提交 3d549eb8 编写于 作者: J jiangjiajun

adapt for dev paddle

上级 0497123e
......@@ -98,29 +98,12 @@ def tf2paddle(model_path,
print("Now translating model from tensorflow to paddle.")
model = TFDecoder(model_path, define_input_shape=define_input_shape)
if not without_data_format_optimization:
mapper = TFOpMapper(model)
optimizer = TFOptimizer(mapper)
# neccesary optimization
optimizer.delete_redundance_code()
# optimizer below is experimental
optimizer.optimize_elementwise_op()
optimizer.merge_activation()
optimizer.merge_bias()
optimizer.optimize_sub_graph()
# optimizer.merge_batch_norm()
# optimizer.merge_prelu()
else:
mapper = TFOpMapperNHWC(model)
optimizer = TFOptimizer(mapper)
optimizer.delete_redundance_code()
optimizer.strip_graph()
optimizer.merge_activation()
optimizer.merge_bias()
optimizer.make_nchw_input_output()
optimizer.remove_transpose()
# optimizer.merge_activation()
# optimizer.merge_bias()
mapper.save_inference_model(save_dir)
......@@ -189,14 +172,6 @@ def main():
assert args.framework is not None, "--framework is not defined(support tensorflow/caffe/onnx)"
assert args.save_dir is not None, "--save_dir is not defined"
try:
import paddle
v0, v1, v2 = paddle.__version__.split('.')
if int(v0) != 1 or int(v1) < 5:
print("paddlepaddle>=1.5.0 is required")
return
except:
print("paddlepaddle not installed, use \"pip install paddlepaddle\"")
if args.framework == "tensorflow":
assert args.model is not None, "--model should be defined while translating tensorflow model"
......
......@@ -80,6 +80,11 @@ class Layer(object):
param_attr = collections.OrderedDict(self.param_attr)
for key, value in param_attr.items():
if isinstance(value, GraphNode):
value_name = value.layer_name
if hasattr(value, "index"):
value_name += "[{}]".format(value.index)
value = value_name
if '\n' in str(value):
value = string(str(value).replace('\n', ','))
layer_code = layer_code + key + "={}, ".format(value)
......
......@@ -389,27 +389,11 @@ class TFDecoder(object):
compare01 = (results[0] == results[1])
compare12 = (results[1] == results[2])
if compare01.all() and compare12.all():
compare = compare01 & compare12
index = numpy.argwhere(compare==False).flatten()
results[0][index] = -1
return results[0].tolist()
if (compare01 == compare12).all():
index = numpy.argwhere(compare01 == False).flatten()
if index.shape[0] != 1:
raise Exception("There's not only one unstable dimension")
results[0][index[0]] = -1
index = numpy.argwhere(results[0] < 0).flatten()
if index.shape[0] > 2:
print("Warning: More than two dimension less than zero")
if index.shape[0] == 2 and out_shape is not None:
if out_shape[index[1]] > 0:
results[0][index[1]] = out_shape[index[1]]
else:
results[0][index[0]] = out_shape[index[0]]
return results[0].tolist()
else:
raise Exception("Couldn't infer a stable shape shape tensor value")
def infer_tensor_shape(self, graph_node):
if hasattr(graph_node, "index"):
tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
......@@ -436,11 +420,7 @@ class TFDecoder(object):
if compare01.all() and compare12.all():
return shape[0].tolist()
if (compare01 == compare12).all():
index = numpy.argwhere(compare01 == False).flatten()
if index.shape[0] != 1:
raise Exception("There's not only one unstable dimension")
if index[0] != 0:
raise Exception("Batch size not in the first dimension")
shapes[0][0] = -1
compare = compare01 & compare12
index = numpy.argwhere(compare==False).flatten()
shapes[0][index] = -1
return shapes[0].tolist()
......@@ -12,14 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.decoder.tf_decoder import TFGraph, TFGraphNode
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
import inspect
import numpy
import sys
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
new_size = int(math.ceil(in_size * 1.0 / stride))
......@@ -30,6 +29,28 @@ def get_same_padding(in_size, kernel_size, stride):
pad1 = pad_size - pad0
return [pad0, pad1]
def process_pack_shape(graph, param, shape_value):
pack_inputs = [graph.get_node(name, copy=True) for name in param.layer.input]
all_const_value = 0
for i in range(len(pack_inputs)):
if pack_inputs[i].layer_type == "Const":
pack_inputs[i] = pack_inputs[i].value
all_const_value += 1
elif shape_value[i] > 0:
pack_inputs[i] = shape_value[i]
all_const_value += 1
else:
if hasattr(pack_inputs[i], "index"):
index = pack_inputs[i].index
pack_inputs[i] = pack_inputs[i].layer_name + "[{}]".format(index)
else:
pack_inputs[i] = pack_inputs[i].layer_name
string_params = "["
for i in range(len(pack_inputs)):
string_params += "{}, ".format(pack_inputs[i])
string_params = string_params.strip(", ") + "]"
return string_params
class TFOpMapperNHWC(OpMapper):
directly_map_ops = {
......@@ -122,24 +143,6 @@ class TFOpMapperNHWC(OpMapper):
tf_param = node.get_attr(tf_param_name)
attr[pd_param_name] = tf_param
if len(input.out_shapes[0]) == 4 and op_info[0] != 'shape':
attr1 = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer('transpose',
inputs=input,
output=node,
param_attr=attr1)
input = node
node.fluid_code.add_layer(op_info[0],
inputs=input,
output=node,
param_attr=attr)
input = node
attr2 = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer('transpose',
inputs=input,
output=node,
param_attr=attr2)
else:
node.fluid_code.add_layer(op_info[0],
inputs=input,
output=node,
......@@ -216,25 +219,6 @@ class TFOpMapperNHWC(OpMapper):
output="y_tmp",
param_attr=attr)
y_input = "y_tmp"
if len(x_shape) == 4 and len(y_shape) == 4:
node.fluid_code.add_layer("transpose",
inputs=x_input,
output=x_input,
param_attr={'perm': [0, 3, 1, 2]})
node.fluid_code.add_layer("transpose",
inputs=y_input,
output=y_input,
param_attr={'perm': [0, 3, 1, 2]})
inputs = {"x": x_input, "y": y_input}
node.fluid_code.add_layer(op_type,
inputs=inputs,
output=node,
param_attr=None)
node.fluid_code.add_layer("transpose",
inputs=node,
output=node,
param_attr={'perm': [0, 2, 3, 1]})
else:
inputs = {"x": x_input, "y": y_input}
node.fluid_code.add_layer(op_type,
inputs=inputs,
......@@ -265,6 +249,7 @@ class TFOpMapperNHWC(OpMapper):
dtype = node.dtype
value = node.value
initializer = "Constant(0.0)"
if len(shape) == 0:
assert value.size == 1, "Unexpected situation happend"
shape = [1]
......@@ -300,43 +285,20 @@ class TFOpMapperNHWC(OpMapper):
def MaxPool(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
in_shape = input.out_shapes[0]
if in_shape.count(-1) > 2:
in_shape = self.decoder.infer_tensor(input).shape
k_size = node.get_attr("ksize")
strides = node.get_attr("strides")
data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW"
if not channel_first:
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
strides = [strides[i] for i in [0, 3, 1, 2]]
k_size = [k_size[i] for i in [0, 3, 1, 2]]
input = node
attr = {
"pool_size": k_size[2:4],
"pool_size": k_size[1:3],
"pool_type": string("max"),
"pool_stride": strides[2:4],
"pool_padding": string(pad_mode)
"pool_stride": strides[1:3],
"pool_padding": string(pad_mode),
"data_format": string("NHWC")
}
node.fluid_code.add_layer("pool2d",
inputs=input,
output=node,
param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
output=node,
param_attr=attr)
node.fluid_code.add_layer("pool2d", inputs=input, output=node, param_attr=attr)
def Conv2D(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
......@@ -345,51 +307,33 @@ class TFOpMapperNHWC(OpMapper):
self.add_omit_nodes(kernel.layer_name, node.layer_name)
in_shape = input.out_shapes[0]
if in_shape.count(-1) > 2:
if in_shape[3] < 0:
in_shape = self.decoder.infer_tensor(input).shape
k_size = kernel.out_shapes[0]
if k_size.count(-1) > 2:
if k_size.count(-1) > 0:
k_size = self.decoder.infer_tensor(kernel).shape
strides = node.get_attr("strides")
dilations = node.get_attr("dilations")
data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW"
self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
kernel.value, (3, 2, 0, 1))
if not channel_first:
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
strides = [strides[i] for i in [0, 3, 1, 2]]
dilations = [dilations[i] for i in [0, 3, 1, 2]]
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = {
"bias_attr": False,
"param_attr": string(kernel.layer_name),
"num_filters": k_size[3],
"filter_size": k_size[0:2],
"stride": strides[2:4],
"dilation": dilations[2:4],
"padding": string(pad_mode)
"stride": strides[1:3],
"dilation": dilations[1:3],
"padding": string(pad_mode),
"data_format": string("NHWC")
}
node.fluid_code.add_layer("conv2d",
inputs=input,
output=node,
param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
output=node,
param_attr=attr)
def BiasAdd(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
......@@ -406,8 +350,6 @@ class TFOpMapperNHWC(OpMapper):
beta = self.graph.get_node(node.layer.input[2], copy=True)
moving_mean = self.graph.get_node(node.layer.input[3], copy=True)
moving_var = self.graph.get_node(node.layer.input[4], copy=True)
data_format = node.get_attr("data_format").decode()
channel_first = data_format == "NCHW"
assert gamma.layer_type == "Const"
assert beta.layer_type == "Const"
......@@ -418,21 +360,14 @@ class TFOpMapperNHWC(OpMapper):
self.add_omit_nodes(moving_mean.layer_name, node.layer_name)
self.add_omit_nodes(moving_var.layer_name, node.layer_name)
if not channel_first:
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = {
"epsilon": node.get_attr("epsilon"),
"param_attr": string(gamma.layer_name),
"bias_attr": string(beta.layer_name),
"moving_mean_name": string(moving_mean.layer_name),
"moving_variance_name": string(moving_var.layer_name),
"is_test": True
"is_test": True,
"data_layout": string("NHWC")
}
node.fluid_code.add_layer("batch_norm",
......@@ -440,13 +375,6 @@ class TFOpMapperNHWC(OpMapper):
output=node,
param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
output=node,
param_attr=attr)
def DepthwiseConv2dNative(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
kernel = self.graph.get_node(node.layer.input[1], copy=True)
......@@ -454,10 +382,10 @@ class TFOpMapperNHWC(OpMapper):
self.add_omit_nodes(kernel.layer_name, node.layer_name)
in_shape = input.out_shapes[0]
if in_shape.count(-1) > 2:
if in_shape[3] < 0:
in_shape = self.decoder.infer_tensor(input).shape
k_size = kernel.out_shapes[0]
if k_size.count(-1) > 2:
if k_size.count(-1) > 0:
k_size = self.decoder.infer_tensor(kernel).shape
strides = node.get_attr("strides")
......@@ -469,136 +397,95 @@ class TFOpMapperNHWC(OpMapper):
self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
kernel.value, (2, 3, 0, 1))
if not channel_first:
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
strides = [strides[i] for i in [0, 3, 1, 2]]
dilations = [dilations[i] for i in [0, 3, 1, 2]]
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = {
"bias_attr": False,
"param_attr": string(kernel.layer_name),
"num_filters": in_shape[1],
"num_filters": in_shape[3],
"filter_size": k_size[0:2],
"stride": strides[2:4],
"dilation": dilations[2:4],
"groups": k_size[3] * in_shape[1],
"stride": strides[1:3],
"dilation": dilations[1:3],
"groups": k_size[3] * in_shape[3],
"use_cudnn": False,
"padding": string(pad_mode)
"padding": string(pad_mode),
"data_format": string("NHWC")
}
node.fluid_code.add_layer("conv2d",
inputs=input,
output=node,
param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
output=node,
param_attr=attr)
def Reshape(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
param = self.graph.get_node(node.layer.input[1], copy=True)
is_variable = False
attr = None
if param.layer_type == "Const":
attr = {"shape": param.value.tolist()}
inputs = {"x": input}
self.add_omit_nodes(param.layer_name, node.layer_name)
else:
# Here is a trick method to solove tensor parameter in tensorflow
shape = self.decoder.infer_shape_tensor(param, node.out_shapes[0])
if shape.count(-1) <= 1:
attr = {"shape": shape}
self.add_omit_nodes(param.layer_name, node.layer_name)
inputs = {"x": input, "shape": param}
shape_value = self.decoder.infer_shape_tensor(param)
if param.layer_type == "Pack":
pack_inputs = [self.graph.get_node(name, copy=True) for name in param.layer.input]
all_const_value = 0
for i in range(len(pack_inputs)):
if pack_inputs[i].layer_type == "Const":
pack_inputs[i] = pack_inputs[i].value
all_const_value += 1
elif shape_value[i] > 0:
pack_inputs[i] = shape_value[i]
all_const_value += 1
else:
assert len(param.out_shapes[0]
) == 1, "Unexpected situation of shape parameter"
attr = {"shape": [-1]}
node.fluid_code.add_layer("reshape",
inputs=param,
output="shape_param",
param_attr=attr)
attr = {"num_or_sections": param.out_shapes[0][0], "dim": 0}
node.fluid_code.add_layer("split",
inputs="shape_param",
output=node,
param_attr=attr)
new_param = "["
for i in range(param.out_shapes[0][0]):
new_param += (node.layer_name + "[{}]".format(i) + ", ")
new_param = new_param.strip(", ") + "]"
attr = {"shape": new_param}
is_variable = True
# to change [192, -1]->[-1, 192], allways put -1 in the first dimension
# optimization for Paddle-Lite
if hasattr(pack_inputs[i], "index"):
index = pack_inputs[i].index
pack_inputs[i] = pack_inputs[i].layer_name + "[{}]".format(index)
else:
pack_inputs[i] = pack_inputs[i].layer_name
### special optimize for paddle-lite
in_size = 1
in_shape = input.out_shapes[0]
if not is_variable and in_shape.count(-1) < 1:
total_size = 1
for i in range(len(in_shape)):
total_size *= in_shape[i]
for i in range(len(attr["shape"])):
if attr["shape"][i] == 0:
attr["shape"][i] = in_shape[i]
if attr["shape"][i] != -1:
total_size /= attr["shape"][i]
if attr["shape"].count(-1) > 0:
index = attr["shape"].index(-1)
attr["shape"][index] = int(total_size)
attr["shape"][0] = -1
in_size *= in_shape[i]
if all_const_value == len(pack_inputs) and in_size > 0:
if pack_inputs[0] > 0 and pack_inputs.count(-1) == 1:
for i in range(len(pack_inputs)):
in_size /= pack_inputs[i]
index = pack_inputs.index(-1)
pack_inputs[index] = in_size * -1
pack_inputs[0] = -1
###################################
string_params = "["
for i in range(len(pack_inputs)):
string_params += "{}, ".format(pack_inputs[i])
string_params = string_params.strip(", ") + "]"
inputs["shape"] = string_params
node.fluid_code.add_layer("reshape",
inputs=input,
inputs=inputs,
output=node,
param_attr=attr)
def AvgPool(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
in_shape = input.out_shapes[0]
if in_shape.count(-1) > 2:
in_shape = self.decoder.infer_tensor(input).shape
k_size = node.get_attr("ksize")
strides = node.get_attr("strides")
data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW"
if not channel_first:
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
strides = [strides[i] for i in [0, 3, 1, 2]]
k_size = [k_size[i] for i in [0, 3, 1, 2]]
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = {
"pool_size": k_size[2:4],
"pool_size": k_size[1:3],
"pool_type": string("avg"),
"pool_stride": strides[2:4],
"pool_padding": string(pad_mode)
"pool_stride": strides[1:3],
"pool_padding": string(pad_mode),
"data_format": string("NHWC")
}
node.fluid_code.add_layer("pool2d",
inputs=input,
output=node,
param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
output=node,
param_attr=attr)
def SplitV(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
num_sections = self.graph.get_node(node.layer.input[1], copy=True)
......@@ -638,30 +525,32 @@ class TFOpMapperNHWC(OpMapper):
def Tile(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
expand_times = self.graph.get_node(node.layer.input[1], copy=True)
self.add_omit_nodes(expand_times.layer_name, node.layer_name)
if expand_times.layer_type == "Const":
expand_times = expand_times.value.tolist()
else:
expand_times = self.decoder.infer_shape_tensor(expand_times)
for i in range(len(expand_times)):
if expand_times[i] < 0:
expand_times[i] = 1
self.add_omit_nodes(expand_times.layer_name, node.layer_name)
attr = {"expand_times": expand_times}
node.fluid_code.add_layer("expand",
inputs=input,
output=node,
param_attr=attr)
node.fluid_code.add_layer("expand", inputs=input, output=node, param_attr=attr)
def Pack(self, node):
inputs = [
self.graph.get_node(name, copy=True) for name in node.layer.input
]
if len(inputs) == 1 and len(inputs[0].out_shapes[0]) == 0:
input_name = inputs[0].layer_name
if hasattr(inputs[0], "index"):
input_name += "[{}]".format(inputs[0].index)
node.fluid_code.add_note("{} = {}".format(node.layer_name, input_name))
return
axis = node.get_attr("axis")
attr = {"axis": axis}
node.fluid_code.add_layer("stack",
inputs=inputs,
output=node,
param_attr=attr)
input_shape_sample = inputs[0].out_shapes[0]
if len(input_shape_sample) == 0:
attr = {"shape": [-1]}
node.fluid_code.add_layer("reshape", inputs=node, output=node, param_attr=attr)
def Pad(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
......@@ -669,36 +558,17 @@ class TFOpMapperNHWC(OpMapper):
assert paddings.layer_type == "Const", "Padding should be Const"
self.add_omit_nodes(paddings.layer_name, node.layer_name)
paddings = paddings.value.flatten().tolist()
data_format = input.tf_data_format
if len(input.out_shapes[0]) == 4:
new_padding = None
if input.tf_data_format == "NHWC":
if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
new_padding = paddings[2:6]
else:
if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0:
new_padding = paddings[4:]
if new_padding is not None:
if input.tf_data_format == "NHWC":
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = {"paddings": new_padding}
attr = {"paddings": new_padding, "data_format": string("NHWC")}
node.fluid_code.add_layer("pad2d",
inputs=input,
output=node,
param_attr=attr)
if input.tf_data_format == "NHWC":
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
output=node,
param_attr=attr)
return
attr = {"paddings": paddings}
......@@ -711,21 +581,19 @@ class TFOpMapperNHWC(OpMapper):
start = self.graph.get_node(node.layer.input[0], copy=True)
limit = self.graph.get_node(node.layer.input[1], copy=True)
delta = self.graph.get_node(node.layer.input[2], copy=True)
self.add_omit_nodes(start.layer_name, node.layer_name)
self.add_omit_nodes(limit.layer_name, node.layer_name)
self.add_omit_nodes(delta.layer_name, node.layer_name)
all_param_const = -2
if start.layer_type == "Const":
self.add_omit_nodes(start.layer_name, node.layer_name)
start = start.value
else:
start = self.decoder.infer_tensor(start)
all_param_const += 1
if limit.layer_type == "Const":
self.add_omit_nodes(limit.layer_name, node.layer_name)
limit = limit.value
else:
limit = self.decoder.infer_tensor(limit)
all_param_const += 1
if delta.layer_type == "Const":
self.add_omit_nodes(delta.layer_name, node.layer_name)
delta = delta.value
else:
delta = self.decoder.infer_tensor(delta)
all_param_const += 1
dtype = node.dtype
inputs = {
"start": start,
......@@ -760,14 +628,18 @@ class TFOpMapperNHWC(OpMapper):
inputs = {"x": x, "y": y}
# fix paddle shape infer problem
# should be removed after paddle 1.6
if x.out_shapes[0][-1] < 0 and y.out_shapes[0][0] > 0:
x_last_dim = x.out_shapes[0][-1]
y_last_dim = y.out_shapes[0][0]
certain_dim = x_last_dim if x_last_dim > y_last_dim else y_last_dim
shape = x.out_shapes[0]
shape[-1] = y.out_shapes[0][0]
shape[-1] = certain_dim
attr = {"shape": shape}
node.fluid_code.add_layer("reshape",
inputs=x,
output=x,
param_attr=attr)
node.fluid_code.add_layer("reshape", inputs=x, output=x, param_attr=attr)
shape = y.out_shapes[0]
shape[0] = certain_dim
attr = {"shape": shape}
node.fluid_code.add_layer("reshape", inputs=y, output=y, param_attr=attr)
attr = {"transpose_x": transpose_a, "transpose_y": transpose_b}
node.fluid_code.add_layer("matmul",
inputs=inputs,
......@@ -874,31 +746,31 @@ class TFOpMapperNHWC(OpMapper):
input = self.graph.get_node(node.layer.input[0], copy=True)
begin = self.graph.get_node(node.layer.input[1], copy=True)
size = self.graph.get_node(node.layer.input[2], copy=True)
self.add_omit_nodes(begin.layer_name, node.layer_name)
self.add_omit_nodes(size.layer_name, node.layer_name)
attr = dict()
inputs = {"x": input}
if begin.layer_type == "Const":
self.add_omit_nodes(begin.layer_name, node.layer_name)
begin = begin.value.tolist()
attr["offsets"] = begin
else:
begin = self.decoder.infer_tensor(begin).tolist()
if size.layer_type == "const":
inputs["offsets"] = begin
if size.layer_type == "Const":
self.add_omit_nodes(size.layer_name, node.layer_name)
size = size.value.tolist()
attr["shape"] = size
else:
size = self.decoder.infer_tensor(size).tolist()
inputs["shape"] = size
for i in range(len(size)):
if size[i] < 0:
size[i] = 99999999
else:
size[i] = size[i] + begin[i]
if isinstance(begin, TFGraphNode) and begin.layer_type == "Pack":
begin = process_pack_shape(self.graph, begin, self.decoder.infer_shape_tensor(begin))
inputs["offsets"] = begin
if isinstance(size, TFGraphNode) and size.layer_type == "Pack":
size = process_pack_shape(self.graph, size, self.decoder.infer_shape_tensor(size))
inputs["shape"] = size
attr = {
"axes": [i for i in range(len(size))],
"starts": begin,
"ends": size
}
node.fluid_code.add_layer("slice",
inputs=input,
node.fluid_code.add_layer("crop_tensor",
inputs=inputs,
output=node,
param_attr=attr)
......@@ -915,14 +787,13 @@ class TFOpMapperNHWC(OpMapper):
if out_shape.layer_type == "Const":
out_shape = out_shape.value.tolist()
else:
out_shape = self.decoder.infer_shape_tensor(out_shape,
node.out_shapes[0])
out_shape = self.decoder.infer_shape_tensor(out_shape, node.out_shapes[0])
in_shape = input.out_shapes[0]
if in_shape.count(-1) > 2:
if in_shape[3] < 0:
in_shape = self.decoder.infer_tensor(input).shape
k_size = kernel.out_shapes[0]
if k_size.count(-1) > 2:
if k_size.count(-1) > 0:
k_size = self.decoder.infer_tensor(kernel).shape
pad_mode = node.get_attr("padding").decode()
......@@ -933,41 +804,23 @@ class TFOpMapperNHWC(OpMapper):
self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
kernel.value, (3, 2, 0, 1))
if not channel_first:
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
strides = [strides[i] for i in [0, 3, 1, 2]]
dilations = [dilations[i] for i in [0, 3, 1, 2]]
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
input = node
else:
self.data_format_propagation(node)
attr = {
"bias_attr": False,
"param_attr": string(kernel.layer_name),
"num_filters": k_size[2],
"filter_size": k_size[0:2],
"stride": strides[2:4],
"dilation": dilations[2:4],
"stride": strides[1:3],
"dilation": dilations[1:3],
"output_size": out_shape[1:3],
"padding": string(pad_mode)
"padding": string(pad_mode),
"data_format": string("NHWC")
}
node.fluid_code.add_layer("conv2d_transpose",
inputs=input,
output=node,
param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
output=node,
param_attr=attr)
def Max(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
......@@ -1038,56 +891,31 @@ class TFOpMapperNHWC(OpMapper):
def ResizeNearestNeighbor(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
if resize_shape.layer_type == "Const":
self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
resize_shape = resize_shape.value.tolist()
else:
resize_shape = self.decoder.infer_shape_tensor(
resize_shape, node.out_shapes[0])
align_corners = node.get_attr("align_corners")
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
attr = {"align_corners": align_corners, "out_shape": resize_shape}
attr = {"align_corners": align_corners, "out_shape": resize_shape, "data_format": string("NHWC")}
node.fluid_code.add_layer("resize_nearest",
inputs=node,
output=node,
param_attr=attr)
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
inputs=input,
output=node,
param_attr=attr)
def ResizeBilinear(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
if resize_shape.layer_type == "Const":
self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
resize_shape = resize_shape.value.tolist()
else:
resize_shape = self.decoder.infer_shape_tensor(
resize_shape, node.out_shapes[0])
align_corners = node.get_attr("align_corners")
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
attr = {
"align_corners": align_corners,
"out_shape": resize_shape,
"align_mode": 1
"align_mode": 1,
"data_format": string("NHWC")
}
node.fluid_code.add_layer("resize_bilinear",
inputs=node,
output=node,
param_attr=attr)
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
inputs=input,
output=node,
param_attr=attr)
......@@ -1102,21 +930,16 @@ class TFOpMapperNHWC(OpMapper):
def RandomUniform(self, node):
shape = self.graph.get_node(node.layer.input[0], copy=True)
self.add_omit_nodes(shape.layer_name, node.layer_name)
if shape.layer_type == "Const":
self.add_omit_nodes(shape.layer_name, node.layer_name)
shape = shape.value.tolist()
else:
shape = self.decoder.infer_shape_tensor(shape)
attr = {"shape": shape, "min": 0.0, "max": 0.9999}
if shape[0] < 0:
input = self.batch_node
node.fluid_code.add_layer("uniform_random_batch_size_like",
inputs=input,
output=node,
param_attr=attr)
else:
if not isinstance(shape, list):
attr = {"dtype": string("int64")}
node.fluid_code.add_layer("cast", inputs=shape, output=shape, param_attr=attr)
attr = {"min": 0.0, "max": 0.9999}
inputs = {"shape": shape}
node.fluid_code.add_layer("uniform_random",
inputs=None,
inputs=inputs,
output=node,
param_attr=attr)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册