From 3d638a806ce2bb023a4a99e12aa5fc5c579d18f2 Mon Sep 17 00:00:00 2001 From: jiangjiajun Date: Thu, 5 Sep 2019 10:47:22 +0800 Subject: [PATCH] test --- x2paddle/convert.py | 2 -- x2paddle/core/op_mapper.py | 22 ---------------------- x2paddle/core/util.py | 22 ++++++++++++++++++++++ x2paddle/decoder/onnx_decoder.py | 3 +++ 4 files changed, 25 insertions(+), 24 deletions(-) diff --git a/x2paddle/convert.py b/x2paddle/convert.py index 4e0cc97..904a10b 100644 --- a/x2paddle/convert.py +++ b/x2paddle/convert.py @@ -140,8 +140,6 @@ def caffe2paddle(proto, weight, save_dir, caffe_proto): def onnx2paddle(model_path, save_dir): # check onnx installation and version try: - import torch - import paddle.fluid import onnx version = onnx.version.version if version != '1.5.0': diff --git a/x2paddle/core/op_mapper.py b/x2paddle/core/op_mapper.py index 3df6186..a8024b1 100644 --- a/x2paddle/core/op_mapper.py +++ b/x2paddle/core/op_mapper.py @@ -46,28 +46,6 @@ def export_paddle_param(param, param_name, dir): fp.close() -# This func will copy to generate code file -def run_net(param_dir="./"): - import os - inputs, outputs = x2paddle_net() - for i, out in enumerate(outputs): - if isinstance(out, list): - for out_part in out: - outputs.append(out_part) - del outputs[i] - exe = fluid.Executor(fluid.CPUPlace()) - exe.run(fluid.default_startup_program()) - - def if_exist(var): - b = os.path.exists(os.path.join(param_dir, var.name)) - return b - - fluid.io.load_vars(exe, - param_dir, - fluid.default_main_program(), - predicate=if_exist) - - class OpMapper(object): def __init__(self): self.paddle_codes = "" diff --git a/x2paddle/core/util.py b/x2paddle/core/util.py index 552242a..3496095 100644 --- a/x2paddle/core/util.py +++ b/x2paddle/core/util.py @@ -19,3 +19,25 @@ import os def string(param): return "\'{}\'".format(param) + + +# This func will copy to generate code file +def run_net(param_dir="./"): + import os + inputs, outputs = x2paddle_net() + for i, out in enumerate(outputs): + if isinstance(out, list): + for out_part in out: + outputs.append(out_part) + del outputs[i] + exe = fluid.Executor(fluid.CPUPlace()) + exe.run(fluid.default_startup_program()) + + def if_exist(var): + b = os.path.exists(os.path.join(param_dir, var.name)) + return b + + fluid.io.load_vars(exe, + param_dir, + fluid.default_main_program(), + predicate=if_exist) diff --git a/x2paddle/decoder/onnx_decoder.py b/x2paddle/decoder/onnx_decoder.py index 07d3407..959b5b1 100644 --- a/x2paddle/decoder/onnx_decoder.py +++ b/x2paddle/decoder/onnx_decoder.py @@ -274,6 +274,9 @@ class ONNXGraph(Graph): try: import torch version = torch.__version__ + if '1.1.0' not in version: + print("your model have dynamic graph, torch==1.1.0 is required") + return except: print( "your model have dynamic graph, we use caff2 to inference graph, please use \"pip install torch==1.1.0\"." -- GitLab