
inputs=var_bi, inputs=var_bi,
output=var_bi0, output=var_bi0,
param_attr={ param_attr={'axes': [0],
'axes': [0], 'name': string(var_bi0)})
'name': string(var_bi0)
})
node.fluid_code.add_layer( node.fluid_code.add_layer(
'elmentwise_add', 'elmentwise_add',
...@@ -1454,10 +1421,8 @@ class ONNXOpMapper(OpMapper): ...@@ -1454,10 +1421,8 @@ class ONNXOpMapper(OpMapper):
'squeeze', 'squeeze',
inputs=val_xh, inputs=val_xh,
output=var_xh0, output=var_xh0,
param_attr={ param_attr={'axes': [1],
'axes': [1], 'name': string(var_xh0)})
'name': string(var_xh0)
})
var_y00 = node.layer_name + '_y00' var_y00 = node.layer_name + '_y00'
attr = { attr = {
......
...@@ -30,8 +30,8 @@ def im2sequence(op, block): ...@@ -30,8 +30,8 @@ def im2sequence(op, block):
slice_blocks = list() slice_blocks = list()
for i in range(out_h): for i in range(out_h):
for j in range(out_w): for j in range(out_w):
starts_name = "im2sequence.starts.{}.{}.{}".format( starts_name = "im2sequence.starts.{}.{}.{}".format(im2seq_counter,
im2seq_counter, i, j) i, j)
starts_tensor = helper.make_tensor( starts_tensor = helper.make_tensor(
name=starts_name, name=starts_name,
data_type=onnx_pb.TensorProto.INT64, data_type=onnx_pb.TensorProto.INT64,
......
...@@ -44,8 +44,7 @@ def multiclass_nms(op, block): ...@@ -44,8 +44,7 @@ def multiclass_nms(op, block):
if normalized == False: if normalized == False:
warnings.warn( warnings.warn(
'The parameter normalized of multiclass_nms OP of Paddle is False, which has diff with ONNX. \ 'The parameter normalized of multiclass_nms OP of Paddle is False, which has diff with ONNX. \
Please set normalized=True in multiclass_nms of Paddle' Please set normalized=True in multiclass_nms of Paddle')
)
#convert the paddle attribute to onnx tensor #convert the paddle attribute to onnx tensor
name_score_threshold = [outputs['Out'][0] + "@score_threshold"] name_score_threshold = [outputs['Out'][0] + "@score_threshold"]
...@@ -353,7 +352,8 @@ def multiclass_nms(op, block): ...@@ -353,7 +352,8 @@ def multiclass_nms(op, block):
outputs_gather_topk_class = [result_name + "@gather_topk_class"] outputs_gather_topk_class = [result_name + "@gather_topk_class"]
node_gather_topk_class = onnx.helper.make_node( node_gather_topk_class = onnx.helper.make_node(
'Gather', 'Gather',
inputs=outputs_gather_1_nonzero + [outputs_topk_select_topk_indices[1]], inputs=outputs_gather_1_nonzero +
[outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_class, outputs=outputs_gather_topk_class,
axis=1) axis=1)
node_list.append(node_gather_topk_class) node_list.append(node_gather_topk_class)
...@@ -362,7 +362,8 @@ def multiclass_nms(op, block): ...@@ -362,7 +362,8 @@ def multiclass_nms(op, block):
outputs_gather_topk_boxes_id = [result_name + "@gather_topk_boxes_id"] outputs_gather_topk_boxes_id = [result_name + "@gather_topk_boxes_id"]
node_gather_topk_boxes_id = onnx.helper.make_node( node_gather_topk_boxes_id = onnx.helper.make_node(
'Gather', 'Gather',
inputs=outputs_gather_2_nonzero + [outputs_topk_select_topk_indices[1]], inputs=outputs_gather_2_nonzero +
[outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_boxes_id, outputs=outputs_gather_topk_boxes_id,
axis=1) axis=1)
node_list.append(node_gather_topk_boxes_id) node_list.append(node_gather_topk_boxes_id)
......
...@@ -4,8 +4,6 @@ from onnx import onnx_pb, helper ...@@ -4,8 +4,6 @@ from onnx import onnx_pb, helper
def get_old_name(arg, name_prefix=''): def get_old_name(arg, name_prefix=''):
"""Get the old rame for a possible renamed argument
"""
prefix_index = arg.find(name_prefix) prefix_index = arg.find(name_prefix)
if prefix_index != -1: if prefix_index != -1:
...@@ -40,8 +38,8 @@ def yolo_box(op, block): ...@@ -40,8 +38,8 @@ def yolo_box(op, block):
downsample_ratio = attrs['downsample_ratio'] downsample_ratio = attrs['downsample_ratio']
input_size = input_height * downsample_ratio input_size = input_height * downsample_ratio
conf_thresh = attrs['conf_thresh'] conf_thresh = attrs['conf_thresh']
conf_thresh_mat = np.ones([num_anchors * input_height * input_width conf_thresh_mat = np.ones([num_anchors * input_height *
]) * conf_thresh input_width]) * conf_thresh
node_list = [] node_list = []
im_outputs = [] im_outputs = []
......
...@@ -250,8 +250,7 @@ class PaddleOpMapper(object): ...@@ -250,8 +250,7 @@ class PaddleOpMapper(object):
node = helper.make_node( node = helper.make_node(
pool_type[op.attr('pooling_type')][1], pool_type[op.attr('pooling_type')][1],
inputs=op.input('X'), inputs=op.input('X'),
outputs=op.output('Out'), outputs=op.output('Out'), )
)
else: else:
input_shape = block.var(op.input('X')[0]).shape input_shape = block.var(op.input('X')[0]).shape
k_size = op.attr('ksize') k_size = op.attr('ksize')
...@@ -407,8 +406,7 @@ class PaddleOpMapper(object): ...@@ -407,8 +406,7 @@ class PaddleOpMapper(object):
node = helper.make_node( node = helper.make_node(
'Clip', 'Clip',
inputs=[op.input('X')[0], min_name, max_name], inputs=[op.input('X')[0], min_name, max_name],
outputs=op.output('Out'), outputs=op.output('Out'), )
)
return [min_node, max_node, node] return [min_node, max_node, node]
def shape(self, op, block): def shape(self, op, block):
...@@ -450,8 +448,7 @@ class PaddleOpMapper(object): ...@@ -450,8 +448,7 @@ class PaddleOpMapper(object):
node = helper.make_node( node = helper.make_node(
"Slice", "Slice",
inputs=[op.input('Input')[0], starts_name, ends_name, axes_name], inputs=[op.input('Input')[0], starts_name, ends_name, axes_name],
outputs=op.output('Out'), outputs=op.output('Out'), )
)
return [starts_node, ends_node, axes_node, node] return [starts_node, ends_node, axes_node, node]
def fill_constant(self, op, block): def fill_constant(self, op, block):
...@@ -551,8 +548,8 @@ class PaddleOpMapper(object): ...@@ -551,8 +548,8 @@ class PaddleOpMapper(object):
if op.attr('align_corners'): if op.attr('align_corners'):
coordinate_transformation_mode = 'align_corners' coordinate_transformation_mode = 'align_corners'
if ('OutSize' in input_names and len(op.input('OutSize')) > 0) or ( if ('OutSize' in input_names and len(op.input('OutSize')) > 0) or (
'SizeTensor' in input_names 'SizeTensor' in input_names and
and len(op.input('SizeTensor')) > 0): len(op.input('SizeTensor')) > 0):
node_list = list() node_list = list()
roi_node = self.make_constant_node( roi_node = self.make_constant_node(
self.get_name(op.type, 'roi'), onnx_pb.TensorProto.FLOAT, self.get_name(op.type, 'roi'), onnx_pb.TensorProto.FLOAT,
...@@ -631,8 +628,7 @@ class PaddleOpMapper(object): ...@@ -631,8 +628,7 @@ class PaddleOpMapper(object):
elif 'Scale' in input_names and len(op.input('Scale')) > 0: elif 'Scale' in input_names and len(op.input('Scale')) > 0:
node = helper.make_node( node = helper.make_node(
'Resize', 'Resize',
inputs=[op.input('X')[0], inputs=[op.input('X')[0], op.input('Scale')[0]],
op.input('Scale')[0]],
outputs=op.output('Out'), outputs=op.output('Out'),
mode='linear', mode='linear',
coordinate_transformation_mode=coordinate_transformation_mode) coordinate_transformation_mode=coordinate_transformation_mode)
...@@ -641,8 +637,9 @@ class PaddleOpMapper(object): ...@@ -641,8 +637,9 @@ class PaddleOpMapper(object):
scale = op.attr('scale') scale = op.attr('scale')
if out_shape.count(-1) > 0: if out_shape.count(-1) > 0:
scale_name = self.get_name(op.type, 'scale') scale_name = self.get_name(op.type, 'scale')
scale_node = self.make_constant_node( scale_node = self.make_constant_node(scale_name,
scale_name, onnx_pb.TensorProto.FLOAT, [1, 1, scale, scale]) onnx_pb.TensorProto.FLOAT,
[1, 1, scale, scale])
roi_name = self.get_name(op.type, 'roi') roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(roi_name, roi_node = self.make_constant_node(roi_name,
onnx_pb.TensorProto.FLOAT, onnx_pb.TensorProto.FLOAT,
...@@ -667,16 +664,14 @@ class PaddleOpMapper(object): ...@@ -667,16 +664,14 @@ class PaddleOpMapper(object):
if 'OutSize' in input_names and len(op.input('OutSize')) > 0: if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
node = helper.make_node( node = helper.make_node(
'Resize', 'Resize',
inputs=[op.input('X')[0], '', inputs=[op.input('X')[0], '', op.input('OutSize')[0]],
op.input('OutSize')[0]],
outputs=op.output('Out'), outputs=op.output('Out'),
mode='nearest', mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode) coordinate_transformation_mode=coordinate_transformation_mode)
elif 'Scale' in input_names and len(op.input('Scale')) > 0: elif 'Scale' in input_names and len(op.input('Scale')) > 0:
node = helper.make_node( node = helper.make_node(
'Resize', 'Resize',
inputs=[op.input('X')[0], inputs=[op.input('X')[0], op.input('Scale')[0]],
op.input('Scale')[0]],
outputs=op.output('Out'), outputs=op.output('Out'),
mode='nearest', mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode) coordinate_transformation_mode=coordinate_transformation_mode)
...@@ -685,8 +680,9 @@ class PaddleOpMapper(object): ...@@ -685,8 +680,9 @@ class PaddleOpMapper(object):
scale = op.attr('scale') scale = op.attr('scale')
if out_shape.count(-1) > 0: if out_shape.count(-1) > 0:
scale_name = self.get_name(op.type, 'scale') scale_name = self.get_name(op.type, 'scale')
scale_node = self.make_constant_node( scale_node = self.make_constant_node(scale_name,
scale_name, onnx_pb.TensorProto.FLOAT, [1, 1, scale, scale]) onnx_pb.TensorProto.FLOAT,
[1, 1, scale, scale])
roi_name = self.get_name(op.type, 'roi') roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(roi_name, roi_node = self.make_constant_node(roi_name,
onnx_pb.TensorProto.FLOAT, onnx_pb.TensorProto.FLOAT,
...@@ -737,8 +733,7 @@ class PaddleOpMapper(object): ...@@ -737,8 +733,7 @@ class PaddleOpMapper(object):
node1 = helper.make_node( node1 = helper.make_node(
'Clip', 'Clip',
inputs=[name0, min_name, max_name], inputs=[name0, min_name, max_name],
outputs=[name1], outputs=[name1], )
)
name2 = self.get_name(op.type, 'mul') name2 = self.get_name(op.type, 'mul')
node2 = helper.make_node( node2 = helper.make_node(
'Mul', inputs=[op.input('X')[0], name1], outputs=[name2]) 'Mul', inputs=[op.input('X')[0], name1], outputs=[name2])
...@@ -814,14 +809,6 @@ class PaddleOpMapper(object): ...@@ -814,14 +809,6 @@ class PaddleOpMapper(object):
keepdims=0) keepdims=0)
return node return node
def yolo_box(self, op, block):
from .paddle_custom_layer.yolo_box import yolo_box
return yolo_box(op, block)
def multiclass_nms(self, op, block):
from .paddle_custom_layer.multiclass_nms import multiclass_nms
return multiclass_nms(op, block)
def reciprocal(self, op, block): def reciprocal(self, op, block):
inputs = op.input(op.input_names[0]) inputs = op.input(op.input_names[0])
outputs = op.output(op.output_names[0]) outputs = op.output(op.output_names[0])
......
此差异已折叠。
...@@ -486,8 +486,8 @@ class TFOpMapperNHWC(OpMapper): ...@@ -486,8 +486,8 @@ class TFOpMapperNHWC(OpMapper):
attr = {"shape": shape} attr = {"shape": shape}
self.add_omit_nodes(param.layer_name, node.layer_name) self.add_omit_nodes(param.layer_name, node.layer_name)
else: else:
assert len(param.out_shapes[0] assert len(param.out_shapes[
) == 1, "Unexpected situation of shape parameter" 0]) == 1, "Unexpected situation of shape parameter"
attr = {"shape": [-1]} attr = {"shape": [-1]}
node.fluid_code.add_layer( node.fluid_code.add_layer(
"reshape", "reshape",
...@@ -577,8 +577,8 @@ class TFOpMapperNHWC(OpMapper): ...@@ -577,8 +577,8 @@ class TFOpMapperNHWC(OpMapper):
def ConcatV2(self, node): def ConcatV2(self, node):
inputs = [ inputs = [
self.graph.get_node(name, copy=True) self.graph.get_node(
for name in node.layer.input[:-1] name, copy=True) for name in node.layer.input[:-1]
] ]
axis = self.graph.get_node(node.layer.input[-1], copy=True) axis = self.graph.get_node(node.layer.input[-1], copy=True)
assert axis.layer_type == "Const" assert axis.layer_type == "Const"
...@@ -608,7 +608,8 @@ class TFOpMapperNHWC(OpMapper): ...@@ -608,7 +608,8 @@ class TFOpMapperNHWC(OpMapper):
def Pack(self, node): def Pack(self, node):
inputs = [ inputs = [
self.graph.get_node(name, copy=True) for name in node.layer.input self.graph.get_node(
name, copy=True) for name in node.layer.input
] ]
axis = node.get_attr("axis") axis = node.get_attr("axis")
attr = {"axis": axis} attr = {"axis": axis}
...@@ -949,8 +950,8 @@ class TFOpMapperNHWC(OpMapper): ...@@ -949,8 +950,8 @@ class TFOpMapperNHWC(OpMapper):
if resize_shape.layer_type == "Const": if resize_shape.layer_type == "Const":
resize_shape = resize_shape.value.tolist() resize_shape = resize_shape.value.tolist()
else: else:
resize_shape = self.decoder.infer_shape_tensor( resize_shape = self.decoder.infer_shape_tensor(resize_shape,
resize_shape, node.out_shapes[0]) node.out_shapes[0])
align_corners = node.get_attr("align_corners") align_corners = node.get_attr("align_corners")
attr = {"perm": [0, 3, 1, 2]} attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer( node.fluid_code.add_layer(
...@@ -969,8 +970,8 @@ class TFOpMapperNHWC(OpMapper): ...@@ -969,8 +970,8 @@ class TFOpMapperNHWC(OpMapper):
if resize_shape.layer_type == "Const": if resize_shape.layer_type == "Const":
resize_shape = resize_shape.value.tolist() resize_shape = resize_shape.value.tolist()
else: else:
resize_shape = self.decoder.infer_shape_tensor( resize_shape = self.decoder.infer_shape_tensor(resize_shape,
resize_shape, node.out_shapes[0]) node.out_shapes[0])
align_corners = node.get_attr("align_corners") align_corners = node.get_attr("align_corners")
attr = {"perm": [0, 3, 1, 2]} attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer( node.fluid_code.add_layer(
......
...@@ -41,7 +41,8 @@ class CaffeOptimizer(object): ...@@ -41,7 +41,8 @@ class CaffeOptimizer(object):
if is_delete_node: if is_delete_node:
parent_node.fluid_code.clear() parent_node.fluid_code.clear()
node.fluid_code.clear() node.fluid_code.clear()
node.fluid_code.add_layer("batch_norm", node.fluid_code.add_layer(
"batch_norm",
inputs=input, inputs=input,
output=node, output=node,
param_attr=parent_param_attr) param_attr=parent_param_attr)
...@@ -62,7 +63,8 @@ class CaffeOptimizer(object): ...@@ -62,7 +63,8 @@ class CaffeOptimizer(object):
if is_delete_node: if is_delete_node:
parent_node.fluid_code.clear() parent_node.fluid_code.clear()
node.fluid_code.clear() node.fluid_code.clear()
node.fluid_code.add_layer(op, node.fluid_code.add_layer(
op,
inputs=input, inputs=input,
output=node, output=node,
param_attr=parent_param_attr) param_attr=parent_param_attr)
...@@ -554,7 +554,8 @@ class TFOptimizer(object): ...@@ -554,7 +554,8 @@ class TFOptimizer(object):
node.fluid_code.layers[0].param_attr["shape"] = shape node.fluid_code.layers[0].param_attr["shape"] = shape
node.fluid_code.layers[0].output = "nhwc_" + name node.fluid_code.layers[0].output = "nhwc_" + name
attr = {"perm": [0, 2, 3, 1]} attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose", node.fluid_code.add_layer(
"transpose",
inputs="nhwc_" + name, inputs="nhwc_" + name,
output=node, output=node,
param_attr=attr) param_attr=attr)
...@@ -767,8 +768,8 @@ class TFOptimizer(object): ...@@ -767,8 +768,8 @@ class TFOptimizer(object):
is_prelu = False is_prelu = False
continue continue
if len(in_nodes0[0].outputs) != 1 or len( if len(in_nodes0[0].outputs) != 1 or len(in_nodes0[1]
in_nodes0[1].outputs) != 1: .outputs) != 1:
is_prelu = False is_prelu = False
continue continue
...@@ -777,8 +778,8 @@ class TFOptimizer(object): ...@@ -777,8 +778,8 @@ class TFOptimizer(object):
self.graph.get_node(in_name) self.graph.get_node(in_name)
for in_name in in_nodes0[1].inputs for in_name in in_nodes0[1].inputs
] ]
if in_nodes2[1].layer_type != "Const" or numpy.fabs( if in_nodes2[1].layer_type != "Const" or numpy.fabs(in_nodes2[
in_nodes2[1].value - 0.5) > 1e-06: 1].value - 0.5) > 1e-06:
is_prelu = False is_prelu = False
continue continue
if in_nodes2[0].layer_type != "Mul": if in_nodes2[0].layer_type != "Mul":
...@@ -787,8 +788,8 @@ class TFOptimizer(object): ...@@ -787,8 +788,8 @@ class TFOptimizer(object):
if exist_act(in_nodes2[0]): if exist_act(in_nodes2[0]):
is_prelu = False is_prelu = False
continue continue
if len(in_nodes2[1].outputs) != 1 or len( if len(in_nodes2[1].outputs) != 1 or len(in_nodes2[0]
in_nodes2[0].outputs) != 1: .outputs) != 1:
is_prelu = False is_prelu = False
continue continue
...@@ -803,8 +804,8 @@ class TFOptimizer(object): ...@@ -803,8 +804,8 @@ class TFOptimizer(object):
if exist_act(in_nodes3[1]): if exist_act(in_nodes3[1]):
is_prelu = False is_prelu = False
continue continue
if len(in_nodes3[0].outputs) != 1 or len( if len(in_nodes3[0].outputs) != 1 or len(in_nodes3[1]
in_nodes3[1].outputs) != 1: .outputs) != 1:
is_prelu = False is_prelu = False
continue continue
...@@ -856,12 +857,12 @@ class TFOptimizer(object): ...@@ -856,12 +857,12 @@ class TFOptimizer(object):
mode = "element" mode = "element"
elif len(in_nodes3[0].value.shape) == 0: elif len(in_nodes3[0].value.shape) == 0:
mode = "all" mode = "all"
elif len(in_nodes3[0].value.shape elif len(in_nodes3[0].value.shape) == 1 and in_nodes3[
) == 1 and in_nodes3[0].value.shape[0] == 1: 0].value.shape[0] == 1:
mode = "all" mode = "all"
elif len(in_shape) == 4 and len( elif len(in_shape) == 4 and len(in_nodes3[
in_nodes3[0].value.shape 0].value.shape) == 1 and in_nodes3[0].value.shape[
) == 1 and in_nodes3[0].value.shape[0] == in_shape[-1]: 0] == in_shape[-1]:
mode = "channel" mode = "channel"
weight = self.op_mapper.weights[in_nodes3[0].layer_name] weight = self.op_mapper.weights[in_nodes3[0].layer_name]
weight = numpy.expand_dims(weight, 0) weight = numpy.expand_dims(weight, 0)
...@@ -916,14 +917,15 @@ class TFOptimizer(object): ...@@ -916,14 +917,15 @@ class TFOptimizer(object):
self.graph.get_node(in_name) for in_name in node.inputs self.graph.get_node(in_name) for in_name in node.inputs
] ]
if in_nodes0[0].layer_type != "Mul" or in_nodes0[ if in_nodes0[0].layer_type != "Mul" or in_nodes0[
1].layer_type != "Const" or in_nodes0[1].value.size != 1: 1].layer_type != "Const" or in_nodes0[
1].value.size != 1:
is_scale = False is_scale = False
continue continue
if exist_act(in_nodes0[0]): if exist_act(in_nodes0[0]):
is_scale = False is_scale = False
continue continue
if len(in_nodes0[0].outputs) != 1 or len( if len(in_nodes0[0].outputs) != 1 or len(in_nodes0[1]
in_nodes0[1].outputs) != 1: .outputs) != 1:
is_scale = False is_scale = False
continue continue
...@@ -939,8 +941,8 @@ class TFOptimizer(object): ...@@ -939,8 +941,8 @@ class TFOptimizer(object):
if exist_act(in_nodes1[1]): if exist_act(in_nodes1[1]):
is_scale = False is_scale = False
continue continue
if len(in_nodes1[0].outputs) != 1 or len( if len(in_nodes1[0].outputs) != 1 or len(in_nodes1[1]
in_nodes1[1].outputs) != 1: .outputs) != 1:
is_scale = False is_scale = False
continue continue
...@@ -962,8 +964,8 @@ class TFOptimizer(object): ...@@ -962,8 +964,8 @@ class TFOptimizer(object):
scale = 1.0 / in_nodes2[1].value * in_nodes1[0].value scale = 1.0 / in_nodes2[1].value * in_nodes1[0].value
act = None act = None
if node.fluid_code.layers[0].param_attr is not None: if node.fluid_code.layers[0].param_attr is not None:
act = node.fluid_code.layers[0].param_attr.get( act = node.fluid_code.layers[0].param_attr.get("act",
"act", None) None)
node.fluid_code.clear() node.fluid_code.clear()
attr = { attr = {
...@@ -972,10 +974,8 @@ class TFOptimizer(object): ...@@ -972,10 +974,8 @@ class TFOptimizer(object):
"bias_after_scale": True, "bias_after_scale": True,
"act": act "act": act
} }
node.fluid_code.add_layer("scale", node.fluid_code.add_layer(
inputs=in_node, "scale", inputs=in_node, output=node, param_attr=attr)
output=node,
param_attr=attr)
del self.graph.node_map[in_nodes0[0].layer_name] del self.graph.node_map[in_nodes0[0].layer_name]
del self.graph.node_map[in_nodes0[1].layer_name] del self.graph.node_map[in_nodes0[1].layer_name]
...@@ -1004,17 +1004,17 @@ class TFOptimizer(object): ...@@ -1004,17 +1004,17 @@ class TFOptimizer(object):
if exist_act(in_nodes0[0]): if exist_act(in_nodes0[0]):
is_affine_channel = False is_affine_channel = False
continue continue
if len(in_nodes0[0].outputs) != 1 or len( if len(in_nodes0[0].outputs) != 1 or len(in_nodes0[1]
in_nodes0[1].outputs) != 1: .outputs) != 1:
is_affine_channel = False is_affine_channel = False
continue continue
in_nodes1 = [ in_nodes1 = [
self.graph.get_node(in_name) self.graph.get_node(in_name)
for in_name in in_nodes0[0].inputs for in_name in in_nodes0[0].inputs
] ]
if len(in_nodes1[0].out_shapes[0] if len(in_nodes1[0].out_shapes[0]) != 4 or in_nodes1[
) != 4 or in_nodes1[1].layer_type != "Const" or len( 1].layer_type != "Const" or len(in_nodes1[1]
in_nodes1[1].value.shape) != 3: .value.shape) != 3:
is_affine_channel = False is_affine_channel = False
continue continue
if len(in_nodes1[1].outputs) != 1: if len(in_nodes1[1].outputs) != 1:
...@@ -1037,8 +1037,8 @@ class TFOptimizer(object): ...@@ -1037,8 +1037,8 @@ class TFOptimizer(object):
node.layer_type = "AffineChannel" node.layer_type = "AffineChannel"
node.inputs = [in_node.layer_name] node.inputs = [in_node.layer_name]
scale = 1.0 / in_nodes0[1].value.flatten() scale = 1.0 / in_nodes0[1].value.flatten()
bias = in_nodes1[1].value.flatten( bias = in_nodes1[1].value.flatten() / in_nodes0[
) / in_nodes0[1].value.flatten() 1].value.flatten()
if not bias_add: if not bias_add:
bias *= -1.0 bias *= -1.0
self.op_mapper.weights[node.layer_name + "_scale"] = scale self.op_mapper.weights[node.layer_name + "_scale"] = scale
...@@ -1046,8 +1046,8 @@ class TFOptimizer(object): ...@@ -1046,8 +1046,8 @@ class TFOptimizer(object):
act = None act = None
if node.fluid_code.layers[0].param_attr is not None: if node.fluid_code.layers[0].param_attr is not None:
act = node.fluid_code.layers[0].param_attr.get( act = node.fluid_code.layers[0].param_attr.get("act",
"act", None) None)
node.fluid_code.clear() node.fluid_code.clear()
attr = { attr = {
...@@ -1055,7 +1055,8 @@ class TFOptimizer(object): ...@@ -1055,7 +1055,8 @@ class TFOptimizer(object):
"shape": [channel], "shape": [channel],
"name": string(node.layer_name + "_scale") "name": string(node.layer_name + "_scale")
} }
node.fluid_code.add_layer("create_parameter", node.fluid_code.add_layer(
"create_parameter",
inputs=None, inputs=None,
output=node.layer_name + "_scale", output=node.layer_name + "_scale",
param_attr=attr) param_attr=attr)
...@@ -1064,7 +1065,8 @@ class TFOptimizer(object): ...@@ -1064,7 +1065,8 @@ class TFOptimizer(object):
"shape": [channel], "shape": [channel],
"name": string(node.layer_name + "_bias") "name": string(node.layer_name + "_bias")
} }
node.fluid_code.add_layer("create_parameter", node.fluid_code.add_layer(
"create_parameter",
inputs=None, inputs=None,
output=node.layer_name + "_bias", output=node.layer_name + "_bias",
param_attr=attr) param_attr=attr)
...@@ -1074,7 +1076,8 @@ class TFOptimizer(object): ...@@ -1074,7 +1076,8 @@ class TFOptimizer(object):
"bias": node.layer_name + "_bias" "bias": node.layer_name + "_bias"
} }
attr = {"act": act} attr = {"act": act}
node.fluid_code.add_layer("affine_channel", node.fluid_code.add_layer(
"affine_channel",
inputs=inputs, inputs=inputs,
output=node, output=node,
param_attr=attr) param_attr=attr)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册