diff --git a/x2paddle/convert.py b/x2paddle/convert.py index 4e0cc972ab4f625389cb96e4b774e9ed5980fdd5..904a10b916fa2ac17d60f841c31527e8fc0054ea 100644 --- a/x2paddle/convert.py +++ b/x2paddle/convert.py @@ -140,8 +140,6 @@ def caffe2paddle(proto, weight, save_dir, caffe_proto): def onnx2paddle(model_path, save_dir): # check onnx installation and version try: - import torch - import paddle.fluid import onnx version = onnx.version.version if version != '1.5.0': diff --git a/x2paddle/core/op_mapper.py b/x2paddle/core/op_mapper.py index 3df6186330eb7172bbabc642267c9141637264bc..a8024b1e7ea8f785b8ea87b83a2edef4476287ff 100644 --- a/x2paddle/core/op_mapper.py +++ b/x2paddle/core/op_mapper.py @@ -46,28 +46,6 @@ def export_paddle_param(param, param_name, dir): fp.close() -# This func will copy to generate code file -def run_net(param_dir="./"): - import os - inputs, outputs = x2paddle_net() - for i, out in enumerate(outputs): - if isinstance(out, list): - for out_part in out: - outputs.append(out_part) - del outputs[i] - exe = fluid.Executor(fluid.CPUPlace()) - exe.run(fluid.default_startup_program()) - - def if_exist(var): - b = os.path.exists(os.path.join(param_dir, var.name)) - return b - - fluid.io.load_vars(exe, - param_dir, - fluid.default_main_program(), - predicate=if_exist) - - class OpMapper(object): def __init__(self): self.paddle_codes = "" diff --git a/x2paddle/core/util.py b/x2paddle/core/util.py index 552242a63f4e88586815bdd3dcdaeff21b584aaa..34960951dbd6d6ba08a707017e54c1e168a8c9f0 100644 --- a/x2paddle/core/util.py +++ b/x2paddle/core/util.py @@ -19,3 +19,25 @@ import os def string(param): return "\'{}\'".format(param) + + +# This func will copy to generate code file +def run_net(param_dir="./"): + import os + inputs, outputs = x2paddle_net() + for i, out in enumerate(outputs): + if isinstance(out, list): + for out_part in out: + outputs.append(out_part) + del outputs[i] + exe = fluid.Executor(fluid.CPUPlace()) + exe.run(fluid.default_startup_program()) + + def if_exist(var): + b = os.path.exists(os.path.join(param_dir, var.name)) + return b + + fluid.io.load_vars(exe, + param_dir, + fluid.default_main_program(), + predicate=if_exist) diff --git a/x2paddle/decoder/onnx_decoder.py b/x2paddle/decoder/onnx_decoder.py index 07d3407b36f9930a74598cdad6be52f007370c55..959b5b12aeaea4c6a84aca84b79bfe712423d9b5 100644 --- a/x2paddle/decoder/onnx_decoder.py +++ b/x2paddle/decoder/onnx_decoder.py @@ -274,6 +274,9 @@ class ONNXGraph(Graph): try: import torch version = torch.__version__ + if '1.1.0' not in version: + print("your model have dynamic graph, torch==1.1.0 is required") + return except: print( "your model have dynamic graph, we use caff2 to inference graph, please use \"pip install torch==1.1.0\"."