Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
58e1668e
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
58e1668e
编写于
6月 30, 2020
作者:
J
Jason
提交者:
GitHub
6月 30, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #291 from PaddlePaddle/develop_code-format
code format
上级
2d6232eb
fa26d01c
变更
34
隐藏空白更改
内联
并排
Showing
34 changed file
with
9701 addition
and
9789 deletion
+9701
-9789
.pre-commit-config.yaml
.pre-commit-config.yaml
+3
-6
.travis.yml
.travis.yml
+0
-2
setup.py
setup.py
+2
-5
tools/merge_params.py
tools/merge_params.py
+9
-7
x2paddle/convert.py
x2paddle/convert.py
+1
-3
x2paddle/core/fluid_code.py
x2paddle/core/fluid_code.py
+5
-4
x2paddle/core/op_mapper.py
x2paddle/core/op_mapper.py
+21
-22
x2paddle/decoder/caffe_decoder.py
x2paddle/decoder/caffe_decoder.py
+6
-8
x2paddle/decoder/caffe_pb2.py
x2paddle/decoder/caffe_pb2.py
+9045
-8911
x2paddle/decoder/onnx_decoder.py
x2paddle/decoder/onnx_decoder.py
+6
-8
x2paddle/decoder/tf_decoder.py
x2paddle/decoder/tf_decoder.py
+8
-8
x2paddle/op_mapper/caffe_custom_layer/convolutiondepthwise.py
...ddle/op_mapper/caffe_custom_layer/convolutiondepthwise.py
+16
-14
x2paddle/op_mapper/caffe_custom_layer/detectionoutput.py
x2paddle/op_mapper/caffe_custom_layer/detectionoutput.py
+7
-6
x2paddle/op_mapper/caffe_custom_layer/normalize.py
x2paddle/op_mapper/caffe_custom_layer/normalize.py
+7
-7
x2paddle/op_mapper/caffe_custom_layer/permute.py
x2paddle/op_mapper/caffe_custom_layer/permute.py
+5
-4
x2paddle/op_mapper/caffe_custom_layer/priorbox.py
x2paddle/op_mapper/caffe_custom_layer/priorbox.py
+18
-16
x2paddle/op_mapper/caffe_custom_layer/register.py
x2paddle/op_mapper/caffe_custom_layer/register.py
+1
-2
x2paddle/op_mapper/caffe_custom_layer/roipooling.py
x2paddle/op_mapper/caffe_custom_layer/roipooling.py
+11
-9
x2paddle/op_mapper/caffe_custom_layer/select.py
x2paddle/op_mapper/caffe_custom_layer/select.py
+11
-9
x2paddle/op_mapper/caffe_custom_layer/shufflechannel.py
x2paddle/op_mapper/caffe_custom_layer/shufflechannel.py
+5
-4
x2paddle/op_mapper/caffe_op_mapper.py
x2paddle/op_mapper/caffe_op_mapper.py
+193
-260
x2paddle/op_mapper/caffe_shape.py
x2paddle/op_mapper/caffe_shape.py
+2
-2
x2paddle/op_mapper/onnx_custom_layer/InstanceNormalization.py
...ddle/op_mapper/onnx_custom_layer/InstanceNormalization.py
+12
-14
x2paddle/op_mapper/onnx_custom_layer/register.py
x2paddle/op_mapper/onnx_custom_layer/register.py
+1
-2
x2paddle/op_mapper/onnx_directly_map.py
x2paddle/op_mapper/onnx_directly_map.py
+20
-31
x2paddle/op_mapper/onnx_op_mapper.py
x2paddle/op_mapper/onnx_op_mapper.py
+52
-87
x2paddle/op_mapper/paddle_custom_layer/im2sequence.py
x2paddle/op_mapper/paddle_custom_layer/im2sequence.py
+2
-2
x2paddle/op_mapper/paddle_custom_layer/multiclass_nms.py
x2paddle/op_mapper/paddle_custom_layer/multiclass_nms.py
+5
-4
x2paddle/op_mapper/paddle_custom_layer/yolo_box.py
x2paddle/op_mapper/paddle_custom_layer/yolo_box.py
+2
-4
x2paddle/op_mapper/paddle_op_mapper.py
x2paddle/op_mapper/paddle_op_mapper.py
+15
-28
x2paddle/op_mapper/tf_op_mapper.py
x2paddle/op_mapper/tf_op_mapper.py
+138
-234
x2paddle/op_mapper/tf_op_mapper_nhwc.py
x2paddle/op_mapper/tf_op_mapper_nhwc.py
+10
-9
x2paddle/optimizer/caffe_optimizer.py
x2paddle/optimizer/caffe_optimizer.py
+10
-8
x2paddle/optimizer/tf_optimizer.py
x2paddle/optimizer/tf_optimizer.py
+52
-49
未找到文件。
.pre-commit-config.yaml
浏览文件 @
58e1668e
-
repo
:
local
-
repo
:
https://github.com/PaddlePaddle/mirrors-yapf.git
sha
:
0d79c0c469bab64f7229c9aca2b1186ef47f0e37
hooks
:
-
id
:
yapf
name
:
yapf
entry
:
yapf
language
:
system
args
:
[
-i
,
--style .style.yapf
]
files
:
\.py$
-
repo
:
https://github.com/pre-commit/pre-commit-hooks
sha
:
a11d9314b22d8f8c7556443875b731ef05965464
hooks
:
...
...
@@ -18,6 +14,7 @@
-
id
:
check-symlinks
-
id
:
check-added-large-files
-
repo
:
local
hooks
:
-
id
:
copyright_checker
name
:
copyright_checker
...
...
.travis.yml
浏览文件 @
58e1668e
language
:
python
python
:
-
'
2.7'
-
'
3.5'
-
'
3.6'
script
:
-
if [[ $TRAVIS_PYTHON_VERSION != 2.7 ]]; then /bin/bash ./tools/check_code_style.sh; fi
...
...
setup.py
浏览文件 @
58e1668e
...
...
@@ -11,8 +11,7 @@ setuptools.setup(
version
=
x2paddle
.
__version__
,
author
=
"dltp-sz"
,
author_email
=
"dltp-sz@baidu.com"
,
description
=
"a toolkit for converting trained model to PaddlePaddle from other deep learning frameworks."
,
description
=
"a toolkit for converting trained model to PaddlePaddle from other deep learning frameworks."
,
long_description
=
long_description
,
long_description_content_type
=
"text/plain"
,
url
=
"https://github.com/PaddlePaddle/x2paddle"
,
...
...
@@ -23,6 +22,4 @@ setuptools.setup(
"Operating System :: OS Independent"
,
],
license
=
'Apache 2.0'
,
entry_points
=
{
'console_scripts'
:
[
'x2paddle=x2paddle.convert:main'
,
]})
entry_points
=
{
'console_scripts'
:
[
'x2paddle=x2paddle.convert:main'
,
]})
tools/merge_params.py
浏览文件 @
58e1668e
...
...
@@ -5,12 +5,14 @@ model_dir = sys.argv[1]
new_model_dir
=
sys
.
argv
[
2
]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
dirname
=
model_dir
,
executor
=
exe
)
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
dirname
=
model_dir
,
executor
=
exe
)
print
(
feed_target_names
)
fluid
.
io
.
save_inference_model
(
dirname
=
new_model_dir
,
feeded_var_names
=
feed_target_names
,
target_vars
=
fetch_targets
,
executor
=
exe
,
main_program
=
inference_program
,
params_filename
=
"__params__"
)
fluid
.
io
.
save_inference_model
(
dirname
=
new_model_dir
,
feeded_var_names
=
feed_target_names
,
target_vars
=
fetch_targets
,
executor
=
exe
,
main_program
=
inference_program
,
params_filename
=
"__params__"
)
x2paddle/convert.py
浏览文件 @
58e1668e
...
...
@@ -48,8 +48,7 @@ def arg_parser():
"-f"
,
type
=
_text_type
,
default
=
None
,
help
=
"define which deeplearning framework(tensorflow/caffe/onnx/paddle2onnx)"
help
=
"define which deeplearning framework(tensorflow/caffe/onnx/paddle2onnx)"
)
parser
.
add_argument
(
"--caffe_proto"
,
...
...
@@ -126,7 +125,6 @@ def tf2paddle(model_path,
optimizer
.
merge_bias
()
optimizer
.
optimize_sub_graph
()
# optimizer.merge_batch_norm()
# optimizer.merge_prelu()
else
:
...
...
x2paddle/core/fluid_code.py
浏览文件 @
58e1668e
...
...
@@ -46,8 +46,9 @@ class Layer(object):
for
input
in
self
.
inputs
:
if
isinstance
(
input
,
GraphNode
):
if
hasattr
(
input
,
"index"
):
in_list
+=
(
input
.
layer_name
+
"[{}]"
.
format
(
input
.
index
)
+
", "
)
in_list
+=
(
input
.
layer_name
+
"[{}]"
.
format
(
input
.
index
)
+
", "
)
else
:
in_list
+=
(
input
.
layer_name
+
", "
)
elif
isinstance
(
input
,
six
.
string_types
):
...
...
@@ -71,8 +72,8 @@ class Layer(object):
layer_code
=
layer_code
+
key
+
"={}, "
.
format
(
input
)
elif
isinstance
(
self
.
inputs
,
GraphNode
):
if
hasattr
(
self
.
inputs
,
"index"
):
layer_code
+=
(
self
.
inputs
.
layer_name
+
"[{}]"
.
format
(
self
.
inputs
.
index
))
layer_code
+=
(
self
.
inputs
.
layer_name
+
"[{}]"
.
format
(
self
.
inputs
.
index
))
else
:
layer_code
+=
(
self
.
inputs
.
layer_name
)
if
self
.
op
!=
"="
:
...
...
x2paddle/core/op_mapper.py
浏览文件 @
58e1668e
...
...
@@ -64,10 +64,8 @@ def run_net(param_dir="./"):
b
=
os
.
path
.
exists
(
os
.
path
.
join
(
param_dir
,
var
.
name
))
return
b
fluid
.
io
.
load_vars
(
exe
,
param_dir
,
fluid
.
default_main_program
(),
predicate
=
if_exist
)
fluid
.
io
.
load_vars
(
exe
,
param_dir
,
fluid
.
default_main_program
(),
predicate
=
if_exist
)
class
OpMapper
(
object
):
...
...
@@ -98,8 +96,8 @@ class OpMapper(object):
def
add_codes
(
self
,
codes
,
indent
=
0
):
if
isinstance
(
codes
,
list
):
for
code
in
codes
:
self
.
paddle_codes
+=
(
self
.
tab
*
indent
+
code
.
strip
(
'
\n
'
)
+
'
\n
'
)
self
.
paddle_codes
+=
(
self
.
tab
*
indent
+
code
.
strip
(
'
\n
'
)
+
'
\n
'
)
elif
isinstance
(
codes
,
str
):
self
.
paddle_codes
+=
(
self
.
tab
*
indent
+
codes
.
strip
(
'
\n
'
)
+
'
\n
'
)
else
:
...
...
@@ -135,24 +133,25 @@ class OpMapper(object):
os
.
path
.
join
(
os
.
path
.
join
(
py_code_dir
,
var
.
name
)))
return
b
fluid
.
io
.
load_vars
(
exe
,
py_code_dir
,
fluid
.
default_main_program
(),
predicate
=
if_exist
)
fluid
.
io
.
load_vars
(
exe
,
py_code_dir
,
fluid
.
default_main_program
(),
predicate
=
if_exist
)
if
params_merge
:
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
save_dir
,
"inference_model"
),
feeded_var_names
=
input_names
,
target_vars
=
outputs
,
executor
=
exe
,
params_filename
=
"__params__"
)
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
save_dir
,
"inference_model"
),
feeded_var_names
=
input_names
,
target_vars
=
outputs
,
executor
=
exe
,
params_filename
=
"__params__"
)
else
:
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
save_dir
,
"inference_model"
),
feeded_var_names
=
input_names
,
target_vars
=
outputs
,
executor
=
exe
,
params_filename
=
None
)
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
save_dir
,
"inference_model"
),
feeded_var_names
=
input_names
,
target_vars
=
outputs
,
executor
=
exe
,
params_filename
=
None
)
except
:
raise
Exception
(
"Paddle code was saved in {}/model.py, but seems there's wrong exist, please check model.py manually."
...
...
x2paddle/decoder/caffe_decoder.py
浏览文件 @
58e1668e
...
...
@@ -49,13 +49,11 @@ class CaffeResolver(object):
class
CaffeGraphNode
(
GraphNode
):
def
__init__
(
self
,
layer
,
type_str
,
layer_name
=
None
):
if
layer_name
is
None
:
super
(
CaffeGraphNode
,
self
).
__init__
(
layer
,
layer
.
name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
))
super
(
CaffeGraphNode
,
self
).
__init__
(
layer
,
layer
.
name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
))
else
:
super
(
CaffeGraphNode
,
self
).
__init__
(
layer
,
layer_name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
))
super
(
CaffeGraphNode
,
self
).
__init__
(
layer
,
layer_name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
))
self
.
layer_type
=
type_str
self
.
fluid_code
=
FluidCode
()
self
.
data
=
None
...
...
@@ -268,8 +266,8 @@ class CaffeDecoder(object):
c_i
=
blob
.
channels
h
=
blob
.
height
w
=
blob
.
width
data
=
np
.
asarray
(
list
(
blob
.
data
),
dtype
=
np
.
float32
).
reshape
(
c_o
,
c_i
,
h
,
w
)
data
=
np
.
asarray
(
list
(
blob
.
data
),
dtype
=
np
.
float32
).
reshape
(
c_o
,
c_i
,
h
,
w
)
transformed
.
append
(
data
)
return
transformed
x2paddle/decoder/caffe_pb2.py
浏览文件 @
58e1668e
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
x2paddle/decoder/onnx_decoder.py
浏览文件 @
58e1668e
...
...
@@ -71,9 +71,8 @@ class ONNXGraphNode(GraphNode):
if
attr
.
type
==
onnx
.
AttributeProto
.
TENSOR
:
dtype
=
np
.
dtype
(
TENSOR_TYPE_TO_NP_TYPE
[
attr
.
t
.
data_type
])
data
=
attr
.
t
.
raw_data
value
=
np
.
frombuffer
(
data
,
dtype
=
dtype
,
count
=
(
len
(
data
)
//
dtype
.
itemsize
))
value
=
np
.
frombuffer
(
data
,
dtype
=
dtype
,
count
=
(
len
(
data
)
//
dtype
.
itemsize
))
elif
attr
.
type
==
onnx
.
AttributeProto
.
STRING
:
value
=
attr
.
s
value
=
value
.
decode
()
if
isinstance
(
value
,
bytes
)
else
value
...
...
@@ -205,9 +204,8 @@ class ONNXGraph(Graph):
self
.
node_map
[
name
].
weight
=
weight
self
.
node_map
[
name
].
embeded_as
=
[]
else
:
self
.
node_map
[
name
]
=
ONNXGraphDataNode
(
initializer
,
layer_name
=
name
,
is_global_input
=
False
)
self
.
node_map
[
name
]
=
ONNXGraphDataNode
(
initializer
,
layer_name
=
name
,
is_global_input
=
False
)
self
.
node_map
[
name
].
weight
=
weight
self
.
node_map
[
name
].
embeded_as
=
[]
...
...
@@ -494,8 +492,8 @@ class ONNXDecoder(object):
sess
=
rt
.
InferenceSession
(
model_path
)
for
ipt
in
sess
.
get_inputs
():
datatype
=
datatype_map
[
ipt
.
type
]
input_dict
[
ipt
.
name
]
=
np
.
random
.
random
(
ipt
.
shape
).
astype
(
datatype
)
input_dict
[
ipt
.
name
]
=
np
.
random
.
random
(
ipt
.
shape
).
astype
(
datatype
)
res
=
sess
.
run
(
None
,
input_feed
=
input_dict
)
except
:
...
...
x2paddle/decoder/tf_decoder.py
浏览文件 @
58e1668e
...
...
@@ -120,13 +120,13 @@ class TFGraph(Graph):
def
build
(
self
):
for
layer
in
self
.
model
.
node
:
self
.
node_map
[
layer
.
name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
)]
=
TFGraphNode
(
layer
,
data_format
=
self
.
tf_data_format
)
'-'
,
'_'
)]
=
TFGraphNode
(
layer
,
data_format
=
self
.
tf_data_format
)
for
layer_name
,
node
in
self
.
node_map
.
items
():
for
in_node
in
node
.
layer
.
input
:
in_node
=
in_node
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
).
replace
(
'^'
,
''
)
in_node
=
in_node
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
).
replace
(
'^'
,
''
)
if
in_node
not
in
self
.
node_map
:
if
in_node
.
strip
().
split
(
':'
)[
0
]
in
self
.
node_map
:
self
.
connect
(
in_node
.
strip
().
split
(
':'
)[
0
],
layer_name
)
...
...
@@ -390,10 +390,10 @@ class TFDecoder(object):
shape
=
shape
,
name
=
"x2paddle_{}"
.
format
(
layer
.
name
))
except
:
x2paddle_input
=
tf
.
placeholder
(
dtype
=
dtype
,
shape
=
sha
pe
,
name
=
"x2paddle_{}"
.
format
(
layer
.
name
))
x2paddle_input
=
tf
.
placeholder
(
dtype
=
dty
pe
,
shape
=
shape
,
name
=
"x2paddle_{}"
.
format
(
layer
.
name
))
input_map
[
"{}:0"
.
format
(
layer
.
name
)]
=
x2paddle_input
if
shape
.
count
(
None
)
>
0
:
...
...
x2paddle/op_mapper/caffe_custom_layer/convolutiondepthwise.py
浏览文件 @
58e1668e
...
...
@@ -122,16 +122,17 @@ def convolutiondepthwise_layer(inputs,
c_out
=
num_output
if
num_output
is
not
None
else
input_shape
[
0
][
1
]
group
=
int
(
c_in
/
(
c_in
/
c_out
))
if
c_in
>
c_out
else
int
(
c_in
/
(
c_out
/
c_in
))
out
=
fluid
.
layers
.
conv2d
(
input
,
dilation
=
[
dila_h
,
dila_w
],
filter_size
=
[
k_h
,
k_w
],
stride
=
[
s_h
,
s_w
],
padding
=
[
p_h
,
p_w
],
groups
=
group
,
num_filters
=
c_out
,
param_attr
=
name
+
'_weights'
,
bias_attr
=
name
+
'_bias'
,
name
=
name
)
out
=
fluid
.
layers
.
conv2d
(
input
,
dilation
=
[
dila_h
,
dila_w
],
filter_size
=
[
k_h
,
k_w
],
stride
=
[
s_h
,
s_w
],
padding
=
[
p_h
,
p_w
],
groups
=
group
,
num_filters
=
c_out
,
param_attr
=
name
+
'_weights'
,
bias_attr
=
name
+
'_bias'
,
name
=
name
)
return
out
...
...
@@ -142,7 +143,8 @@ def convolutiondepthwise_weights(name, data=None):
return
weights_name
register
(
kind
=
'ConvolutionDepthwise'
,
shape
=
convolutiondepthwise_shape
,
layer
=
convolutiondepthwise_layer
,
weights
=
convolutiondepthwise_weights
)
register
(
kind
=
'ConvolutionDepthwise'
,
shape
=
convolutiondepthwise_shape
,
layer
=
convolutiondepthwise_layer
,
weights
=
convolutiondepthwise_weights
)
x2paddle/op_mapper/caffe_custom_layer/detectionoutput.py
浏览文件 @
58e1668e
...
...
@@ -37,8 +37,8 @@ def detectionoutput_layer(inputs,
pbv
=
fluid
.
layers
.
reshape
(
x
=
pbv
,
shape
=
[
-
1
,
4
])
mbox_loc
=
inputs
[
0
]
mbox_loc
=
fluid
.
layers
.
reshape
(
x
=
mbox_loc
,
shape
=
[
-
1
,
pb
.
shape
[
0
],
4
])
mbox_conf_flatten
=
fluid
.
layers
.
reshape
(
x
=
mbox_conf_flatten
,
shape
=
[
0
,
pb
.
shape
[
0
],
-
1
])
mbox_conf_flatten
=
fluid
.
layers
.
reshape
(
x
=
mbox_conf_flatten
,
shape
=
[
0
,
pb
.
shape
[
0
],
-
1
])
default
=
{
"nms_threshold"
:
0.3
,
"top_k"
:
10
,
"eta"
:
1.0
}
fields
=
[
'eta'
,
'top_k'
,
'nms_threshold'
]
...
...
@@ -64,7 +64,8 @@ def detectionoutput_weights(name, data=None):
return
weights_name
register
(
kind
=
'DetectionOutput'
,
shape
=
detectionoutput_shape
,
layer
=
detectionoutput_layer
,
weights
=
detectionoutput_weights
)
register
(
kind
=
'DetectionOutput'
,
shape
=
detectionoutput_shape
,
layer
=
detectionoutput_layer
,
weights
=
detectionoutput_weights
)
x2paddle/op_mapper/caffe_custom_layer/normalize.py
浏览文件 @
58e1668e
...
...
@@ -20,9 +20,8 @@ def normalize_layer(inputs,
attr
=
name
+
'_scale'
)
scale_param
=
fluid
.
layers
.
reshape
(
x
=
scale_param
,
\
shape
=
[
1
]
if
channel_shared
else
[
input_shape
[
0
][
1
]])
out
=
fluid
.
layers
.
elementwise_mul
(
x
=
l2_norm
,
y
=
scale_param
,
axis
=-
1
if
channel_shared
else
1
)
out
=
fluid
.
layers
.
elementwise_mul
(
x
=
l2_norm
,
y
=
scale_param
,
axis
=-
1
if
channel_shared
else
1
)
return
out
...
...
@@ -31,7 +30,8 @@ def normalize_weights(name, data=None):
return
weights_name
register
(
kind
=
'Normalize'
,
shape
=
normalize_shape
,
layer
=
normalize_layer
,
weights
=
normalize_weights
)
register
(
kind
=
'Normalize'
,
shape
=
normalize_shape
,
layer
=
normalize_layer
,
weights
=
normalize_weights
)
x2paddle/op_mapper/caffe_custom_layer/permute.py
浏览文件 @
58e1668e
...
...
@@ -23,7 +23,8 @@ def permute_weights(name, data=None):
return
weights_name
register
(
kind
=
'Permute'
,
shape
=
permute_shape
,
layer
=
permute_layer
,
weights
=
permute_weights
)
register
(
kind
=
'Permute'
,
shape
=
permute_shape
,
layer
=
permute_layer
,
weights
=
permute_weights
)
x2paddle/op_mapper/caffe_custom_layer/priorbox.py
浏览文件 @
58e1668e
...
...
@@ -30,18 +30,19 @@ def priorbox_layer(inputs,
steps
=
tuple
(
step
)
if
type
(
step
)
is
list
or
type
(
step
)
is
tuple
else
(
step
,
step
)
box
,
variance_
=
fluid
.
layers
.
prior_box
(
input
,
image
,
min_sizes
=
min_size
,
max_sizes
=
max_size
,
aspect_ratios
=
aspect_ratio
,
variance
=
variance
,
flip
=
flip
,
clip
=
clip
,
steps
=
steps
,
offset
=
offset
,
name
=
name
,
min_max_aspect_ratios_order
=
True
)
box
,
variance_
=
fluid
.
layers
.
prior_box
(
input
,
image
,
min_sizes
=
min_size
,
max_sizes
=
max_size
,
aspect_ratios
=
aspect_ratio
,
variance
=
variance
,
flip
=
flip
,
clip
=
clip
,
steps
=
steps
,
offset
=
offset
,
name
=
name
,
min_max_aspect_ratios_order
=
True
)
box
=
fluid
.
layers
.
reshape
(
box
,
[
1
,
1
,
-
1
])
variance_
=
fluid
.
layers
.
reshape
(
variance_
,
[
1
,
1
,
-
1
])
out
=
fluid
.
layers
.
concat
([
box
,
variance_
],
axis
=
1
)
...
...
@@ -53,7 +54,8 @@ def priorbox_weights(name, data=None):
return
weights_name
register
(
kind
=
'PriorBox'
,
shape
=
priorbox_shape
,
layer
=
priorbox_layer
,
weights
=
priorbox_weights
)
register
(
kind
=
'PriorBox'
,
shape
=
priorbox_shape
,
layer
=
priorbox_layer
,
weights
=
priorbox_weights
)
x2paddle/op_mapper/caffe_custom_layer/register.py
浏览文件 @
58e1668e
...
...
@@ -23,8 +23,7 @@ def register(kind, shape, layer, weights):
kind
=
[
kind
]
else
:
assert
type
(
kind
)
is
list
,
'invalid param "kind" for register, not a list or str'
kind
)
is
list
,
'invalid param "kind" for register, not a list or str'
for
k
in
kind
:
assert
type
(
...
...
x2paddle/op_mapper/caffe_custom_layer/roipooling.py
浏览文件 @
58e1668e
...
...
@@ -21,11 +21,12 @@ def roipooling_layer(inputs,
input
=
inputs
[
0
]
roi
=
inputs
[
1
]
roi
=
fluid
.
layers
.
slice
(
roi
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
5
])
out
=
fluid
.
layers
.
roi_pool
(
input
,
roi
,
pooled_height
=
pooled_h
,
pooled_width
=
pooled_w
,
spatial_scale
=
spatial_scale
)
out
=
fluid
.
layers
.
roi_pool
(
input
,
roi
,
pooled_height
=
pooled_h
,
pooled_width
=
pooled_w
,
spatial_scale
=
spatial_scale
)
return
out
...
...
@@ -34,7 +35,8 @@ def roipooling_weights(name, data=None):
return
weights_name
register
(
kind
=
'ROIPooling'
,
shape
=
roipooling_shape
,
layer
=
roipooling_layer
,
weights
=
roipooling_weights
)
register
(
kind
=
'ROIPooling'
,
shape
=
roipooling_shape
,
layer
=
roipooling_layer
,
weights
=
roipooling_weights
)
x2paddle/op_mapper/caffe_custom_layer/select.py
浏览文件 @
58e1668e
...
...
@@ -30,11 +30,12 @@ def select_layer(inputs,
out
=
[]
for
i
in
range
(
len
(
slice_point
)):
out
.
append
(
fluid
.
layers
.
slice
(
input
,
axes
=
[
axis
],
starts
=
[
slice_point
[
i
]],
ends
=
[
slice_point
[
i
+
1
]],
name
=
name
+
'_'
+
str
(
i
)))
fluid
.
layers
.
slice
(
input
,
axes
=
[
axis
],
starts
=
[
slice_point
[
i
]],
ends
=
[
slice_point
[
i
+
1
]],
name
=
name
+
'_'
+
str
(
i
)))
if
i
==
len
(
slice_point
)
-
2
:
break
return
out
...
...
@@ -45,7 +46,8 @@ def select_weights(name, data=None):
return
weights_name
register
(
kind
=
'Select'
,
shape
=
select_shape
,
layer
=
select_layer
,
weights
=
select_weights
)
register
(
kind
=
'Select'
,
shape
=
select_shape
,
layer
=
select_layer
,
weights
=
select_weights
)
x2paddle/op_mapper/caffe_custom_layer/shufflechannel.py
浏览文件 @
58e1668e
...
...
@@ -17,7 +17,8 @@ def shufflechannel_weights(name, data=None):
return
weights_name
register
(
kind
=
'ShuffleChannel'
,
shape
=
shufflechannel_shape
,
layer
=
shufflechannel_layer
,
weights
=
shufflechannel_weights
)
register
(
kind
=
'ShuffleChannel'
,
shape
=
shufflechannel_shape
,
layer
=
shufflechannel_layer
,
weights
=
shufflechannel_weights
)
x2paddle/op_mapper/caffe_op_mapper.py
浏览文件 @
58e1668e
...
...
@@ -144,8 +144,8 @@ class CaffeOpMapper(OpMapper):
[
s_h
,
s_w
]
=
[
params
.
stride
]
*
2
elif
len
(
params
.
stride
)
>
0
:
s_h
=
params
.
stride_h
if
params
.
stride_h
>
0
else
params
.
stride
[
0
]
s_w
=
params
.
stride_w
if
params
.
stride_w
>
0
else
params
.
stride
[
len
(
params
.
stride
)
-
1
]
s_w
=
params
.
stride_w
if
params
.
stride_w
>
0
else
params
.
stride
[
len
(
params
.
stride
)
-
1
]
elif
params
.
stride_h
>
0
or
params
.
stride_w
>
0
:
s_h
=
params
.
stride_h
s_w
=
params
.
stride_w
...
...
@@ -154,8 +154,8 @@ class CaffeOpMapper(OpMapper):
[
p_h
,
p_w
]
=
[
params
.
pad
]
*
2
elif
len
(
params
.
pad
)
>
0
:
p_h
=
params
.
pad_h
if
params
.
pad_h
>
0
else
params
.
pad
[
0
]
p_w
=
params
.
pad_w
if
params
.
pad_w
>
0
else
params
.
pad
[
len
(
params
.
pad
)
-
1
]
p_w
=
params
.
pad_w
if
params
.
pad_w
>
0
else
params
.
pad
[
len
(
params
.
pad
)
-
1
]
elif
params
.
pad_h
>
0
or
params
.
pad_w
>
0
:
p_h
=
params
.
pad_h
p_w
=
params
.
pad_w
...
...
@@ -195,10 +195,8 @@ class CaffeOpMapper(OpMapper):
'shape'
:
shape
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"data"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"data"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
def
MemoryData
(
self
,
node
):
# TODO(syf): Paddlepaddle can't fully support
...
...
@@ -209,10 +207,8 @@ class CaffeOpMapper(OpMapper):
'shape'
:
shape
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"data"
,
inputs
=
None
,
output
=
node
.
layer_name
+
'0'
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"data"
,
inputs
=
None
,
output
=
node
.
layer_name
+
'0'
,
param_attr
=
attr
)
node
.
fluid_code
.
add_note
(
'{} = [{}]'
.
format
(
node
.
layer_name
,
node
.
layer_name
+
'0'
))
...
...
@@ -229,11 +225,9 @@ class CaffeOpMapper(OpMapper):
input_c
=
node
.
input_shape
[
0
][
1
]
output_c
=
channel
data
.
append
(
np
.
zeros
([
output_c
,
input_c
,
kernel
[
0
],
kernel
[
1
]]).
astype
(
'float32'
))
data
.
append
(
np
.
zeros
([
output_c
,
])).
astype
(
'float32'
)
np
.
zeros
([
output_c
,
input_c
,
kernel
[
0
],
kernel
[
1
]]).
astype
(
'float32'
))
data
.
append
(
np
.
zeros
([
output_c
,
])).
astype
(
'float32'
)
else
:
data
=
self
.
adjust_parameters
(
node
)
self
.
weights
[
node
.
layer_name
+
'_weights'
]
=
data
[
0
]
...
...
@@ -244,29 +238,19 @@ class CaffeOpMapper(OpMapper):
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
attr
=
{
'filter_size'
:
kernel
,
'num_filters'
:
channel
,
'stride'
:
stride
,
'padding'
:
pad
,
'dilation'
:
dilation
,
'groups'
:
group
,
'name'
:
string
(
node
.
layer_name
),
'param_attr'
:
string
(
node
.
layer_name
+
'_weights'
),
'bias_attr'
:
False
if
len
(
data
)
==
1
else
string
(
node
.
layer_name
+
'_bias'
),
'filter_size'
:
kernel
,
'num_filters'
:
channel
,
'stride'
:
stride
,
'padding'
:
pad
,
'dilation'
:
dilation
,
'groups'
:
group
,
'name'
:
string
(
node
.
layer_name
),
'param_attr'
:
string
(
node
.
layer_name
+
'_weights'
),
'bias_attr'
:
False
if
len
(
data
)
==
1
else
string
(
node
.
layer_name
+
'_bias'
),
}
node
.
fluid_code
.
add_layer
(
"conv2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"conv2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Deconvolution
(
self
,
node
):
data
=
node
.
data
...
...
@@ -281,11 +265,9 @@ class CaffeOpMapper(OpMapper):
input_c
=
node
.
input_shape
[
0
][
1
]
output_c
=
channel
data
.
append
(
np
.
zeros
([
output_c
,
input_c
,
kernel
[
0
],
kernel
[
1
]]).
astype
(
'float32'
))
data
.
append
(
np
.
zeros
([
output_c
,
]).
astype
(
'float32'
))
np
.
zeros
([
output_c
,
input_c
,
kernel
[
0
],
kernel
[
1
]]).
astype
(
'float32'
))
data
.
append
(
np
.
zeros
([
output_c
,
]).
astype
(
'float32'
))
else
:
data
=
self
.
adjust_parameters
(
node
)
self
.
weights
[
node
.
layer_name
+
'_weights'
]
=
data
[
0
]
...
...
@@ -295,31 +277,20 @@ class CaffeOpMapper(OpMapper):
)
==
1
,
'The count of Deconvolution node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
attr
=
{
'output_size'
:
None
,
'filter_size'
:
kernel
,
'num_filters'
:
channel
,
'stride'
:
stride
,
'padding'
:
pad
,
'dilation'
:
dilation
,
'groups'
:
group
,
'name'
:
string
(
node
.
layer_name
),
'param_attr'
:
string
(
node
.
layer_name
+
'_weights'
),
'bias_attr'
:
False
if
len
(
data
)
==
1
else
string
(
node
.
layer_name
+
'_bias'
)
'output_size'
:
None
,
'filter_size'
:
kernel
,
'num_filters'
:
channel
,
'stride'
:
stride
,
'padding'
:
pad
,
'dilation'
:
dilation
,
'groups'
:
group
,
'name'
:
string
(
node
.
layer_name
),
'param_attr'
:
string
(
node
.
layer_name
+
'_weights'
),
'bias_attr'
:
False
if
len
(
data
)
==
1
else
string
(
node
.
layer_name
+
'_bias'
)
}
node
.
fluid_code
.
add_layer
(
"conv2d_transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"conv2d_transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Pooling
(
self
,
node
):
params
=
node
.
layer
.
pooling_param
...
...
@@ -345,10 +316,8 @@ class CaffeOpMapper(OpMapper):
'global_pooling'
:
global_pool
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"pool2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"pool2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
LRN
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
,
'The count of LRN node
\'
s input is not 1.'
...
...
@@ -368,10 +337,8 @@ class CaffeOpMapper(OpMapper):
'beta'
:
params
.
beta
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"lrn"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"lrn"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
InnerProduct
(
self
,
node
):
data
=
node
.
data
...
...
@@ -384,8 +351,8 @@ class CaffeOpMapper(OpMapper):
output_c
=
params
.
num_output
data
=
[]
data
.
append
(
np
.
zeros
([
input_c
,
output_c
]).
astype
(
'float32'
).
astype
(
'float32'
))
np
.
zeros
([
input_c
,
output_c
]).
astype
(
'float32'
).
astype
(
'float32'
))
data
.
append
(
np
.
zeros
([
output_c
]).
astype
(
'float32'
).
astype
(
'float32'
))
else
:
...
...
@@ -409,21 +376,15 @@ class CaffeOpMapper(OpMapper):
assert
params
.
bias_term
==
True
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
attr
=
{
'size'
:
params
.
num_output
,
'name'
:
string
(
node
.
layer_name
),
'act'
:
None
,
'param_attr'
:
string
(
node
.
layer_name
+
'_weights'
),
'bias_attr'
:
False
if
len
(
data
)
==
1
else
string
(
node
.
layer_name
+
'_bias'
)
'size'
:
params
.
num_output
,
'name'
:
string
(
node
.
layer_name
),
'act'
:
None
,
'param_attr'
:
string
(
node
.
layer_name
+
'_weights'
),
'bias_attr'
:
False
if
len
(
data
)
==
1
else
string
(
node
.
layer_name
+
'_bias'
)
}
node
.
fluid_code
.
add_layer
(
"fc"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"fc"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Softmax
(
self
,
node
):
assert
len
(
...
...
@@ -435,10 +396,8 @@ class CaffeOpMapper(OpMapper):
dims
=
len
(
shape
)
axis
=
axis
+
dims
if
axis
<
0
else
axis
attr
=
{
'axis'
:
axis
,
'name'
:
string
(
node
.
layer_name
+
'_softmax'
)}
node
.
fluid_code
.
add_layer
(
"softmax"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"softmax"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Slice
(
self
,
node
):
assert
len
(
...
...
@@ -459,10 +418,8 @@ class CaffeOpMapper(OpMapper):
'dim'
:
axis
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"split"
,
inputs
=
input
,
output
=
node
.
layer_name
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"split"
,
inputs
=
input
,
output
=
node
.
layer_name
,
param_attr
=
attr
)
def
Concat
(
self
,
node
):
assert
len
(
...
...
@@ -475,10 +432,8 @@ class CaffeOpMapper(OpMapper):
params
=
node
.
layer
.
concat_param
axis
=
params
.
axis
attr
=
{
'axis'
:
axis
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"concat"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"concat"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
def
PReLU
(
self
,
node
):
assert
len
(
...
...
@@ -499,10 +454,8 @@ class CaffeOpMapper(OpMapper):
'param_attr'
:
string
(
node
.
layer_name
+
'_weights'
),
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"prelu"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"prelu"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Accuracy
(
self
,
node
):
assert
len
(
...
...
@@ -526,10 +479,8 @@ class CaffeOpMapper(OpMapper):
assert
axis
==
1
,
'PaddlePaddle can not support the situation when the axis is not 1.'
assert
not
ignore_label
>=
0
,
'PaddlePaddle can not support the situation when the model has ignore label.'
attr
=
{
'k'
:
top_k
}
node
.
fluid_code
.
add_layer
(
"accuracy"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"accuracy"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
def
Eltwise
(
self
,
node
):
assert
len
(
...
...
@@ -546,10 +497,11 @@ class CaffeOpMapper(OpMapper):
inputs_dict
[
'x'
]
=
inputs
[
0
]
inputs_dict
[
'y'
]
=
inputs
[
1
]
attr
=
{
'act'
:
None
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
inputs_dict
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
inputs_dict
,
output
=
node
,
param_attr
=
attr
)
elif
mode
==
1
:
if
hasattr
(
params
,
'coeff'
)
and
len
(
params
.
coeff
)
==
2
:
coeff
=
params
.
coeff
...
...
@@ -559,57 +511,62 @@ class CaffeOpMapper(OpMapper):
'value'
:
coeff
[
0
],
'dtype'
:
'{}.dtype'
.
format
(
input1_name
)
}
node
.
fluid_code
.
add_layer
(
"fill_constant"
,
inputs
=
None
,
output
=
node
.
layer_name
+
'_const1'
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"fill_constant"
,
inputs
=
None
,
output
=
node
.
layer_name
+
'_const1'
,
param_attr
=
attr
)
attr
=
{
'act'
:
None
,
'name'
:
string
(
node
.
layer_name
+
'_mul1'
)}
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
input1_name
+
', '
+
node
.
layer_name
+
'_const1'
,
output
=
node
.
layer_name
+
'_mul1'
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
input1_name
+
', '
+
node
.
layer_name
+
'_const1'
,
output
=
node
.
layer_name
+
'_mul1'
,
param_attr
=
attr
)
input2_name
=
self
.
get_input_name
(
inputs
[
1
])
attr
=
{
'shape'
:
[
1
],
'value'
:
coeff
[
1
],
'dtype'
:
'{}.dtype'
.
format
(
input2_name
)
}
node
.
fluid_code
.
add_layer
(
"fill_constant"
,
inputs
=
None
,
output
=
node
.
layer_name
+
'_const2'
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"fill_constant"
,
inputs
=
None
,
output
=
node
.
layer_name
+
'_const2'
,
param_attr
=
attr
)
attr
=
{
'act'
:
None
,
'name'
:
string
(
node
.
layer_name
+
'_mul2'
)}
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
input2_name
+
', '
+
node
.
layer_name
+
'_const2'
,
output
=
node
.
layer_name
+
'_mul2'
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
input2_name
+
', '
+
node
.
layer_name
+
'_const2'
,
output
=
node
.
layer_name
+
'_mul2'
,
param_attr
=
attr
)
attr
=
{
'act'
:
None
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
'{}_mul1, {}_mul2'
.
format
(
node
.
layer_name
,
node
.
layer_name
),
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
'{}_mul1, {}_mul2'
.
format
(
node
.
layer_name
,
node
.
layer_name
),
output
=
node
,
param_attr
=
attr
)
else
:
inputs_dict
=
{}
inputs_dict
[
'x'
]
=
inputs
[
0
]
inputs_dict
[
'y'
]
=
inputs
[
1
]
attr
=
{
'act'
:
None
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
inputs_dict
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
inputs_dict
,
output
=
node
,
param_attr
=
attr
)
else
:
inputs_dict
=
{}
inputs_dict
[
'x'
]
=
inputs
[
0
]
inputs_dict
[
'y'
]
=
inputs
[
1
]
attr
=
{
'act'
:
None
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"elementwise_max"
,
inputs
=
inputs_dict
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"elementwise_max"
,
inputs
=
inputs_dict
,
output
=
node
,
param_attr
=
attr
)
def
BatchNorm
(
self
,
node
):
assert
len
(
...
...
@@ -625,12 +582,8 @@ class CaffeOpMapper(OpMapper):
'The parameter of {} (type is {}) is not set. So we set the parameters as 0'
.
format
(
node
.
layer_name
,
node
.
layer_type
))
input_c
=
node
.
input_shape
[
0
][
1
]
mean
=
np
.
zeros
([
input_c
,
]).
astype
(
'float32'
)
variance
=
np
.
zeros
([
input_c
,
]).
astype
(
'float32'
)
mean
=
np
.
zeros
([
input_c
,
]).
astype
(
'float32'
)
variance
=
np
.
zeros
([
input_c
,
]).
astype
(
'float32'
)
scale
=
0
else
:
...
...
@@ -651,10 +604,8 @@ class CaffeOpMapper(OpMapper):
'epsilon'
:
eps
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"batch_norm"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"batch_norm"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Scale
(
self
,
node
):
if
node
.
data
is
None
:
...
...
@@ -669,10 +620,10 @@ class CaffeOpMapper(OpMapper):
input_c
,
]).
astype
(
'float32'
)
else
:
self
.
weights
[
node
.
layer_name
+
'_scale'
]
=
np
.
squeeze
(
node
.
data
[
0
]).
astype
(
'float32'
)
self
.
weights
[
node
.
layer_name
+
'_offset'
]
=
np
.
squeeze
(
node
.
data
[
1
]).
astype
(
'float32'
)
self
.
weights
[
node
.
layer_name
+
'_scale'
]
=
np
.
squeeze
(
node
.
data
[
0
]).
astype
(
'float32'
)
self
.
weights
[
node
.
layer_name
+
'_offset'
]
=
np
.
squeeze
(
node
.
data
[
1
]).
astype
(
'float32'
)
params
=
node
.
layer
.
scale_param
axis
=
params
.
axis
num_axes
=
params
.
num_axes
...
...
@@ -687,10 +638,11 @@ class CaffeOpMapper(OpMapper):
inputs_dict
[
'x'
]
=
input0
inputs_dict
[
'y'
]
=
input1
attr
=
{
'axis'
:
axis
,
'name'
:
string
(
node
.
layer_name
+
'_mul'
)}
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
inputs_dict
,
output
=
node
.
layer_name
+
'_mul'
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
inputs_dict
,
output
=
node
.
layer_name
+
'_mul'
,
param_attr
=
attr
)
else
:
bias_shape
=
node
.
input_shape
[
0
][
axis
:
axis
+
num_axes
]
input0
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
...
...
@@ -703,18 +655,17 @@ class CaffeOpMapper(OpMapper):
'is_bias'
:
True
,
'default_initializer'
:
'Constant(value=1.0)'
}
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
inputs_dict
=
{}
inputs_dict
[
'x'
]
=
input0
inputs_dict
[
'y'
]
=
node
attr
=
{
'axis'
:
axis
,
'name'
:
string
(
node
.
layer_name
+
'_mul'
)}
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
inputs_dict
,
output
=
node
.
layer_name
+
'_mul'
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
inputs_dict
,
output
=
node
.
layer_name
+
'_mul'
,
param_attr
=
attr
)
scale_shape
=
bias_shape
input0_name
=
self
.
get_input_name
(
input0
)
attr
=
{
...
...
@@ -725,16 +676,18 @@ class CaffeOpMapper(OpMapper):
'is_bias'
:
True
,
'default_initializer'
:
'Constant(value=1.0)'
}
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
.
layer_name
+
'_offset_param'
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
.
layer_name
+
'_offset_param'
,
param_attr
=
attr
)
attr
=
{
'axis'
:
axis
,
'name'
:
string
(
node
.
layer_name
+
'_add'
)}
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
'{}_mul, {}_offset_param'
.
format
(
node
.
layer_name
,
node
.
layer_name
),
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
'{}_mul, {}_offset_param'
.
format
(
node
.
layer_name
,
node
.
layer_name
),
output
=
node
,
param_attr
=
attr
)
def
Reshape
(
self
,
node
):
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
...
...
@@ -747,10 +700,8 @@ class CaffeOpMapper(OpMapper):
'act'
:
None
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
ArgMax
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
and
len
(
...
...
@@ -767,11 +718,12 @@ class CaffeOpMapper(OpMapper):
axis
+=
len
(
input_shape
)
if
out_max_val
is
True
:
attr
=
{
'k'
:
top_k
,
'name'
:
string
(
node
.
layer_name
+
'_topk'
)}
node
.
fluid_code
.
add_layer
(
"topk"
,
inputs
=
input
,
output
=
'{}_topk_var, {}_index_var'
.
format
(
node
.
layer_name
,
node
.
layer_name
),
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"topk"
,
inputs
=
input
,
output
=
'{}_topk_var, {}_index_var'
.
format
(
node
.
layer_name
,
node
.
layer_name
),
param_attr
=
attr
)
attr
=
{
'dtype'
:
'{}_topk_var.dtype'
.
format
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"cast"
,
...
...
@@ -779,17 +731,19 @@ class CaffeOpMapper(OpMapper):
output
=
'{}_index_var'
.
format
(
node
.
layer_name
),
param_attr
=
attr
)
attr
=
{
'axis'
:
axis
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"concat"
,
inputs
=
'{}_topk_var, {}_index_var'
.
format
(
node
.
layer_name
,
node
.
layer_name
),
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"concat"
,
inputs
=
'{}_topk_var, {}_index_var'
.
format
(
node
.
layer_name
,
node
.
layer_name
),
output
=
node
,
param_attr
=
attr
)
else
:
attr
=
{
'k'
:
top_k
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"topk"
,
inputs
=
input
,
output
=
'_, {}'
.
format
(
node
.
layer_name
),
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"topk"
,
inputs
=
input
,
output
=
'_, {}'
.
format
(
node
.
layer_name
),
param_attr
=
attr
)
def
Crop
(
self
,
node
):
assert
len
(
...
...
@@ -804,29 +758,27 @@ class CaffeOpMapper(OpMapper):
offset_real
=
[
0
]
*
len
(
input_shape
)
if
hasattr
(
params
,
"offset"
)
and
len
(
params
.
offset
)
>
0
:
offset
=
list
(
params
.
offset
)
assert
(
len
(
input_shape
)
-
axis
)
==
len
(
offset
),
"invalid offset[%s] in crop layer"
%
(
str
(
offset
))
assert
(
len
(
input_shape
)
-
axis
)
==
len
(
offset
),
"invalid offset[%s] in crop layer"
%
(
str
(
offset
))
offset_real
=
[
0
]
*
axis
+
offset
attr
=
{
'offsets'
:
list
(
offset_real
),
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"crop"
,
inputs
=
{
'x'
:
input
,
'shape'
:
node
.
input_shape
[
1
]
},
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"crop"
,
inputs
=
{
'x'
:
input
,
'shape'
:
node
.
input_shape
[
1
]},
output
=
node
,
param_attr
=
attr
)
def
Flatten
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
,
'The count of DetectionOutput node
\'
s input is not 1.'
node
.
inputs
)
==
1
,
'The count of DetectionOutput node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
shape
=
node
.
output_shape
[
0
]
attr
=
{
'shape'
:
shape
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Power
(
self
,
node
):
assert
len
(
...
...
@@ -842,15 +794,11 @@ class CaffeOpMapper(OpMapper):
'bias_after_scale'
:
True
,
'name'
:
string
(
node
.
layer_name
+
'_scale'
)
}
node
.
fluid_code
.
add_layer
(
"scale"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"scale"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
attr
=
{
'factor'
:
power
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"pow"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"pow"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
def
Reduction
(
self
,
node
):
assert
len
(
...
...
@@ -872,55 +820,41 @@ class CaffeOpMapper(OpMapper):
'keep_dim'
:
False
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"reduce_sum"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reduce_sum"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
elif
operation
==
2
:
## operation = ASUM
attr
=
{
'name'
:
string
(
node
.
layer_name
+
'_abs'
)}
node
.
fluid_code
.
add_layer
(
"abs"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"abs"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
attr
=
{
'dim'
:
dim
[
axis
:],
'keep_dim'
:
False
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"reduce_sum"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reduce_sum"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
elif
operation
==
3
:
## operation = SUMSQ
attr
=
{
'factor'
:
2.0
,
'name'
:
string
(
node
.
layer_name
+
'_pow'
)}
node
.
fluid_code
.
add_layer
(
"pow"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"pow"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
attr
=
{
'dim'
:
dim
[
axis
:],
'keep_dim'
:
False
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"reduce_sum"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reduce_sum"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
else
:
## operation = MEAN
attr
=
{
'dim'
:
dim
[
axis
:],
'keep_dim'
:
False
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"reduce_mean"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reduce_mean"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
attr
=
{
'scale'
:
coeff
}
node
.
fluid_code
.
add_layer
(
"scale"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"scale"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
def
deal_custom_layer
(
self
,
node
):
op
=
node
.
layer_type
...
...
@@ -947,11 +881,12 @@ class CaffeOpMapper(OpMapper):
assert
input
is
not
None
,
'This kind of DetectionOutput is not supported!'
input
=
self
.
graph
.
get_bottom_node
(
input
,
idx
=
0
,
copy
=
True
)
inputs_node
.
append
(
input
)
node
.
fluid_code
.
add_layer
(
func
.
__code__
.
co_name
,
inputs
=
inputs_node
,
output
=
node
,
param_attr
=
kwargs
,
is_custom_layer
=
True
)
node
.
fluid_code
.
add_layer
(
func
.
__code__
.
co_name
,
inputs
=
inputs_node
,
output
=
node
,
param_attr
=
kwargs
,
is_custom_layer
=
True
)
if
op
not
in
self
.
used_custom_layers
:
self
.
used_custom_layers
[
op
]
=
custom_code
...
...
@@ -960,7 +895,5 @@ class CaffeOpMapper(OpMapper):
op_info
=
self
.
directly_map_ops
[
node
.
layer_type
]
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
attr
=
{
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
op_info
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
op_info
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
x2paddle/op_mapper/caffe_shape.py
浏览文件 @
58e1668e
...
...
@@ -33,8 +33,8 @@ def get_kernel_parameters(params):
[
s_h
,
s_w
]
=
[
params
.
stride
]
*
2
elif
len
(
params
.
stride
)
>
0
:
s_h
=
params
.
stride_h
if
params
.
stride_h
>
0
else
params
.
stride
[
0
]
s_w
=
params
.
stride_w
if
params
.
stride_w
>
0
else
params
.
stride
[
len
(
params
.
stride
)
-
1
]
s_w
=
params
.
stride_w
if
params
.
stride_w
>
0
else
params
.
stride
[
len
(
params
.
stride
)
-
1
]
elif
params
.
stride_h
>
0
or
params
.
stride_w
>
0
:
s_h
=
params
.
stride_h
s_w
=
params
.
stride_w
...
...
x2paddle/op_mapper/onnx_custom_layer/InstanceNormalization.py
浏览文件 @
58e1668e
...
...
@@ -24,21 +24,18 @@ def InstanceNormalization_layer(inputs, name=None):
epsilon
=
1e-5
input_
=
inputs
[
0
]
mean
=
fluid
.
layers
.
reduce_mean
(
input_
,
dim
=
[
2
,
3
],
keep_dim
=
True
)
var
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
square
(
input_
-
mean
),
dim
=
[
2
,
3
],
keep_dim
=
True
)
var
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
square
(
input_
-
mean
),
dim
=
[
2
,
3
],
keep_dim
=
True
)
if
name
is
not
None
:
scale_name
=
name
+
"_scale"
offset_name
=
name
+
"_offset"
scale_param
=
inputs
[
1
]
offset_param
=
inputs
[
2
]
scale
=
fluid
.
layers
.
create_parameter
(
name
=
scale_param
.
name
,
shape
=
input_
.
shape
[
1
:
2
],
dtype
=
"float32"
)
offset
=
fluid
.
layers
.
create_parameter
(
name
=
offset_param
.
name
,
shape
=
input_
.
shape
[
1
:
2
],
dtype
=
"float32"
)
scale
=
fluid
.
layers
.
create_parameter
(
name
=
scale_param
.
name
,
shape
=
input_
.
shape
[
1
:
2
],
dtype
=
"float32"
)
offset
=
fluid
.
layers
.
create_parameter
(
name
=
offset_param
.
name
,
shape
=
input_
.
shape
[
1
:
2
],
dtype
=
"float32"
)
tmp
=
fluid
.
layers
.
elementwise_mul
(
x
=
(
input_
-
mean
),
y
=
scale
,
axis
=
1
)
tmp
=
tmp
/
fluid
.
layers
.
sqrt
(
var
+
epsilon
)
...
...
@@ -51,8 +48,9 @@ def InstanceNormalization_weights(name, data=None):
return
weights_name
register
(
kind
=
'InstanceNormalization'
,
shape
=
InstanceNormalization_shape
,
layer
=
InstanceNormalization_layer
,
child_func
=
None
,
weights
=
InstanceNormalization_weights
)
register
(
kind
=
'InstanceNormalization'
,
shape
=
InstanceNormalization_shape
,
layer
=
InstanceNormalization_layer
,
child_func
=
None
,
weights
=
InstanceNormalization_weights
)
x2paddle/op_mapper/onnx_custom_layer/register.py
浏览文件 @
58e1668e
...
...
@@ -36,8 +36,7 @@ def register(kind, shape, layer, child_func, weights):
kind
=
[
kind
]
else
:
assert
type
(
kind
)
is
list
,
'invalid param "kind" for register, not a list or str'
kind
)
is
list
,
'invalid param "kind" for register, not a list or str'
for
k
in
kind
:
assert
type
(
...
...
x2paddle/op_mapper/onnx_directly_map.py
浏览文件 @
58e1668e
...
...
@@ -28,60 +28,49 @@ default_op_mapping_field_values['FILL_NAME_FIELD'] = True
default_op_mapping
=
{
'Shape'
:
[
'shape'
,
[
'X'
],
[
'Out'
]],
'Clip'
:
[
'clip'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
min
=
(
_np
.
asarray
([
255
,
255
,
127
,
255
],
dtype
=
_np
.
uint8
).
view
(
_np
.
float32
)[
0
]),
max
=
(
_np
.
asarray
([
255
,
255
,
127
,
127
],
dtype
=
_np
.
uint8
).
view
(
_np
.
float32
)[
0
]),
)
'clip'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
min
=
(
_np
.
asarray
(
[
255
,
255
,
127
,
255
],
dtype
=
_np
.
uint8
).
view
(
_np
.
float32
)[
0
]),
max
=
(
_np
.
asarray
(
[
255
,
255
,
127
,
127
],
dtype
=
_np
.
uint8
).
view
(
_np
.
float32
)[
0
]),
)
],
'Erf'
:
[
'erf'
,
[
'X'
],
[
'Out'
]],
'Ceil'
:
[
'ceil'
,
[
'X'
],
[
'Out'
]],
'ReduceMean'
:
[
'reduce_mean'
,
[
'X'
],
[
'Out'
],
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
'reduce_mean'
,
[
'X'
],
[
'Out'
],
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
],
'ReduceSum'
:
[
'reduce_sum'
,
[
'X'
],
[
'Out'
],
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
'reduce_sum'
,
[
'X'
],
[
'Out'
],
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
],
'ReduceMin'
:
[
'reduce_min'
,
[
'X'
],
[
'Out'
],
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
'reduce_min'
,
[
'X'
],
[
'Out'
],
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
],
'ReduceMax'
:
[
'reduce_max'
,
[
'X'
],
[
'Out'
],
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
'reduce_max'
,
[
'X'
],
[
'Out'
],
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
],
#active function
'Relu'
:
[
'relu'
,
[
'X'
],
[
'Out'
]],
'LeakyRelu'
:
[
'leaky_relu'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
alpha
=
.
01
)],
'Elu'
:
[
'elu'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
alpha
=
1.
)],
'LeakyRelu'
:
[
'leaky_relu'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
alpha
=
.
01
)],
'Elu'
:
[
'elu'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
alpha
=
1.
)],
'ThresholdedRelu'
:
[
'thresholded_relu'
,
[
'X'
],
[
'Out'
],
dict
(
alpha
=
'threshold'
),
'thresholded_relu'
,
[
'X'
],
[
'Out'
],
dict
(
alpha
=
'threshold'
),
dict
(
alpha
=
1.
)
],
'Tanh'
:
[
'tanh'
,
[
'X'
],
[
'Out'
]],
'Sigmoid'
:
[
'sigmoid'
,
[
'X'
],
[
'Out'
]],
'HardSigmoid'
:
[
'hard_sigmoid'
,
[
'X'
],
[
'Out'
],
dict
(
alpha
=
'slope'
,
beta
=
'offset'
),
dict
(
slope
=
.
2
,
offset
=
.
5
)
'hard_sigmoid'
,
[
'X'
],
[
'Out'
],
dict
(
alpha
=
'slope'
,
beta
=
'offset'
),
dict
(
slope
=
.
2
,
offset
=
.
5
)
],
'Softsign'
:
[
'softsign'
,
[
'X'
],
[
'Out'
]],
'Softplus'
:
[
'softplus'
,
[
'X'
],
[
'Out'
]],
'Exp'
:
[
'exp'
,
[
'X'
],
[
'Out'
]],
'Softmax'
:
[
'softmax'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
axis
=
1
)],
'Softmax'
:
[
'softmax'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
axis
=
1
)],
'Sqrt'
:
[
'sqrt'
,
[
'X'
],
[
'Out'
]],
'Floor'
:
[
'floor'
,
[
'X'
],
[
'Out'
]],
'Abs'
:
[
'abs'
,
[
'X'
],
[
'Out'
]],
...
...
x2paddle/op_mapper/onnx_op_mapper.py
浏览文件 @
58e1668e
...
...
@@ -140,8 +140,8 @@ class ONNXOpMapper(OpMapper):
model
.
graph
.
ClearField
(
'output'
)
model
.
graph
.
output
.
MergeFrom
(
model
.
graph
.
value_info
)
onnx
.
save
(
model
,
os
.
path
.
join
(
self
.
tmp_data_dir
,
'onnx_model_infer.onnx'
))
onnx
.
save
(
model
,
os
.
path
.
join
(
self
.
tmp_data_dir
,
'onnx_model_infer.onnx'
))
sess
=
rt
.
InferenceSession
(
os
.
path
.
join
(
self
.
tmp_data_dir
,
'onnx_model_infer.onnx'
))
res
=
sess
.
run
(
None
,
input_feed
=
inputs_dict
)
...
...
@@ -217,8 +217,7 @@ class ONNXOpMapper(OpMapper):
default_attrs
,
input_perm
,
output_perm
,
fill_name_field
,
)
=
info
fill_name_field
,
)
=
info
if
fluid_op
in
default_ioa_constraint
:
for
predicate
,
message
in
default_ioa_constraint
[
fluid_op
]:
...
...
@@ -429,10 +428,8 @@ class ONNXOpMapper(OpMapper):
}
node
.
fluid_code
.
add_layer
(
'roi_align'
,
inputs
=
{
'input'
:
val_x
,
'rois'
:
val_rois
},
inputs
=
{
'input'
:
val_x
,
'rois'
:
val_rois
},
output
=
node
,
param_attr
=
attr
)
...
...
@@ -449,10 +446,8 @@ class ONNXOpMapper(OpMapper):
}
node
.
fluid_code
.
add_layer
(
'roi_pool'
,
inputs
=
{
'input'
:
val_x
,
'rois'
:
val_rois
},
inputs
=
{
'input'
:
val_x
,
'rois'
:
val_rois
},
output
=
node
,
param_attr
=
attr
)
...
...
@@ -527,10 +522,8 @@ class ONNXOpMapper(OpMapper):
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
node
.
fluid_code
.
add_layer
(
'greater_than'
,
inputs
=
{
'x'
:
val_x
,
'y'
:
val_y
},
inputs
=
{
'x'
:
val_x
,
'y'
:
val_y
},
output
=
node
,
param_attr
=
None
)
...
...
@@ -549,11 +542,10 @@ class ONNXOpMapper(OpMapper):
shape
=
val_output
.
out_shapes
[
0
]
if
shape
is
None
:
shape
=
list
(
value
.
shape
)
_logger
.
warning
(
'in (Constant -> %s): '
'attribute "shape" of %s not inferred, '
'using value as 1-D tensor may lead to fails'
,
val_output
.
layer_name
,
val_output
.
layer_name
)
_logger
.
warning
(
'in (Constant -> %s): '
'attribute "shape" of %s not inferred, '
'using value as 1-D tensor may lead to fails'
,
val_output
.
layer_name
,
val_output
.
layer_name
)
if
len
(
value
)
==
1
:
value
=
value
.
tolist
()
...
...
@@ -616,10 +608,8 @@ class ONNXOpMapper(OpMapper):
if
axis
==
0
and
len
(
indices_shape
)
<=
1
:
node
.
fluid_code
.
add_layer
(
'gather'
,
inputs
=
{
'input'
:
val_x
,
'index'
:
indices
},
inputs
=
{
'input'
:
val_x
,
'index'
:
indices
},
output
=
node
,
param_attr
=
None
)
elif
axis
>
0
and
len
(
indices_shape
)
<=
1
:
...
...
@@ -634,10 +624,8 @@ class ONNXOpMapper(OpMapper):
param_attr
=
attr_trans
)
node
.
fluid_code
.
add_layer
(
'gather'
,
inputs
=
{
'input'
:
name_trans
,
'index'
:
indices
},
inputs
=
{
'input'
:
name_trans
,
'index'
:
indices
},
output
=
node
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
...
...
@@ -649,9 +637,7 @@ class ONNXOpMapper(OpMapper):
'reshape'
,
inputs
=
indices
,
output
=
indices
,
param_attr
=
{
'shape'
:
[
reshape_shape
,
]})
param_attr
=
{
'shape'
:
[
reshape_shape
,
]})
perm
=
list
(
range
(
len
(
val_x
.
out_shapes
[
0
])))
perm
=
[
axis
]
+
perm
[:
axis
]
+
perm
[
axis
+
1
:]
...
...
@@ -664,10 +650,8 @@ class ONNXOpMapper(OpMapper):
param_attr
=
attr_trans
)
node
.
fluid_code
.
add_layer
(
'gather'
,
inputs
=
{
'input'
:
name_trans
,
'index'
:
indices
},
inputs
=
{
'input'
:
name_trans
,
'index'
:
indices
},
output
=
node
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
...
...
@@ -926,8 +910,10 @@ class ONNXOpMapper(OpMapper):
def
Sum
(
self
,
node
):
val_inps
=
node
.
layer
.
input
inputs
=
{
"x"
:
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
),
"y"
:
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
),
"x"
:
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
),
"y"
:
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
),
}
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
inputs
,
output
=
node
)
...
...
@@ -1022,10 +1008,8 @@ class ONNXOpMapper(OpMapper):
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
node
.
fluid_code
.
add_layer
(
"equal"
,
inputs
=
{
'x'
:
val_x
,
'y'
:
val_y
},
inputs
=
{
'x'
:
val_x
,
'y'
:
val_y
},
output
=
node
,
param_attr
=
None
)
...
...
@@ -1055,29 +1039,23 @@ class ONNXOpMapper(OpMapper):
mul_val_x
=
val_x
.
layer_name
+
'_mul'
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
{
'x'
:
val_x
,
'y'
:
cast_condition
},
inputs
=
{
'x'
:
val_x
,
'y'
:
cast_condition
},
output
=
mul_val_x
,
param_attr
=
None
)
mul_val_y
=
val_y
.
layer_name
+
'_mul'
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
{
'x'
:
val_y
,
'y'
:
cast_not_condition
},
inputs
=
{
'x'
:
val_y
,
'y'
:
cast_not_condition
},
output
=
mul_val_y
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
{
'x'
:
mul_val_x
,
'y'
:
mul_val_y
},
inputs
=
{
'x'
:
mul_val_x
,
'y'
:
mul_val_y
},
output
=
node
,
param_attr
=
None
)
...
...
@@ -1106,7 +1084,8 @@ class ONNXOpMapper(OpMapper):
output
=
flatten_name
,
param_attr
=
{
'axis'
:
0
})
node
.
fluid_code
.
add_layer
(
"concat"
,
inputs
=
flatten_names
,
output
=
node
,
param_attr
=
{
'axis'
:
0
})
"concat"
,
inputs
=
flatten_names
,
output
=
node
,
param_attr
=
{
'axis'
:
0
})
def
Identity
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
...
...
@@ -1280,11 +1259,11 @@ class ONNXOpMapper(OpMapper):
output_size
=
[
0
,
0
]
output_size
[
0
]
=
(
val_x
.
out_shapes
[
0
][
2
]
-
1
)
*
strides
[
0
]
-
2
*
paddings
[
0
]
+
dilations
[
0
]
*
(
output_size
[
0
]
=
(
val_x
.
out_shapes
[
0
][
2
]
-
1
)
*
strides
[
0
]
-
2
*
paddings
[
0
]
+
dilations
[
0
]
*
(
kernel_shape
[
0
]
-
1
)
+
1
+
out_padding
[
0
]
output_size
[
1
]
=
(
val_x
.
out_shapes
[
0
][
3
]
-
1
)
*
strides
[
1
]
-
2
*
paddings
[
1
]
+
dilations
[
1
]
*
(
output_size
[
1
]
=
(
val_x
.
out_shapes
[
0
][
3
]
-
1
)
*
strides
[
1
]
-
2
*
paddings
[
1
]
+
dilations
[
1
]
*
(
kernel_shape
[
1
]
-
1
)
+
1
+
out_padding
[
1
]
attr
=
{
'num_filters'
:
num_out_channels
,
...
...
@@ -1367,29 +1346,23 @@ class ONNXOpMapper(OpMapper):
'squeeze'
,
inputs
=
val_x
,
output
=
var_x0
,
param_attr
=
{
'axes'
:
[
1
],
'name'
:
string
(
var_x0
)
})
param_attr
=
{
'axes'
:
[
1
],
'name'
:
string
(
var_x0
)})
var_w0
=
node
.
layer_name
+
'_w0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
val_w
,
output
=
var_w0
,
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_w0
)
})
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_w0
)})
var_fc
=
node
.
layer_name
+
'_fc'
var_mm
=
(
node
.
layer_name
+
'_mm'
)
if
val_b
else
var_fc
node
.
fluid_code
.
add_layer
(
'matmul'
,
inputs
=
{
'x'
:
var_x0
,
'y'
:
var_w0
},
inputs
=
{
'x'
:
var_x0
,
'y'
:
var_w0
},
output
=
var_mm
,
param_attr
=
{
'transpose_x'
:
0
,
...
...
@@ -1402,10 +1375,8 @@ class ONNXOpMapper(OpMapper):
'squeeze'
,
inputs
=
val_r
,
output
=
var_r0
,
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_r0
)
})
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_r0
)})
var_r0t
=
node
.
layer_name
+
'_r0t'
...
...
@@ -1413,10 +1384,8 @@ class ONNXOpMapper(OpMapper):
'transpose'
,
inputs
=
var_r0
,
output
=
var_r0t
,
param_attr
=
{
'perm'
:
[
1
,
0
],
'name'
:
string
(
var_r0t
)
})
param_attr
=
{
'perm'
:
[
1
,
0
],
'name'
:
string
(
var_r0t
)})
if
val_b
:
var_bi
=
node
.
layer_name
+
'_bi'
var_bh
=
node
.
layer_name
+
'_bh'
...
...
@@ -1434,10 +1403,8 @@ class ONNXOpMapper(OpMapper):
'squeeze'
,
inputs
=
var_bi
,
output
=
var_bi0
,
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_bi0
)
})
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_bi0
)})
node
.
fluid_code
.
add_layer
(
'elmentwise_add'
,
...
...
@@ -1454,10 +1421,8 @@ class ONNXOpMapper(OpMapper):
'squeeze'
,
inputs
=
val_xh
,
output
=
var_xh0
,
param_attr
=
{
'axes'
:
[
1
],
'name'
:
string
(
var_xh0
)
})
param_attr
=
{
'axes'
:
[
1
],
'name'
:
string
(
var_xh0
)})
var_y00
=
node
.
layer_name
+
'_y00'
attr
=
{
...
...
x2paddle/op_mapper/paddle_custom_layer/im2sequence.py
浏览文件 @
58e1668e
...
...
@@ -30,8 +30,8 @@ def im2sequence(op, block):
slice_blocks
=
list
()
for
i
in
range
(
out_h
):
for
j
in
range
(
out_w
):
starts_name
=
"im2sequence.starts.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
starts_name
=
"im2sequence.starts.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
starts_tensor
=
helper
.
make_tensor
(
name
=
starts_name
,
data_type
=
onnx_pb
.
TensorProto
.
INT64
,
...
...
x2paddle/op_mapper/paddle_custom_layer/multiclass_nms.py
浏览文件 @
58e1668e
...
...
@@ -44,8 +44,7 @@ def multiclass_nms(op, block):
if
normalized
==
False
:
warnings
.
warn
(
'The parameter normalized of multiclass_nms OP of Paddle is False, which has diff with ONNX.
\
Please set normalized=True in multiclass_nms of Paddle'
)
Please set normalized=True in multiclass_nms of Paddle'
)
#convert the paddle attribute to onnx tensor
name_score_threshold
=
[
outputs
[
'Out'
][
0
]
+
"@score_threshold"
]
...
...
@@ -353,7 +352,8 @@ def multiclass_nms(op, block):
outputs_gather_topk_class
=
[
result_name
+
"@gather_topk_class"
]
node_gather_topk_class
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_1_nonzero
+
[
outputs_topk_select_topk_indices
[
1
]],
inputs
=
outputs_gather_1_nonzero
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_class
,
axis
=
1
)
node_list
.
append
(
node_gather_topk_class
)
...
...
@@ -362,7 +362,8 @@ def multiclass_nms(op, block):
outputs_gather_topk_boxes_id
=
[
result_name
+
"@gather_topk_boxes_id"
]
node_gather_topk_boxes_id
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_2_nonzero
+
[
outputs_topk_select_topk_indices
[
1
]],
inputs
=
outputs_gather_2_nonzero
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_boxes_id
,
axis
=
1
)
node_list
.
append
(
node_gather_topk_boxes_id
)
...
...
x2paddle/op_mapper/paddle_custom_layer/yolo_box.py
浏览文件 @
58e1668e
...
...
@@ -4,8 +4,6 @@ from onnx import onnx_pb, helper
def
get_old_name
(
arg
,
name_prefix
=
''
):
"""Get the old rame for a possible renamed argument
"""
prefix_index
=
arg
.
find
(
name_prefix
)
if
prefix_index
!=
-
1
:
...
...
@@ -40,8 +38,8 @@ def yolo_box(op, block):
downsample_ratio
=
attrs
[
'downsample_ratio'
]
input_size
=
input_height
*
downsample_ratio
conf_thresh
=
attrs
[
'conf_thresh'
]
conf_thresh_mat
=
np
.
ones
([
num_anchors
*
input_height
*
input_width
])
*
conf_thresh
conf_thresh_mat
=
np
.
ones
([
num_anchors
*
input_height
*
input_width
])
*
conf_thresh
node_list
=
[]
im_outputs
=
[]
...
...
x2paddle/op_mapper/paddle_op_mapper.py
浏览文件 @
58e1668e
...
...
@@ -250,8 +250,7 @@ class PaddleOpMapper(object):
node
=
helper
.
make_node
(
pool_type
[
op
.
attr
(
'pooling_type'
)][
1
],
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
)
outputs
=
op
.
output
(
'Out'
),
)
else
:
input_shape
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
k_size
=
op
.
attr
(
'ksize'
)
...
...
@@ -407,8 +406,7 @@ class PaddleOpMapper(object):
node
=
helper
.
make_node
(
'Clip'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
min_name
,
max_name
],
outputs
=
op
.
output
(
'Out'
),
)
outputs
=
op
.
output
(
'Out'
),
)
return
[
min_node
,
max_node
,
node
]
def
shape
(
self
,
op
,
block
):
...
...
@@ -450,8 +448,7 @@ class PaddleOpMapper(object):
node
=
helper
.
make_node
(
"Slice"
,
inputs
=
[
op
.
input
(
'Input'
)[
0
],
starts_name
,
ends_name
,
axes_name
],
outputs
=
op
.
output
(
'Out'
),
)
outputs
=
op
.
output
(
'Out'
),
)
return
[
starts_node
,
ends_node
,
axes_node
,
node
]
def
fill_constant
(
self
,
op
,
block
):
...
...
@@ -551,8 +548,8 @@ class PaddleOpMapper(object):
if
op
.
attr
(
'align_corners'
):
coordinate_transformation_mode
=
'align_corners'
if
(
'OutSize'
in
input_names
and
len
(
op
.
input
(
'OutSize'
))
>
0
)
or
(
'SizeTensor'
in
input_names
and
len
(
op
.
input
(
'SizeTensor'
))
>
0
):
'SizeTensor'
in
input_names
and
len
(
op
.
input
(
'SizeTensor'
))
>
0
):
node_list
=
list
()
roi_node
=
self
.
make_constant_node
(
self
.
get_name
(
op
.
type
,
'roi'
),
onnx_pb
.
TensorProto
.
FLOAT
,
...
...
@@ -631,8 +628,7 @@ class PaddleOpMapper(object):
elif
'Scale'
in
input_names
and
len
(
op
.
input
(
'Scale'
))
>
0
:
node
=
helper
.
make_node
(
'Resize'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
op
.
input
(
'Scale'
)[
0
]],
inputs
=
[
op
.
input
(
'X'
)[
0
],
op
.
input
(
'Scale'
)[
0
]],
outputs
=
op
.
output
(
'Out'
),
mode
=
'linear'
,
coordinate_transformation_mode
=
coordinate_transformation_mode
)
...
...
@@ -641,8 +637,9 @@ class PaddleOpMapper(object):
scale
=
op
.
attr
(
'scale'
)
if
out_shape
.
count
(
-
1
)
>
0
:
scale_name
=
self
.
get_name
(
op
.
type
,
'scale'
)
scale_node
=
self
.
make_constant_node
(
scale_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
[
1
,
1
,
scale
,
scale
])
scale_node
=
self
.
make_constant_node
(
scale_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
[
1
,
1
,
scale
,
scale
])
roi_name
=
self
.
get_name
(
op
.
type
,
'roi'
)
roi_node
=
self
.
make_constant_node
(
roi_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
...
...
@@ -667,16 +664,14 @@ class PaddleOpMapper(object):
if
'OutSize'
in
input_names
and
len
(
op
.
input
(
'OutSize'
))
>
0
:
node
=
helper
.
make_node
(
'Resize'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
''
,
op
.
input
(
'OutSize'
)[
0
]],
inputs
=
[
op
.
input
(
'X'
)[
0
],
''
,
op
.
input
(
'OutSize'
)[
0
]],
outputs
=
op
.
output
(
'Out'
),
mode
=
'nearest'
,
coordinate_transformation_mode
=
coordinate_transformation_mode
)
elif
'Scale'
in
input_names
and
len
(
op
.
input
(
'Scale'
))
>
0
:
node
=
helper
.
make_node
(
'Resize'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
op
.
input
(
'Scale'
)[
0
]],
inputs
=
[
op
.
input
(
'X'
)[
0
],
op
.
input
(
'Scale'
)[
0
]],
outputs
=
op
.
output
(
'Out'
),
mode
=
'nearest'
,
coordinate_transformation_mode
=
coordinate_transformation_mode
)
...
...
@@ -685,8 +680,9 @@ class PaddleOpMapper(object):
scale
=
op
.
attr
(
'scale'
)
if
out_shape
.
count
(
-
1
)
>
0
:
scale_name
=
self
.
get_name
(
op
.
type
,
'scale'
)
scale_node
=
self
.
make_constant_node
(
scale_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
[
1
,
1
,
scale
,
scale
])
scale_node
=
self
.
make_constant_node
(
scale_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
[
1
,
1
,
scale
,
scale
])
roi_name
=
self
.
get_name
(
op
.
type
,
'roi'
)
roi_node
=
self
.
make_constant_node
(
roi_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
...
...
@@ -737,8 +733,7 @@ class PaddleOpMapper(object):
node1
=
helper
.
make_node
(
'Clip'
,
inputs
=
[
name0
,
min_name
,
max_name
],
outputs
=
[
name1
],
)
outputs
=
[
name1
],
)
name2
=
self
.
get_name
(
op
.
type
,
'mul'
)
node2
=
helper
.
make_node
(
'Mul'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
name1
],
outputs
=
[
name2
])
...
...
@@ -814,14 +809,6 @@ class PaddleOpMapper(object):
keepdims
=
0
)
return
node
def
yolo_box
(
self
,
op
,
block
):
from
.paddle_custom_layer.yolo_box
import
yolo_box
return
yolo_box
(
op
,
block
)
def
multiclass_nms
(
self
,
op
,
block
):
from
.paddle_custom_layer.multiclass_nms
import
multiclass_nms
return
multiclass_nms
(
op
,
block
)
def
reciprocal
(
self
,
op
,
block
):
inputs
=
op
.
input
(
op
.
input_names
[
0
])
outputs
=
op
.
output
(
op
.
output_names
[
0
])
...
...
x2paddle/op_mapper/tf_op_mapper.py
浏览文件 @
58e1668e
...
...
@@ -114,9 +114,8 @@ class TFOpMapper(OpMapper):
else
:
unsupported_ops
.
add
(
op
)
if
len
(
unsupported_ops
)
>
0
:
sys
.
stderr
.
write
(
"=========={} Ops are not supported yet======
\n
"
.
format
(
len
(
unsupported_ops
)))
sys
.
stderr
.
write
(
"=========={} Ops are not supported yet======
\n
"
.
format
(
len
(
unsupported_ops
)))
for
op
in
unsupported_ops
:
sys
.
stderr
.
write
(
"========== {} ==========
\n
"
.
format
(
op
))
sys
.
exit
(
-
1
)
...
...
@@ -141,10 +140,8 @@ class TFOpMapper(OpMapper):
pd_param_name
=
list
(
param
.
values
())[
0
]
tf_param
=
node
.
get_attr
(
tf_param_name
)
attr
[
pd_param_name
]
=
tf_param
node
.
fluid_code
.
add_layer
(
op_info
[
0
],
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
op_info
[
0
],
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
elementwise_map
(
self
,
node
):
assert
node
.
layer_type
in
self
.
elementwise_ops
...
...
@@ -179,21 +176,21 @@ class TFOpMapper(OpMapper):
0
]
==
y_shape
[
-
1
]
and
y_shape
.
count
(
-
1
)
<
1
:
shape
=
[
1
,
x_shape
[
0
],
1
,
1
]
attr
=
{
"shape"
:
shape
}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
x_input
,
output
=
"reshape_x"
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
x_input
,
output
=
"reshape_x"
,
param_attr
=
attr
)
if
y_shape
[
0
]
!=
1
:
attr
=
{
"expand_times"
:
[
y_shape
[
0
],
1
,
1
,
1
]}
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
"reshape_x"
,
output
=
"reshape_x"
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
"reshape_x"
,
output
=
"reshape_x"
,
param_attr
=
attr
)
inputs
=
{
"x"
:
"reshape_x"
,
"y"
:
y_input
}
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
return
else
:
raise
Exception
(
"Unexpected situation happend"
)
...
...
@@ -205,10 +202,8 @@ class TFOpMapper(OpMapper):
axis
=
-
1
attr
=
{
"axis"
:
axis
}
inputs
=
{
"x"
:
x_input
,
"y"
:
y_input
}
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
return
is_sub_seq
=
True
...
...
@@ -242,10 +237,8 @@ class TFOpMapper(OpMapper):
if
len
(
x_expand_times
)
==
4
and
x
.
tf_data_format
==
"NHWC"
:
x_expand_times
=
[
x_expand_times
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
attr
=
{
"expand_times"
:
x_expand_times
}
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
x_input
,
output
=
"x_tmp"
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
x_input
,
output
=
"x_tmp"
,
param_attr
=
attr
)
x_input
=
"x_tmp"
if
y_need_expand
:
if
len
(
y_expand_times
)
==
3
and
y
.
tf_data_format
==
"NHWC"
:
...
...
@@ -253,16 +246,12 @@ class TFOpMapper(OpMapper):
if
len
(
y_expand_times
)
==
4
and
y
.
tf_data_format
==
"NHWC"
:
y_expand_times
=
[
y_expand_times
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
attr
=
{
"expand_times"
:
y_expand_times
}
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
y_input
,
output
=
"y_tmp"
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
y_input
,
output
=
"y_tmp"
,
param_attr
=
attr
)
y_input
=
"y_tmp"
inputs
=
{
"x"
:
x_input
,
"y"
:
y_input
}
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
def
Placeholder
(
self
,
node
):
shape
=
node
.
out_shapes
[
0
]
...
...
@@ -283,10 +272,8 @@ class TFOpMapper(OpMapper):
if
shape
[
0
]
<
0
:
self
.
batch_node
=
node
node
.
fluid_code
.
add_layer
(
"data"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"data"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
def
OneShotIterator
(
self
,
node
):
return
self
.
Placeholder
(
node
)
...
...
@@ -308,8 +295,8 @@ class TFOpMapper(OpMapper):
shape
=
[
shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
if
len
(
shape
)
==
3
:
shape
=
[
shape
[
i
]
for
i
in
[
2
,
0
,
1
]]
self
.
weights
[
node
.
layer_name
]
=
numpy
.
transpose
(
node
.
value
,
(
2
,
0
,
1
))
self
.
weights
[
node
.
layer_name
]
=
numpy
.
transpose
(
node
.
value
,
(
2
,
0
,
1
))
elif
node
.
tf_data_format
==
"NCHW"
:
if
len
(
shape
)
==
4
:
self
.
graph
.
data_format_propagation
(
node
)
...
...
@@ -320,10 +307,8 @@ class TFOpMapper(OpMapper):
'name'
:
string
(
node
.
layer_name
),
'default_initializer'
:
initializer
}
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
def
Transpose
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -362,16 +347,12 @@ class TFOpMapper(OpMapper):
node
.
tf_data_format
=
[
tf_data_format
[
i
]
for
i
in
perm
]
node
.
pd_data_format
=
[
pd_data_format
[
i
]
for
i
in
perm
]
attr
=
{
'perm'
:
new_perm
}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
elif
len
(
node
.
out_shapes
[
0
])
!=
4
:
attr
=
{
'perm'
:
perm
}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
else
:
raise
Exception
(
"Unexpected situation happend in Transpose OP"
)
...
...
@@ -401,10 +382,8 @@ class TFOpMapper(OpMapper):
"pool_padding"
:
string
(
pad_mode
),
"pool_stride"
:
strides
[
2
:
4
]
}
node
.
fluid_code
.
add_layer
(
"pool2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"pool2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Conv2D
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -444,10 +423,8 @@ class TFOpMapper(OpMapper):
"dilation"
:
dilations
[
2
:
4
],
"padding"
:
string
(
pad_mode
)
}
node
.
fluid_code
.
add_layer
(
"conv2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"conv2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
BiasAdd
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -457,10 +434,8 @@ class TFOpMapper(OpMapper):
axis
=
1
inputs
=
{
"x"
:
input
,
"y"
:
bias
}
attr
=
{
"axis"
:
axis
}
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
def
FusedBatchNorm
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -491,10 +466,8 @@ class TFOpMapper(OpMapper):
"is_test"
:
True
}
node
.
fluid_code
.
add_layer
(
"batch_norm"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"batch_norm"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
FusedBatchNormV3
(
self
,
node
):
return
self
.
FusedBatchNorm
(
node
)
...
...
@@ -539,10 +512,8 @@ class TFOpMapper(OpMapper):
"use_cudnn"
:
False
,
"padding"
:
string
(
pad_mode
)
}
node
.
fluid_code
.
add_layer
(
"conv2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"conv2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Reshape
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -562,18 +533,17 @@ class TFOpMapper(OpMapper):
attr
=
{
"shape"
:
shape
}
self
.
add_omit_nodes
(
param
.
layer_name
,
node
.
layer_name
)
else
:
assert
len
(
param
.
out_shapes
[
0
]
)
==
1
,
"Unexpected situation of shape parameter"
assert
len
(
param
.
out_shapes
[
0
]
)
==
1
,
"Unexpected situation of shape parameter"
attr
=
{
"shape"
:
[
-
1
]}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
param
,
output
=
"shape_param"
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
param
,
output
=
"shape_param"
,
param_attr
=
attr
)
attr
=
{
"num_or_sections"
:
param
.
out_shapes
[
0
][
0
],
"dim"
:
0
}
node
.
fluid_code
.
add_layer
(
"split"
,
inputs
=
"shape_param"
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"split"
,
inputs
=
"shape_param"
,
output
=
node
,
param_attr
=
attr
)
new_param
=
"["
for
i
in
range
(
param
.
out_shapes
[
0
][
0
]):
new_param
+=
(
node
.
layer_name
+
"[{}]"
.
format
(
i
)
+
", "
)
...
...
@@ -601,14 +571,10 @@ class TFOpMapper(OpMapper):
if
len
(
input
.
out_shapes
[
0
])
==
4
and
node
.
tf_data_format
==
"NHWC"
:
if
len
(
attr
[
"shape"
])
<
3
:
perm
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
perm
)
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
perm
)
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
return
if
len
(
attr
[
"shape"
])
==
4
and
node
.
tf_data_format
==
"NHWC"
:
...
...
@@ -617,27 +583,19 @@ class TFOpMapper(OpMapper):
attr
[
"shape"
]
=
[
attr
[
"shape"
][
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
else
:
perm
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
perm
)
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
perm
)
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
perm
=
{
"perm"
:
[
0
,
3
,
1
,
2
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
node
,
output
=
node
,
param_attr
=
perm
)
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
node
,
output
=
node
,
param_attr
=
perm
)
return
if
len
(
attr
[
"shape"
])
==
5
:
attr
[
"shape"
]
=
[
attr
[
"shape"
][
i
]
for
i
in
[
0
,
1
,
4
,
2
,
3
]]
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
AvgPool
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -665,10 +623,8 @@ class TFOpMapper(OpMapper):
"pool_stride"
:
strides
[
2
:
4
],
"pool_padding"
:
string
(
pad_mode
)
}
node
.
fluid_code
.
add_layer
(
"pool2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"pool2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
SplitV
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -685,28 +641,24 @@ class TFOpMapper(OpMapper):
"num_or_sections"
:
num_sections
.
value
.
tolist
(),
"dim"
:
dim
.
value
}
node
.
fluid_code
.
add_layer
(
"split"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"split"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
ConcatV2
(
self
,
node
):
inputs
=
[
self
.
graph
.
get_node
(
name
,
copy
=
True
)
for
name
in
node
.
layer
.
input
[:
-
1
]
self
.
graph
.
get_node
(
name
,
copy
=
True
)
for
name
in
node
.
layer
.
input
[:
-
1
]
]
axis
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
-
1
],
copy
=
True
)
assert
axis
.
layer_type
==
"Const"
self
.
add_omit_nodes
(
axis
.
layer_name
,
node
.
layer_name
)
axis
=
axis
.
value
if
inputs
[
0
].
tf_data_format
==
"NHWC"
and
len
(
inputs
[
0
].
out_shapes
[
0
])
==
4
:
if
inputs
[
0
].
tf_data_format
==
"NHWC"
and
len
(
inputs
[
0
].
out_shapes
[
0
])
==
4
:
axis
=
nhwc_dim_to_nchw
(
inputs
[
0
],
axis
)
attr
=
{
"axis"
:
axis
}
node
.
fluid_code
.
add_layer
(
"concat"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"concat"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
def
Tile
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -726,18 +678,17 @@ class TFOpMapper(OpMapper):
expand_times
[
i
]
=
1
attr
=
{
"expand_times"
:
expand_times
}
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Pack
(
self
,
node
):
inputs
=
[
self
.
graph
.
get_node
(
name
,
copy
=
True
)
for
name
in
node
.
layer
.
input
self
.
graph
.
get_node
(
name
,
copy
=
True
)
for
name
in
node
.
layer
.
input
]
axis
=
node
.
get_attr
(
"axis"
)
if
inputs
[
0
].
tf_data_format
==
"NHWC"
and
len
(
inputs
[
0
].
out_shapes
[
0
])
==
4
:
if
inputs
[
0
].
tf_data_format
==
"NHWC"
and
len
(
inputs
[
0
].
out_shapes
[
0
])
==
4
:
tf_data_format
=
list
(
inputs
[
0
].
tf_data_format
)
tf_data_format
.
insert
(
axis
,
str
(
len
(
tf_data_format
)))
axis
=
nhwc_dim_to_nchw
(
inputs
[
0
],
axis
)
...
...
@@ -747,10 +698,8 @@ class TFOpMapper(OpMapper):
node
.
pd_data_format
=
""
.
join
(
pd_data_format
)
attr
=
{
"axis"
:
axis
}
node
.
fluid_code
.
add_layer
(
"stack"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"stack"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
def
Pad
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -767,10 +716,8 @@ class TFOpMapper(OpMapper):
paddings
=
paddings
[
4
:]
pad_op
=
"pad2d"
attr
=
{
"paddings"
:
paddings
}
node
.
fluid_code
.
add_layer
(
pad_op
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
pad_op
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
MirrorPad
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -789,10 +736,8 @@ class TFOpMapper(OpMapper):
paddings
=
paddings
[
4
:]
pad_op
=
"pad2d"
attr
=
{
"paddings"
:
paddings
,
"mode"
:
string
(
"reflect"
)}
node
.
fluid_code
.
add_layer
(
pad_op
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
pad_op
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Range
(
self
,
node
):
start
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -816,10 +761,8 @@ class TFOpMapper(OpMapper):
inputs
=
{
"start"
:
start
,
"end"
:
limit
,
"step"
:
delta
}
attr
=
{
"dtype"
:
string
(
node
.
dtype
)}
node
.
fluid_code
.
add_layer
(
"range"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"range"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
def
Mean
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -833,10 +776,8 @@ class TFOpMapper(OpMapper):
dims
[
i
]
=
nhwc_dim_to_nchw
(
input
,
dims
[
i
])
attr
=
{
"dim"
:
dims
,
"keep_dim"
:
keep_dims
}
node
.
fluid_code
.
add_layer
(
"reduce_mean"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reduce_mean"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
MatMul
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -850,15 +791,11 @@ class TFOpMapper(OpMapper):
shape
=
x
.
out_shapes
[
0
]
shape
[
-
1
]
=
y
.
out_shapes
[
0
][
0
]
attr
=
{
"shape"
:
shape
}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
x
,
output
=
x
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
x
,
output
=
x
,
param_attr
=
attr
)
attr
=
{
"transpose_x"
:
transpose_a
,
"transpose_y"
:
transpose_b
}
node
.
fluid_code
.
add_layer
(
"matmul"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"matmul"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
def
ArgMax
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -869,10 +806,8 @@ class TFOpMapper(OpMapper):
if
input
.
tf_data_format
==
"NHWC"
and
len
(
input
.
out_shapes
[
0
])
==
4
:
axis
=
nhwc_dim_to_nchw
(
input
,
axis
)
attr
=
{
"axis"
:
axis
}
node
.
fluid_code
.
add_layer
(
"argmax"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"argmax"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
StridedSlice
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -910,16 +845,12 @@ class TFOpMapper(OpMapper):
x
=
shrink_axis_mask
>>
i
&
1
if
x
==
1
:
squeeze_dims
.
append
(
i
)
node
.
fluid_code
.
add_layer
(
"slice"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"slice"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
if
shrink_axis_mask
>
0
and
len
(
input
.
out_shapes
[
0
])
==
5
:
attr
=
{
"axes"
:
squeeze_dims
}
node
.
fluid_code
.
add_layer
(
"squeeze"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"squeeze"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
def
Slice
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -951,10 +882,8 @@ class TFOpMapper(OpMapper):
"starts"
:
begin
,
"ends"
:
size
}
node
.
fluid_code
.
add_layer
(
"slice"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"slice"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Conv2DBackpropInput
(
self
,
node
):
out_shape
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -1004,10 +933,8 @@ class TFOpMapper(OpMapper):
"padding"
:
string
(
pad_mode
),
"output_size"
:
out_shape
[
1
:
3
]
}
node
.
fluid_code
.
add_layer
(
"conv2d_transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"conv2d_transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Max
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -1019,10 +946,8 @@ class TFOpMapper(OpMapper):
dim
=
nhwc_dim_to_nchw
(
input
,
dim
)
attr
=
{
"dim"
:
dim
,
"keep_dim"
:
keep_dims
}
node
.
fluid_code
.
add_layer
(
"reduce_max"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reduce_max"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Sum
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -1034,19 +959,15 @@ class TFOpMapper(OpMapper):
dim
=
nhwc_dim_to_nchw
(
input
,
dim
)
attr
=
{
"dim"
:
dim
,
"keep_dim"
:
keep_dims
}
node
.
fluid_code
.
add_layer
(
"reduce_sum"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reduce_sum"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Cast
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
dtype
=
node
.
dtype_map
[
node
.
get_attr
(
'DstT'
)]
attr
=
{
"dtype"
:
string
(
dtype
)}
node
.
fluid_code
.
add_layer
(
"cast"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"cast"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Split
(
self
,
node
):
dim
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -1058,10 +979,8 @@ class TFOpMapper(OpMapper):
dim
=
nhwc_dim_to_nchw
(
input
,
dim
)
attr
=
{
"num_or_sections"
:
num_split
,
"dim"
:
dim
}
node
.
fluid_code
.
add_layer
(
"split"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"split"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Squeeze
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -1070,10 +989,8 @@ class TFOpMapper(OpMapper):
for
i
in
range
(
len
(
squeeze_dims
)):
squeeze_dims
[
i
]
=
nhwc_dim_to_nchw
(
input
,
squeeze_dims
[
i
])
attr
=
{
"axes"
:
squeeze_dims
}
node
.
fluid_code
.
add_layer
(
"squeeze"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"squeeze"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Softmax
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -1083,10 +1000,8 @@ class TFOpMapper(OpMapper):
if
input
.
tf_data_format
==
"NHWC"
and
len
(
input
.
out_shapes
[
0
])
==
4
:
axis
=
nhwc_dim_to_nchw
(
input
,
axis
)
attr
=
{
"axis"
:
axis
}
node
.
fluid_code
.
add_layer
(
"softmax"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"softmax"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
ResizeNearestNeighbor
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -1095,14 +1010,12 @@ class TFOpMapper(OpMapper):
if
resize_shape
.
layer_type
==
"Const"
:
resize_shape
=
resize_shape
.
value
.
tolist
()
else
:
resize_shape
=
self
.
decoder
.
infer_shape_tensor
(
resize_shape
,
node
.
out_shapes
[
0
])
resize_shape
=
self
.
decoder
.
infer_shape_tensor
(
resize_shape
,
node
.
out_shapes
[
0
])
align_corners
=
node
.
get_attr
(
"align_corners"
)
attr
=
{
"align_corners"
:
align_corners
,
"out_shape"
:
resize_shape
}
node
.
fluid_code
.
add_layer
(
"resize_nearest"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"resize_nearest"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
ResizeBilinear
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -1111,27 +1024,23 @@ class TFOpMapper(OpMapper):
if
resize_shape
.
layer_type
==
"Const"
:
resize_shape
=
resize_shape
.
value
.
tolist
()
else
:
resize_shape
=
self
.
decoder
.
infer_shape_tensor
(
resize_shape
,
node
.
out_shapes
[
0
])
resize_shape
=
self
.
decoder
.
infer_shape_tensor
(
resize_shape
,
node
.
out_shapes
[
0
])
align_corners
=
node
.
get_attr
(
"align_corners"
)
attr
=
{
"align_corners"
:
align_corners
,
"out_shape"
:
resize_shape
,
"align_mode"
:
1
}
node
.
fluid_code
.
add_layer
(
"resize_bilinear"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"resize_bilinear"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
GreaterEqual
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
inputs
=
{
"x"
:
x
,
"y"
:
y
}
node
.
fluid_code
.
add_layer
(
"greater_equal"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
"greater_equal"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
def
RandomUniform
(
self
,
node
):
shape
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -1145,26 +1054,21 @@ class TFOpMapper(OpMapper):
attr
=
{
"shape"
:
shape
,
"min"
:
0.0
,
"max"
:
0.9999
}
if
shape
[
0
]
<
0
:
input
=
self
.
batch_node
node
.
fluid_code
.
add_layer
(
"uniform_random_batch_size_like"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"uniform_random_batch_size_like"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
else
:
node
.
fluid_code
.
add_layer
(
"uniform_random"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"uniform_random"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
def
SquaredDifference
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
inputs
=
{
"x"
:
x
,
"y"
:
y
}
node
.
fluid_code
.
add_layer
(
"elementwise_sub"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
"elementwise_sub"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
inputs
=
{
"x"
:
node
,
"y"
:
node
}
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
x2paddle/op_mapper/tf_op_mapper_nhwc.py
浏览文件 @
58e1668e
...
...
@@ -486,8 +486,8 @@ class TFOpMapperNHWC(OpMapper):
attr
=
{
"shape"
:
shape
}
self
.
add_omit_nodes
(
param
.
layer_name
,
node
.
layer_name
)
else
:
assert
len
(
param
.
out_shapes
[
0
]
)
==
1
,
"Unexpected situation of shape parameter"
assert
len
(
param
.
out_shapes
[
0
]
)
==
1
,
"Unexpected situation of shape parameter"
attr
=
{
"shape"
:
[
-
1
]}
node
.
fluid_code
.
add_layer
(
"reshape"
,
...
...
@@ -577,8 +577,8 @@ class TFOpMapperNHWC(OpMapper):
def
ConcatV2
(
self
,
node
):
inputs
=
[
self
.
graph
.
get_node
(
name
,
copy
=
True
)
for
name
in
node
.
layer
.
input
[:
-
1
]
self
.
graph
.
get_node
(
name
,
copy
=
True
)
for
name
in
node
.
layer
.
input
[:
-
1
]
]
axis
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
-
1
],
copy
=
True
)
assert
axis
.
layer_type
==
"Const"
...
...
@@ -608,7 +608,8 @@ class TFOpMapperNHWC(OpMapper):
def
Pack
(
self
,
node
):
inputs
=
[
self
.
graph
.
get_node
(
name
,
copy
=
True
)
for
name
in
node
.
layer
.
input
self
.
graph
.
get_node
(
name
,
copy
=
True
)
for
name
in
node
.
layer
.
input
]
axis
=
node
.
get_attr
(
"axis"
)
attr
=
{
"axis"
:
axis
}
...
...
@@ -949,8 +950,8 @@ class TFOpMapperNHWC(OpMapper):
if
resize_shape
.
layer_type
==
"Const"
:
resize_shape
=
resize_shape
.
value
.
tolist
()
else
:
resize_shape
=
self
.
decoder
.
infer_shape_tensor
(
resize_shape
,
node
.
out_shapes
[
0
])
resize_shape
=
self
.
decoder
.
infer_shape_tensor
(
resize_shape
,
node
.
out_shapes
[
0
])
align_corners
=
node
.
get_attr
(
"align_corners"
)
attr
=
{
"perm"
:
[
0
,
3
,
1
,
2
]}
node
.
fluid_code
.
add_layer
(
...
...
@@ -969,8 +970,8 @@ class TFOpMapperNHWC(OpMapper):
if
resize_shape
.
layer_type
==
"Const"
:
resize_shape
=
resize_shape
.
value
.
tolist
()
else
:
resize_shape
=
self
.
decoder
.
infer_shape_tensor
(
resize_shape
,
node
.
out_shapes
[
0
])
resize_shape
=
self
.
decoder
.
infer_shape_tensor
(
resize_shape
,
node
.
out_shapes
[
0
])
align_corners
=
node
.
get_attr
(
"align_corners"
)
attr
=
{
"perm"
:
[
0
,
3
,
1
,
2
]}
node
.
fluid_code
.
add_layer
(
...
...
x2paddle/optimizer/caffe_optimizer.py
浏览文件 @
58e1668e
...
...
@@ -41,10 +41,11 @@ class CaffeOptimizer(object):
if
is_delete_node
:
parent_node
.
fluid_code
.
clear
()
node
.
fluid_code
.
clear
()
node
.
fluid_code
.
add_layer
(
"batch_norm"
,
inputs
=
input
,
output
=
node
,
param_attr
=
parent_param_attr
)
node
.
fluid_code
.
add_layer
(
"batch_norm"
,
inputs
=
input
,
output
=
node
,
param_attr
=
parent_param_attr
)
def
merge_op_activation
(
self
):
for
node_name
in
self
.
graph
.
topo_sort
:
...
...
@@ -62,7 +63,8 @@ class CaffeOptimizer(object):
if
is_delete_node
:
parent_node
.
fluid_code
.
clear
()
node
.
fluid_code
.
clear
()
node
.
fluid_code
.
add_layer
(
op
,
inputs
=
input
,
output
=
node
,
param_attr
=
parent_param_attr
)
node
.
fluid_code
.
add_layer
(
op
,
inputs
=
input
,
output
=
node
,
param_attr
=
parent_param_attr
)
x2paddle/optimizer/tf_optimizer.py
浏览文件 @
58e1668e
...
...
@@ -554,10 +554,11 @@ class TFOptimizer(object):
node
.
fluid_code
.
layers
[
0
].
param_attr
[
"shape"
]
=
shape
node
.
fluid_code
.
layers
[
0
].
output
=
"nhwc_"
+
name
attr
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
"nhwc_"
+
name
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
"nhwc_"
+
name
,
output
=
node
,
param_attr
=
attr
)
self
.
graph
.
input_nodes
[
i
]
=
"nhwc_"
+
name
for
i
,
name
in
enumerate
(
self
.
graph
.
output_nodes
):
node
=
self
.
graph
.
get_node
(
name
)
...
...
@@ -767,8 +768,8 @@ class TFOptimizer(object):
is_prelu
=
False
continue
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
]
.
outputs
)
!=
1
:
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
]
.
outputs
)
!=
1
:
is_prelu
=
False
continue
...
...
@@ -777,8 +778,8 @@ class TFOptimizer(object):
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes0
[
1
].
inputs
]
if
in_nodes2
[
1
].
layer_type
!=
"Const"
or
numpy
.
fabs
(
in_nodes2
[
1
].
value
-
0.5
)
>
1e-06
:
if
in_nodes2
[
1
].
layer_type
!=
"Const"
or
numpy
.
fabs
(
in_nodes2
[
1
].
value
-
0.5
)
>
1e-06
:
is_prelu
=
False
continue
if
in_nodes2
[
0
].
layer_type
!=
"Mul"
:
...
...
@@ -787,8 +788,8 @@ class TFOptimizer(object):
if
exist_act
(
in_nodes2
[
0
]):
is_prelu
=
False
continue
if
len
(
in_nodes2
[
1
].
outputs
)
!=
1
or
len
(
in_nodes2
[
0
]
.
outputs
)
!=
1
:
if
len
(
in_nodes2
[
1
].
outputs
)
!=
1
or
len
(
in_nodes2
[
0
]
.
outputs
)
!=
1
:
is_prelu
=
False
continue
...
...
@@ -803,8 +804,8 @@ class TFOptimizer(object):
if
exist_act
(
in_nodes3
[
1
]):
is_prelu
=
False
continue
if
len
(
in_nodes3
[
0
].
outputs
)
!=
1
or
len
(
in_nodes3
[
1
]
.
outputs
)
!=
1
:
if
len
(
in_nodes3
[
0
].
outputs
)
!=
1
or
len
(
in_nodes3
[
1
]
.
outputs
)
!=
1
:
is_prelu
=
False
continue
...
...
@@ -856,12 +857,12 @@ class TFOptimizer(object):
mode
=
"element"
elif
len
(
in_nodes3
[
0
].
value
.
shape
)
==
0
:
mode
=
"all"
elif
len
(
in_nodes3
[
0
].
value
.
shape
)
==
1
and
in_nodes3
[
0
].
value
.
shape
[
0
]
==
1
:
elif
len
(
in_nodes3
[
0
].
value
.
shape
)
==
1
and
in_nodes3
[
0
].
value
.
shape
[
0
]
==
1
:
mode
=
"all"
elif
len
(
in_shape
)
==
4
and
len
(
in_nodes3
[
0
].
value
.
shape
)
==
1
and
in_nodes3
[
0
].
value
.
shape
[
0
]
==
in_shape
[
-
1
]:
elif
len
(
in_shape
)
==
4
and
len
(
in_nodes3
[
0
].
value
.
shape
)
==
1
and
in_nodes3
[
0
].
value
.
shape
[
0
]
==
in_shape
[
-
1
]:
mode
=
"channel"
weight
=
self
.
op_mapper
.
weights
[
in_nodes3
[
0
].
layer_name
]
weight
=
numpy
.
expand_dims
(
weight
,
0
)
...
...
@@ -916,14 +917,15 @@ class TFOptimizer(object):
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
node
.
inputs
]
if
in_nodes0
[
0
].
layer_type
!=
"Mul"
or
in_nodes0
[
1
].
layer_type
!=
"Const"
or
in_nodes0
[
1
].
value
.
size
!=
1
:
1
].
layer_type
!=
"Const"
or
in_nodes0
[
1
].
value
.
size
!=
1
:
is_scale
=
False
continue
if
exist_act
(
in_nodes0
[
0
]):
is_scale
=
False
continue
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
]
.
outputs
)
!=
1
:
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
]
.
outputs
)
!=
1
:
is_scale
=
False
continue
...
...
@@ -939,8 +941,8 @@ class TFOptimizer(object):
if
exist_act
(
in_nodes1
[
1
]):
is_scale
=
False
continue
if
len
(
in_nodes1
[
0
].
outputs
)
!=
1
or
len
(
in_nodes1
[
1
]
.
outputs
)
!=
1
:
if
len
(
in_nodes1
[
0
].
outputs
)
!=
1
or
len
(
in_nodes1
[
1
]
.
outputs
)
!=
1
:
is_scale
=
False
continue
...
...
@@ -962,8 +964,8 @@ class TFOptimizer(object):
scale
=
1.0
/
in_nodes2
[
1
].
value
*
in_nodes1
[
0
].
value
act
=
None
if
node
.
fluid_code
.
layers
[
0
].
param_attr
is
not
None
:
act
=
node
.
fluid_code
.
layers
[
0
].
param_attr
.
get
(
"act"
,
None
)
act
=
node
.
fluid_code
.
layers
[
0
].
param_attr
.
get
(
"act"
,
None
)
node
.
fluid_code
.
clear
()
attr
=
{
...
...
@@ -972,10 +974,8 @@ class TFOptimizer(object):
"bias_after_scale"
:
True
,
"act"
:
act
}
node
.
fluid_code
.
add_layer
(
"scale"
,
inputs
=
in_node
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"scale"
,
inputs
=
in_node
,
output
=
node
,
param_attr
=
attr
)
del
self
.
graph
.
node_map
[
in_nodes0
[
0
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes0
[
1
].
layer_name
]
...
...
@@ -1004,17 +1004,17 @@ class TFOptimizer(object):
if
exist_act
(
in_nodes0
[
0
]):
is_affine_channel
=
False
continue
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
]
.
outputs
)
!=
1
:
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
]
.
outputs
)
!=
1
:
is_affine_channel
=
False
continue
in_nodes1
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes0
[
0
].
inputs
]
if
len
(
in_nodes1
[
0
].
out_shapes
[
0
]
)
!=
4
or
in_nodes1
[
1
].
layer_type
!=
"Const"
or
len
(
in_nodes1
[
1
]
.
value
.
shape
)
!=
3
:
if
len
(
in_nodes1
[
0
].
out_shapes
[
0
]
)
!=
4
or
in_nodes1
[
1
].
layer_type
!=
"Const"
or
len
(
in_nodes1
[
1
]
.
value
.
shape
)
!=
3
:
is_affine_channel
=
False
continue
if
len
(
in_nodes1
[
1
].
outputs
)
!=
1
:
...
...
@@ -1037,8 +1037,8 @@ class TFOptimizer(object):
node
.
layer_type
=
"AffineChannel"
node
.
inputs
=
[
in_node
.
layer_name
]
scale
=
1.0
/
in_nodes0
[
1
].
value
.
flatten
()
bias
=
in_nodes1
[
1
].
value
.
flatten
(
)
/
in_nodes0
[
1
].
value
.
flatten
()
bias
=
in_nodes1
[
1
].
value
.
flatten
(
)
/
in_nodes0
[
1
].
value
.
flatten
()
if
not
bias_add
:
bias
*=
-
1.0
self
.
op_mapper
.
weights
[
node
.
layer_name
+
"_scale"
]
=
scale
...
...
@@ -1046,8 +1046,8 @@ class TFOptimizer(object):
act
=
None
if
node
.
fluid_code
.
layers
[
0
].
param_attr
is
not
None
:
act
=
node
.
fluid_code
.
layers
[
0
].
param_attr
.
get
(
"act"
,
None
)
act
=
node
.
fluid_code
.
layers
[
0
].
param_attr
.
get
(
"act"
,
None
)
node
.
fluid_code
.
clear
()
attr
=
{
...
...
@@ -1055,29 +1055,32 @@ class TFOptimizer(object):
"shape"
:
[
channel
],
"name"
:
string
(
node
.
layer_name
+
"_scale"
)
}
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
.
layer_name
+
"_scale"
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
.
layer_name
+
"_scale"
,
param_attr
=
attr
)
attr
=
{
"dtype"
:
string
(
scale
.
dtype
),
"shape"
:
[
channel
],
"name"
:
string
(
node
.
layer_name
+
"_bias"
)
}
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
.
layer_name
+
"_bias"
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
.
layer_name
+
"_bias"
,
param_attr
=
attr
)
inputs
=
{
"x"
:
in_node
,
"scale"
:
node
.
layer_name
+
"_scale"
,
"bias"
:
node
.
layer_name
+
"_bias"
}
attr
=
{
"act"
:
act
}
node
.
fluid_code
.
add_layer
(
"affine_channel"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"affine_channel"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
del
self
.
graph
.
node_map
[
in_nodes0
[
0
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes0
[
1
].
layer_name
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录