Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
3d549eb8
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3d549eb8
编写于
10月 22, 2019
作者:
J
jiangjiajun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
adapt for dev paddle
上级
0497123e
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
190 addition
and
407 deletion
+190
-407
x2paddle/convert.py
x2paddle/convert.py
+2
-27
x2paddle/core/fluid_code.py
x2paddle/core/fluid_code.py
+5
-0
x2paddle/decoder/tf_decoder.py
x2paddle/decoder/tf_decoder.py
+8
-28
x2paddle/op_mapper/tf_op_mapper_nhwc.py
x2paddle/op_mapper/tf_op_mapper_nhwc.py
+175
-352
未找到文件。
x2paddle/convert.py
浏览文件 @
3d549eb8
...
...
@@ -98,29 +98,12 @@ def tf2paddle(model_path,
print
(
"Now translating model from tensorflow to paddle."
)
model
=
TFDecoder
(
model_path
,
define_input_shape
=
define_input_shape
)
if
not
without_data_format_optimization
:
mapper
=
TFOpMapper
(
model
)
optimizer
=
TFOptimizer
(
mapper
)
# neccesary optimization
optimizer
.
delete_redundance_code
()
# optimizer below is experimental
optimizer
.
optimize_elementwise_op
()
optimizer
.
merge_activation
()
optimizer
.
merge_bias
()
optimizer
.
optimize_sub_graph
()
# optimizer.merge_batch_norm()
# optimizer.merge_prelu()
else
:
mapper
=
TFOpMapperNHWC
(
model
)
optimizer
=
TFOptimizer
(
mapper
)
optimizer
.
delete_redundance_code
()
optimizer
.
strip_graph
()
optimizer
.
merge_activation
()
optimizer
.
merge_bias
()
optimizer
.
make_nchw_input_output
()
optimizer
.
remove_transpose
()
# optimizer.merge_activation()
# optimizer.merge_bias()
mapper
.
save_inference_model
(
save_dir
)
...
...
@@ -189,14 +172,6 @@ def main():
assert
args
.
framework
is
not
None
,
"--framework is not defined(support tensorflow/caffe/onnx)"
assert
args
.
save_dir
is
not
None
,
"--save_dir is not defined"
try
:
import
paddle
v0
,
v1
,
v2
=
paddle
.
__version__
.
split
(
'.'
)
if
int
(
v0
)
!=
1
or
int
(
v1
)
<
5
:
print
(
"paddlepaddle>=1.5.0 is required"
)
return
except
:
print
(
"paddlepaddle not installed, use
\"
pip install paddlepaddle
\"
"
)
if
args
.
framework
==
"tensorflow"
:
assert
args
.
model
is
not
None
,
"--model should be defined while translating tensorflow model"
...
...
x2paddle/core/fluid_code.py
浏览文件 @
3d549eb8
...
...
@@ -80,6 +80,11 @@ class Layer(object):
param_attr
=
collections
.
OrderedDict
(
self
.
param_attr
)
for
key
,
value
in
param_attr
.
items
():
if
isinstance
(
value
,
GraphNode
):
value_name
=
value
.
layer_name
if
hasattr
(
value
,
"index"
):
value_name
+=
"[{}]"
.
format
(
value
.
index
)
value
=
value_name
if
'
\n
'
in
str
(
value
):
value
=
string
(
str
(
value
).
replace
(
'
\n
'
,
','
))
layer_code
=
layer_code
+
key
+
"={}, "
.
format
(
value
)
...
...
x2paddle/decoder/tf_decoder.py
浏览文件 @
3d549eb8
...
...
@@ -389,27 +389,11 @@ class TFDecoder(object):
compare01
=
(
results
[
0
]
==
results
[
1
])
compare12
=
(
results
[
1
]
==
results
[
2
])
if
compare01
.
all
()
and
compare12
.
all
():
compare
=
compare01
&
compare12
index
=
numpy
.
argwhere
(
compare
==
False
).
flatten
()
results
[
0
][
index
]
=
-
1
return
results
[
0
].
tolist
()
if
(
compare01
==
compare12
).
all
():
index
=
numpy
.
argwhere
(
compare01
==
False
).
flatten
()
if
index
.
shape
[
0
]
!=
1
:
raise
Exception
(
"There's not only one unstable dimension"
)
results
[
0
][
index
[
0
]]
=
-
1
index
=
numpy
.
argwhere
(
results
[
0
]
<
0
).
flatten
()
if
index
.
shape
[
0
]
>
2
:
print
(
"Warning: More than two dimension less than zero"
)
if
index
.
shape
[
0
]
==
2
and
out_shape
is
not
None
:
if
out_shape
[
index
[
1
]]
>
0
:
results
[
0
][
index
[
1
]]
=
out_shape
[
index
[
1
]]
else
:
results
[
0
][
index
[
0
]]
=
out_shape
[
index
[
0
]]
return
results
[
0
].
tolist
()
else
:
raise
Exception
(
"Couldn't infer a stable shape shape tensor value"
)
def
infer_tensor_shape
(
self
,
graph_node
):
if
hasattr
(
graph_node
,
"index"
):
tensor_name
=
graph_node
.
layer
.
name
+
":{}"
.
format
(
graph_node
.
index
)
...
...
@@ -436,11 +420,7 @@ class TFDecoder(object):
if
compare01
.
all
()
and
compare12
.
all
():
return
shape
[
0
].
tolist
()
if
(
compare01
==
compare12
).
all
():
index
=
numpy
.
argwhere
(
compare01
==
False
).
flatten
()
if
index
.
shape
[
0
]
!=
1
:
raise
Exception
(
"There's not only one unstable dimension"
)
if
index
[
0
]
!=
0
:
raise
Exception
(
"Batch size not in the first dimension"
)
shapes
[
0
][
0
]
=
-
1
compare
=
compare01
&
compare12
index
=
numpy
.
argwhere
(
compare
==
False
).
flatten
()
shapes
[
0
][
index
]
=
-
1
return
shapes
[
0
].
tolist
()
x2paddle/op_mapper/tf_op_mapper_nhwc.py
浏览文件 @
3d549eb8
...
...
@@ -12,14 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
x2paddle.decoder.tf_decoder
import
TFGraph
from
x2paddle.decoder.tf_decoder
import
TFGraph
,
TFGraphNode
from
x2paddle.core.op_mapper
import
OpMapper
from
x2paddle.core.util
import
*
import
inspect
import
numpy
import
sys
# compute padding size for SAME mode
def
get_same_padding
(
in_size
,
kernel_size
,
stride
):
new_size
=
int
(
math
.
ceil
(
in_size
*
1.0
/
stride
))
...
...
@@ -30,6 +29,28 @@ def get_same_padding(in_size, kernel_size, stride):
pad1
=
pad_size
-
pad0
return
[
pad0
,
pad1
]
def
process_pack_shape
(
graph
,
param
,
shape_value
):
pack_inputs
=
[
graph
.
get_node
(
name
,
copy
=
True
)
for
name
in
param
.
layer
.
input
]
all_const_value
=
0
for
i
in
range
(
len
(
pack_inputs
)):
if
pack_inputs
[
i
].
layer_type
==
"Const"
:
pack_inputs
[
i
]
=
pack_inputs
[
i
].
value
all_const_value
+=
1
elif
shape_value
[
i
]
>
0
:
pack_inputs
[
i
]
=
shape_value
[
i
]
all_const_value
+=
1
else
:
if
hasattr
(
pack_inputs
[
i
],
"index"
):
index
=
pack_inputs
[
i
].
index
pack_inputs
[
i
]
=
pack_inputs
[
i
].
layer_name
+
"[{}]"
.
format
(
index
)
else
:
pack_inputs
[
i
]
=
pack_inputs
[
i
].
layer_name
string_params
=
"["
for
i
in
range
(
len
(
pack_inputs
)):
string_params
+=
"{}, "
.
format
(
pack_inputs
[
i
])
string_params
=
string_params
.
strip
(
", "
)
+
"]"
return
string_params
class
TFOpMapperNHWC
(
OpMapper
):
directly_map_ops
=
{
...
...
@@ -122,24 +143,6 @@ class TFOpMapperNHWC(OpMapper):
tf_param
=
node
.
get_attr
(
tf_param_name
)
attr
[
pd_param_name
]
=
tf_param
if
len
(
input
.
out_shapes
[
0
])
==
4
and
op_info
[
0
]
!=
'shape'
:
attr1
=
{
"perm"
:
[
0
,
3
,
1
,
2
]}
node
.
fluid_code
.
add_layer
(
'transpose'
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr1
)
input
=
node
node
.
fluid_code
.
add_layer
(
op_info
[
0
],
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
input
=
node
attr2
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
'transpose'
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr2
)
else
:
node
.
fluid_code
.
add_layer
(
op_info
[
0
],
inputs
=
input
,
output
=
node
,
...
...
@@ -216,25 +219,6 @@ class TFOpMapperNHWC(OpMapper):
output
=
"y_tmp"
,
param_attr
=
attr
)
y_input
=
"y_tmp"
if
len
(
x_shape
)
==
4
and
len
(
y_shape
)
==
4
:
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
x_input
,
output
=
x_input
,
param_attr
=
{
'perm'
:
[
0
,
3
,
1
,
2
]})
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
y_input
,
output
=
y_input
,
param_attr
=
{
'perm'
:
[
0
,
3
,
1
,
2
]})
inputs
=
{
"x"
:
x_input
,
"y"
:
y_input
}
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
node
,
output
=
node
,
param_attr
=
{
'perm'
:
[
0
,
2
,
3
,
1
]})
else
:
inputs
=
{
"x"
:
x_input
,
"y"
:
y_input
}
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
...
...
@@ -265,6 +249,7 @@ class TFOpMapperNHWC(OpMapper):
dtype
=
node
.
dtype
value
=
node
.
value
initializer
=
"Constant(0.0)"
if
len
(
shape
)
==
0
:
assert
value
.
size
==
1
,
"Unexpected situation happend"
shape
=
[
1
]
...
...
@@ -300,43 +285,20 @@ class TFOpMapperNHWC(OpMapper):
def
MaxPool
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
in_shape
=
input
.
out_shapes
[
0
]
if
in_shape
.
count
(
-
1
)
>
2
:
in_shape
=
self
.
decoder
.
infer_tensor
(
input
).
shape
k_size
=
node
.
get_attr
(
"ksize"
)
strides
=
node
.
get_attr
(
"strides"
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
channel_first
=
data_format
==
"NCHW"
if
not
channel_first
:
attr
=
{
"perm"
:
[
0
,
3
,
1
,
2
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
in_shape
=
[
in_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
k_size
=
[
k_size
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
input
=
node
attr
=
{
"pool_size"
:
k_size
[
2
:
4
],
"pool_size"
:
k_size
[
1
:
3
],
"pool_type"
:
string
(
"max"
),
"pool_stride"
:
strides
[
2
:
4
],
"pool_padding"
:
string
(
pad_mode
)
"pool_stride"
:
strides
[
1
:
3
],
"pool_padding"
:
string
(
pad_mode
),
"data_format"
:
string
(
"NHWC"
)
}
node
.
fluid_code
.
add_layer
(
"pool2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
if
not
channel_first
:
attr
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"pool2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Conv2D
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -345,51 +307,33 @@ class TFOpMapperNHWC(OpMapper):
self
.
add_omit_nodes
(
kernel
.
layer_name
,
node
.
layer_name
)
in_shape
=
input
.
out_shapes
[
0
]
if
in_shape
.
count
(
-
1
)
>
2
:
if
in_shape
[
3
]
<
0
:
in_shape
=
self
.
decoder
.
infer_tensor
(
input
).
shape
k_size
=
kernel
.
out_shapes
[
0
]
if
k_size
.
count
(
-
1
)
>
2
:
if
k_size
.
count
(
-
1
)
>
0
:
k_size
=
self
.
decoder
.
infer_tensor
(
kernel
).
shape
strides
=
node
.
get_attr
(
"strides"
)
dilations
=
node
.
get_attr
(
"dilations"
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
channel_first
=
data_format
==
"NCHW"
self
.
weights
[
kernel
.
layer_name
.
replace
(
'/'
,
'_'
)]
=
numpy
.
transpose
(
kernel
.
value
,
(
3
,
2
,
0
,
1
))
if
not
channel_first
:
in_shape
=
[
in_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
dilations
=
[
dilations
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
attr
=
{
"perm"
:
[
0
,
3
,
1
,
2
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
input
=
node
attr
=
{
"bias_attr"
:
False
,
"param_attr"
:
string
(
kernel
.
layer_name
),
"num_filters"
:
k_size
[
3
],
"filter_size"
:
k_size
[
0
:
2
],
"stride"
:
strides
[
2
:
4
],
"dilation"
:
dilations
[
2
:
4
],
"padding"
:
string
(
pad_mode
)
"stride"
:
strides
[
1
:
3
],
"dilation"
:
dilations
[
1
:
3
],
"padding"
:
string
(
pad_mode
),
"data_format"
:
string
(
"NHWC"
)
}
node
.
fluid_code
.
add_layer
(
"conv2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
if
not
channel_first
:
attr
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
def
BiasAdd
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -406,8 +350,6 @@ class TFOpMapperNHWC(OpMapper):
beta
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
],
copy
=
True
)
moving_mean
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
3
],
copy
=
True
)
moving_var
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
4
],
copy
=
True
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
channel_first
=
data_format
==
"NCHW"
assert
gamma
.
layer_type
==
"Const"
assert
beta
.
layer_type
==
"Const"
...
...
@@ -418,21 +360,14 @@ class TFOpMapperNHWC(OpMapper):
self
.
add_omit_nodes
(
moving_mean
.
layer_name
,
node
.
layer_name
)
self
.
add_omit_nodes
(
moving_var
.
layer_name
,
node
.
layer_name
)
if
not
channel_first
:
attr
=
{
"perm"
:
[
0
,
3
,
1
,
2
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
input
=
node
attr
=
{
"epsilon"
:
node
.
get_attr
(
"epsilon"
),
"param_attr"
:
string
(
gamma
.
layer_name
),
"bias_attr"
:
string
(
beta
.
layer_name
),
"moving_mean_name"
:
string
(
moving_mean
.
layer_name
),
"moving_variance_name"
:
string
(
moving_var
.
layer_name
),
"is_test"
:
True
"is_test"
:
True
,
"data_layout"
:
string
(
"NHWC"
)
}
node
.
fluid_code
.
add_layer
(
"batch_norm"
,
...
...
@@ -440,13 +375,6 @@ class TFOpMapperNHWC(OpMapper):
output
=
node
,
param_attr
=
attr
)
if
not
channel_first
:
attr
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
def
DepthwiseConv2dNative
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
kernel
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
...
...
@@ -454,10 +382,10 @@ class TFOpMapperNHWC(OpMapper):
self
.
add_omit_nodes
(
kernel
.
layer_name
,
node
.
layer_name
)
in_shape
=
input
.
out_shapes
[
0
]
if
in_shape
.
count
(
-
1
)
>
2
:
if
in_shape
[
3
]
<
0
:
in_shape
=
self
.
decoder
.
infer_tensor
(
input
).
shape
k_size
=
kernel
.
out_shapes
[
0
]
if
k_size
.
count
(
-
1
)
>
2
:
if
k_size
.
count
(
-
1
)
>
0
:
k_size
=
self
.
decoder
.
infer_tensor
(
kernel
).
shape
strides
=
node
.
get_attr
(
"strides"
)
...
...
@@ -469,136 +397,95 @@ class TFOpMapperNHWC(OpMapper):
self
.
weights
[
kernel
.
layer_name
.
replace
(
'/'
,
'_'
)]
=
numpy
.
transpose
(
kernel
.
value
,
(
2
,
3
,
0
,
1
))
if
not
channel_first
:
in_shape
=
[
in_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
dilations
=
[
dilations
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
attr
=
{
"perm"
:
[
0
,
3
,
1
,
2
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
input
=
node
attr
=
{
"bias_attr"
:
False
,
"param_attr"
:
string
(
kernel
.
layer_name
),
"num_filters"
:
in_shape
[
1
],
"num_filters"
:
in_shape
[
3
],
"filter_size"
:
k_size
[
0
:
2
],
"stride"
:
strides
[
2
:
4
],
"dilation"
:
dilations
[
2
:
4
],
"groups"
:
k_size
[
3
]
*
in_shape
[
1
],
"stride"
:
strides
[
1
:
3
],
"dilation"
:
dilations
[
1
:
3
],
"groups"
:
k_size
[
3
]
*
in_shape
[
3
],
"use_cudnn"
:
False
,
"padding"
:
string
(
pad_mode
)
"padding"
:
string
(
pad_mode
),
"data_format"
:
string
(
"NHWC"
)
}
node
.
fluid_code
.
add_layer
(
"conv2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
if
not
channel_first
:
attr
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
def
Reshape
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
param
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
is_variable
=
Fals
e
attr
=
Non
e
if
param
.
layer_type
==
"Const"
:
attr
=
{
"shape"
:
param
.
value
.
tolist
()}
inputs
=
{
"x"
:
input
}
self
.
add_omit_nodes
(
param
.
layer_name
,
node
.
layer_name
)
else
:
# Here is a trick method to solove tensor parameter in tensorflow
shape
=
self
.
decoder
.
infer_shape_tensor
(
param
,
node
.
out_shapes
[
0
])
if
shape
.
count
(
-
1
)
<=
1
:
attr
=
{
"shape"
:
shape
}
self
.
add_omit_nodes
(
param
.
layer_name
,
node
.
layer_name
)
inputs
=
{
"x"
:
input
,
"shape"
:
param
}
shape_value
=
self
.
decoder
.
infer_shape_tensor
(
param
)
if
param
.
layer_type
==
"Pack"
:
pack_inputs
=
[
self
.
graph
.
get_node
(
name
,
copy
=
True
)
for
name
in
param
.
layer
.
input
]
all_const_value
=
0
for
i
in
range
(
len
(
pack_inputs
)):
if
pack_inputs
[
i
].
layer_type
==
"Const"
:
pack_inputs
[
i
]
=
pack_inputs
[
i
].
value
all_const_value
+=
1
elif
shape_value
[
i
]
>
0
:
pack_inputs
[
i
]
=
shape_value
[
i
]
all_const_value
+=
1
else
:
assert
len
(
param
.
out_shapes
[
0
]
)
==
1
,
"Unexpected situation of shape parameter"
attr
=
{
"shape"
:
[
-
1
]}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
param
,
output
=
"shape_param"
,
param_attr
=
attr
)
attr
=
{
"num_or_sections"
:
param
.
out_shapes
[
0
][
0
],
"dim"
:
0
}
node
.
fluid_code
.
add_layer
(
"split"
,
inputs
=
"shape_param"
,
output
=
node
,
param_attr
=
attr
)
new_param
=
"["
for
i
in
range
(
param
.
out_shapes
[
0
][
0
]):
new_param
+=
(
node
.
layer_name
+
"[{}]"
.
format
(
i
)
+
", "
)
new_param
=
new_param
.
strip
(
", "
)
+
"]"
attr
=
{
"shape"
:
new_param
}
is_variable
=
True
# to change [192, -1]->[-1, 192], allways put -1 in the first dimension
# optimization for Paddle-Lite
if
hasattr
(
pack_inputs
[
i
],
"index"
):
index
=
pack_inputs
[
i
].
index
pack_inputs
[
i
]
=
pack_inputs
[
i
].
layer_name
+
"[{}]"
.
format
(
index
)
else
:
pack_inputs
[
i
]
=
pack_inputs
[
i
].
layer_name
### special optimize for paddle-lite
in_size
=
1
in_shape
=
input
.
out_shapes
[
0
]
if
not
is_variable
and
in_shape
.
count
(
-
1
)
<
1
:
total_size
=
1
for
i
in
range
(
len
(
in_shape
)):
total_size
*=
in_shape
[
i
]
for
i
in
range
(
len
(
attr
[
"shape"
])):
if
attr
[
"shape"
][
i
]
==
0
:
attr
[
"shape"
][
i
]
=
in_shape
[
i
]
if
attr
[
"shape"
][
i
]
!=
-
1
:
total_size
/=
attr
[
"shape"
][
i
]
if
attr
[
"shape"
].
count
(
-
1
)
>
0
:
index
=
attr
[
"shape"
].
index
(
-
1
)
attr
[
"shape"
][
index
]
=
int
(
total_size
)
attr
[
"shape"
][
0
]
=
-
1
in_size
*=
in_shape
[
i
]
if
all_const_value
==
len
(
pack_inputs
)
and
in_size
>
0
:
if
pack_inputs
[
0
]
>
0
and
pack_inputs
.
count
(
-
1
)
==
1
:
for
i
in
range
(
len
(
pack_inputs
)):
in_size
/=
pack_inputs
[
i
]
index
=
pack_inputs
.
index
(
-
1
)
pack_inputs
[
index
]
=
in_size
*
-
1
pack_inputs
[
0
]
=
-
1
###################################
string_params
=
"["
for
i
in
range
(
len
(
pack_inputs
)):
string_params
+=
"{}, "
.
format
(
pack_inputs
[
i
])
string_params
=
string_params
.
strip
(
", "
)
+
"]"
inputs
[
"shape"
]
=
string_params
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
inputs
=
input
s
,
output
=
node
,
param_attr
=
attr
)
def
AvgPool
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
in_shape
=
input
.
out_shapes
[
0
]
if
in_shape
.
count
(
-
1
)
>
2
:
in_shape
=
self
.
decoder
.
infer_tensor
(
input
).
shape
k_size
=
node
.
get_attr
(
"ksize"
)
strides
=
node
.
get_attr
(
"strides"
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
channel_first
=
data_format
==
"NCHW"
if
not
channel_first
:
in_shape
=
[
in_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
k_size
=
[
k_size
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
attr
=
{
"perm"
:
[
0
,
3
,
1
,
2
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
input
=
node
attr
=
{
"pool_size"
:
k_size
[
2
:
4
],
"pool_size"
:
k_size
[
1
:
3
],
"pool_type"
:
string
(
"avg"
),
"pool_stride"
:
strides
[
2
:
4
],
"pool_padding"
:
string
(
pad_mode
)
"pool_stride"
:
strides
[
1
:
3
],
"pool_padding"
:
string
(
pad_mode
),
"data_format"
:
string
(
"NHWC"
)
}
node
.
fluid_code
.
add_layer
(
"pool2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
if
not
channel_first
:
attr
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
def
SplitV
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
num_sections
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
...
...
@@ -638,30 +525,32 @@ class TFOpMapperNHWC(OpMapper):
def
Tile
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
expand_times
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
self
.
add_omit_nodes
(
expand_times
.
layer_name
,
node
.
layer_name
)
if
expand_times
.
layer_type
==
"Const"
:
expand_times
=
expand_times
.
value
.
tolist
()
else
:
expand_times
=
self
.
decoder
.
infer_shape_tensor
(
expand_times
)
for
i
in
range
(
len
(
expand_times
)):
if
expand_times
[
i
]
<
0
:
expand_times
[
i
]
=
1
self
.
add_omit_nodes
(
expand_times
.
layer_name
,
node
.
layer_name
)
attr
=
{
"expand_times"
:
expand_times
}
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Pack
(
self
,
node
):
inputs
=
[
self
.
graph
.
get_node
(
name
,
copy
=
True
)
for
name
in
node
.
layer
.
input
]
if
len
(
inputs
)
==
1
and
len
(
inputs
[
0
].
out_shapes
[
0
])
==
0
:
input_name
=
inputs
[
0
].
layer_name
if
hasattr
(
inputs
[
0
],
"index"
):
input_name
+=
"[{}]"
.
format
(
inputs
[
0
].
index
)
node
.
fluid_code
.
add_note
(
"{} = {}"
.
format
(
node
.
layer_name
,
input_name
))
return
axis
=
node
.
get_attr
(
"axis"
)
attr
=
{
"axis"
:
axis
}
node
.
fluid_code
.
add_layer
(
"stack"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
input_shape_sample
=
inputs
[
0
].
out_shapes
[
0
]
if
len
(
input_shape_sample
)
==
0
:
attr
=
{
"shape"
:
[
-
1
]}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
def
Pad
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
@@ -669,36 +558,17 @@ class TFOpMapperNHWC(OpMapper):
assert
paddings
.
layer_type
==
"Const"
,
"Padding should be Const"
self
.
add_omit_nodes
(
paddings
.
layer_name
,
node
.
layer_name
)
paddings
=
paddings
.
value
.
flatten
().
tolist
()
data_format
=
input
.
tf_data_format
if
len
(
input
.
out_shapes
[
0
])
==
4
:
new_padding
=
None
if
input
.
tf_data_format
==
"NHWC"
:
if
paddings
[
0
]
+
paddings
[
1
]
+
paddings
[
6
]
+
paddings
[
7
]
==
0
:
new_padding
=
paddings
[
2
:
6
]
else
:
if
paddings
[
0
]
+
paddings
[
1
]
+
paddings
[
2
]
+
paddings
[
3
]
==
0
:
new_padding
=
paddings
[
4
:]
if
new_padding
is
not
None
:
if
input
.
tf_data_format
==
"NHWC"
:
attr
=
{
"perm"
:
[
0
,
3
,
1
,
2
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
input
=
node
attr
=
{
"paddings"
:
new_padding
}
attr
=
{
"paddings"
:
new_padding
,
"data_format"
:
string
(
"NHWC"
)}
node
.
fluid_code
.
add_layer
(
"pad2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
if
input
.
tf_data_format
==
"NHWC"
:
attr
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
return
attr
=
{
"paddings"
:
paddings
}
...
...
@@ -711,21 +581,19 @@ class TFOpMapperNHWC(OpMapper):
start
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
limit
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
delta
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
],
copy
=
True
)
self
.
add_omit_nodes
(
start
.
layer_name
,
node
.
layer_name
)
self
.
add_omit_nodes
(
limit
.
layer_name
,
node
.
layer_name
)
self
.
add_omit_nodes
(
delta
.
layer_name
,
node
.
layer_name
)
all_param_const
=
-
2
if
start
.
layer_type
==
"Const"
:
self
.
add_omit_nodes
(
start
.
layer_name
,
node
.
layer_name
)
start
=
start
.
value
else
:
start
=
self
.
decoder
.
infer_tensor
(
start
)
all_param_const
+=
1
if
limit
.
layer_type
==
"Const"
:
self
.
add_omit_nodes
(
limit
.
layer_name
,
node
.
layer_name
)
limit
=
limit
.
value
else
:
limit
=
self
.
decoder
.
infer_tensor
(
limit
)
all_param_const
+=
1
if
delta
.
layer_type
==
"Const"
:
self
.
add_omit_nodes
(
delta
.
layer_name
,
node
.
layer_name
)
delta
=
delta
.
value
else
:
delta
=
self
.
decoder
.
infer_tensor
(
delta
)
all_param_const
+=
1
dtype
=
node
.
dtype
inputs
=
{
"start"
:
start
,
...
...
@@ -760,14 +628,18 @@ class TFOpMapperNHWC(OpMapper):
inputs
=
{
"x"
:
x
,
"y"
:
y
}
# fix paddle shape infer problem
# should be removed after paddle 1.6
if
x
.
out_shapes
[
0
][
-
1
]
<
0
and
y
.
out_shapes
[
0
][
0
]
>
0
:
x_last_dim
=
x
.
out_shapes
[
0
][
-
1
]
y_last_dim
=
y
.
out_shapes
[
0
][
0
]
certain_dim
=
x_last_dim
if
x_last_dim
>
y_last_dim
else
y_last_dim
shape
=
x
.
out_shapes
[
0
]
shape
[
-
1
]
=
y
.
out_shapes
[
0
][
0
]
shape
[
-
1
]
=
certain_dim
attr
=
{
"shape"
:
shape
}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
x
,
output
=
x
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
x
,
output
=
x
,
param_attr
=
attr
)
shape
=
y
.
out_shapes
[
0
]
shape
[
0
]
=
certain_dim
attr
=
{
"shape"
:
shape
}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
y
,
output
=
y
,
param_attr
=
attr
)
attr
=
{
"transpose_x"
:
transpose_a
,
"transpose_y"
:
transpose_b
}
node
.
fluid_code
.
add_layer
(
"matmul"
,
inputs
=
inputs
,
...
...
@@ -874,31 +746,31 @@ class TFOpMapperNHWC(OpMapper):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
begin
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
size
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
2
],
copy
=
True
)
self
.
add_omit_nodes
(
begin
.
layer_name
,
node
.
layer_name
)
self
.
add_omit_nodes
(
size
.
layer_name
,
node
.
layer_name
)
attr
=
dict
(
)
inputs
=
{
"x"
:
input
}
if
begin
.
layer_type
==
"Const"
:
self
.
add_omit_nodes
(
begin
.
layer_name
,
node
.
layer_name
)
begin
=
begin
.
value
.
tolist
()
attr
[
"offsets"
]
=
begin
else
:
begin
=
self
.
decoder
.
infer_tensor
(
begin
).
tolist
()
if
size
.
layer_type
==
"const"
:
inputs
[
"offsets"
]
=
begin
if
size
.
layer_type
==
"Const"
:
self
.
add_omit_nodes
(
size
.
layer_name
,
node
.
layer_name
)
size
=
size
.
value
.
tolist
()
attr
[
"shape"
]
=
size
else
:
size
=
self
.
decoder
.
infer_tensor
(
size
).
tolist
()
inputs
[
"shape"
]
=
size
for
i
in
range
(
len
(
size
)):
if
size
[
i
]
<
0
:
size
[
i
]
=
99999999
else
:
size
[
i
]
=
size
[
i
]
+
begin
[
i
]
if
isinstance
(
begin
,
TFGraphNode
)
and
begin
.
layer_type
==
"Pack"
:
begin
=
process_pack_shape
(
self
.
graph
,
begin
,
self
.
decoder
.
infer_shape_tensor
(
begin
))
inputs
[
"offsets"
]
=
begin
if
isinstance
(
size
,
TFGraphNode
)
and
size
.
layer_type
==
"Pack"
:
size
=
process_pack_shape
(
self
.
graph
,
size
,
self
.
decoder
.
infer_shape_tensor
(
size
))
inputs
[
"shape"
]
=
size
attr
=
{
"axes"
:
[
i
for
i
in
range
(
len
(
size
))],
"starts"
:
begin
,
"ends"
:
size
}
node
.
fluid_code
.
add_layer
(
"
slice
"
,
inputs
=
input
,
node
.
fluid_code
.
add_layer
(
"
crop_tensor
"
,
inputs
=
input
s
,
output
=
node
,
param_attr
=
attr
)
...
...
@@ -915,14 +787,13 @@ class TFOpMapperNHWC(OpMapper):
if
out_shape
.
layer_type
==
"Const"
:
out_shape
=
out_shape
.
value
.
tolist
()
else
:
out_shape
=
self
.
decoder
.
infer_shape_tensor
(
out_shape
,
node
.
out_shapes
[
0
])
out_shape
=
self
.
decoder
.
infer_shape_tensor
(
out_shape
,
node
.
out_shapes
[
0
])
in_shape
=
input
.
out_shapes
[
0
]
if
in_shape
.
count
(
-
1
)
>
2
:
if
in_shape
[
3
]
<
0
:
in_shape
=
self
.
decoder
.
infer_tensor
(
input
).
shape
k_size
=
kernel
.
out_shapes
[
0
]
if
k_size
.
count
(
-
1
)
>
2
:
if
k_size
.
count
(
-
1
)
>
0
:
k_size
=
self
.
decoder
.
infer_tensor
(
kernel
).
shape
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
...
...
@@ -933,41 +804,23 @@ class TFOpMapperNHWC(OpMapper):
self
.
weights
[
kernel
.
layer_name
.
replace
(
'/'
,
'_'
)]
=
numpy
.
transpose
(
kernel
.
value
,
(
3
,
2
,
0
,
1
))
if
not
channel_first
:
in_shape
=
[
in_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
dilations
=
[
dilations
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
attr
=
{
"perm"
:
[
0
,
3
,
1
,
2
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
input
=
node
else
:
self
.
data_format_propagation
(
node
)
attr
=
{
"bias_attr"
:
False
,
"param_attr"
:
string
(
kernel
.
layer_name
),
"num_filters"
:
k_size
[
2
],
"filter_size"
:
k_size
[
0
:
2
],
"stride"
:
strides
[
2
:
4
],
"dilation"
:
dilations
[
2
:
4
],
"stride"
:
strides
[
1
:
3
],
"dilation"
:
dilations
[
1
:
3
],
"output_size"
:
out_shape
[
1
:
3
],
"padding"
:
string
(
pad_mode
)
"padding"
:
string
(
pad_mode
),
"data_format"
:
string
(
"NHWC"
)
}
node
.
fluid_code
.
add_layer
(
"conv2d_transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
if
not
channel_first
:
attr
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
def
Max
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
reduce_idx
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
...
...
@@ -1038,56 +891,31 @@ class TFOpMapperNHWC(OpMapper):
def
ResizeNearestNeighbor
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
resize_shape
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
self
.
add_omit_nodes
(
resize_shape
.
layer_name
,
node
.
layer_name
)
if
resize_shape
.
layer_type
==
"Const"
:
self
.
add_omit_nodes
(
resize_shape
.
layer_name
,
node
.
layer_name
)
resize_shape
=
resize_shape
.
value
.
tolist
()
else
:
resize_shape
=
self
.
decoder
.
infer_shape_tensor
(
resize_shape
,
node
.
out_shapes
[
0
])
align_corners
=
node
.
get_attr
(
"align_corners"
)
attr
=
{
"perm"
:
[
0
,
3
,
1
,
2
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
attr
=
{
"align_corners"
:
align_corners
,
"out_shape"
:
resize_shape
}
attr
=
{
"align_corners"
:
align_corners
,
"out_shape"
:
resize_shape
,
"data_format"
:
string
(
"NHWC"
)}
node
.
fluid_code
.
add_layer
(
"resize_nearest"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
attr
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
node
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
ResizeBilinear
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
resize_shape
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
self
.
add_omit_nodes
(
resize_shape
.
layer_name
,
node
.
layer_name
)
if
resize_shape
.
layer_type
==
"Const"
:
self
.
add_omit_nodes
(
resize_shape
.
layer_name
,
node
.
layer_name
)
resize_shape
=
resize_shape
.
value
.
tolist
()
else
:
resize_shape
=
self
.
decoder
.
infer_shape_tensor
(
resize_shape
,
node
.
out_shapes
[
0
])
align_corners
=
node
.
get_attr
(
"align_corners"
)
attr
=
{
"perm"
:
[
0
,
3
,
1
,
2
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
attr
=
{
"align_corners"
:
align_corners
,
"out_shape"
:
resize_shape
,
"align_mode"
:
1
"align_mode"
:
1
,
"data_format"
:
string
(
"NHWC"
)
}
node
.
fluid_code
.
add_layer
(
"resize_bilinear"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
attr
=
{
"perm"
:
[
0
,
2
,
3
,
1
]}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
node
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
...
...
@@ -1102,21 +930,16 @@ class TFOpMapperNHWC(OpMapper):
def
RandomUniform
(
self
,
node
):
shape
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
self
.
add_omit_nodes
(
shape
.
layer_name
,
node
.
layer_name
)
if
shape
.
layer_type
==
"Const"
:
self
.
add_omit_nodes
(
shape
.
layer_name
,
node
.
layer_name
)
shape
=
shape
.
value
.
tolist
()
else
:
shape
=
self
.
decoder
.
infer_shape_tensor
(
shape
)
attr
=
{
"shape"
:
shape
,
"min"
:
0.0
,
"max"
:
0.9999
}
if
shape
[
0
]
<
0
:
input
=
self
.
batch_node
node
.
fluid_code
.
add_layer
(
"uniform_random_batch_size_like"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
else
:
if
not
isinstance
(
shape
,
list
):
attr
=
{
"dtype"
:
string
(
"int64"
)}
node
.
fluid_code
.
add_layer
(
"cast"
,
inputs
=
shape
,
output
=
shape
,
param_attr
=
attr
)
attr
=
{
"min"
:
0.0
,
"max"
:
0.9999
}
inputs
=
{
"shape"
:
shape
}
node
.
fluid_code
.
add_layer
(
"uniform_random"
,
inputs
=
None
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录