diff --git a/op_list.md b/op_list.md index caea557b9a2f432965f58e772b2fc536bcaf73a2..a8ae84811cf79eb02274331262680e64f2c7fc15 100644 --- a/op_list.md +++ b/op_list.md @@ -7,31 +7,31 @@ | 序号 | OP | 序号 | OP |序号 | OP |序号 | OP | |------|------|------|------|------|------|------|------| -| 1 | Relu | 2 | Relu6 | 3 | Shape | 4 | Abs | -|5 | Sigmoid | 6 | Exp | 7 | Rsqrt | 8 |swish_f32 | -|9 | Tanh | 10 | LeakyRelu | 11 | Add | 12 | RealDiv | -| 13 | Sub | 14 | Maximum | 15 | Mul | 16 | FloorDiv | -|17 | Placeholder | 18 | Const | 19 | Transpose | 20 |FusedBatchNorm| -|21 | Conv2D | 22 | BiasAdd | 23 | MaxPool | 24 | DepthwiseConv2dNative | -| 25 | Reshape | 26 | AvgPool | 27 | SplitV | 28 | SquaredDifference| -|29 | Tile | 30 | Pack | 31 | Pad | 32 | ResizeBilinear| -|33 | Mean | 34 | MatMul | 35 | ArgMax | 36 | StridedSlice | -| 37 | Slice | 38 | Sum | 39 | Max | 40 | Conv2DBackpropInput| -|41 | Cast | 42 | Split | 43| Squeeze | 44 | ResizeNearestNeighbor| -|45 | Softmax | 46 | Range | 47 | ConcatV2 | +| 1 | Relu | 2 | Relu6 | 3 | Shape | 4 | Abs | +| 5 | Sigmoid | 6 | Exp | 7 | Rsqrt | 8 | swish_f32 | +| 9 | Tanh | 10 | LeakyRelu | 11 | Add | 12 | RealDiv | +| 13 | Sub | 14 | Maximum | 15 | Mul | 16 | FloorDiv | +| 17 | Placeholder | 18 | Const | 19 | Transpose | 20 | FusedBatchNorm | +| 21 | Conv2D | 22 | BiasAdd | 23 | MaxPool | 24 | DepthwiseConv2dNative | +| 25 | Reshape | 26 | AvgPool | 27 | SplitV | 28 | SquaredDifference | +| 29 | Tile | 30 | Pack | 31 | Pad | 32 | ResizeBilinear | +| 33 | Mean | 34 | MatMul | 35 | ArgMax | 36 | StridedSlice | +| 37 | Slice | 38 | Sum | 39 | Max | 40 | Conv2DBackpropInput | +| 41 | Cast | 42 | Split | 43 | Squeeze | 44 | ResizeNearestNeighbor | +| 45 | Softmax | 46 | Range | 47 | ConcatV2 | ## Caffe | 序号 | OP | 序号 | OP |序号 | OP |序号 | OP | |------|------|------|------|------|------|------|------| -| 1 | Input | 2 | Convolution| 3 |Deconvolution | 4 | Pooling | -|5 |LRN |6 |InnerProduct| 7 | Softmax | 8 | Slice | -|9 |Concat |10 |PReLU| 11 | Accuracy | 12 | Eltwise | -|13 |BatchNorm |14 |Scale| 15 |Reshape| 16 |ArgMax| -|17 | Crop |18 | Flatten | 19 | Power | 20 | Reduction | -|21 | Axpy |22 | ROIPolling | 23 | Permute | 24 | DetectionOutput | -|25 |Normalize|26 | Select| 27 | ShuffleChannel | 28 | ConvolutionDepthwise | -|29 |ReLU|30 |AbsVal| 31 | Sigmoid | 32 | TanH | +| 1 | Input | 2 | Convolution | 3 | Deconvolution | 4 | Pooling | +| 5 | LRN | 6 | InnerProduct | 7 | Softmax | 8 | Slice | +| 9 | Concat | 10 | PReLU | 11 | Accuracy | 12 | Eltwise | +| 13 | BatchNorm | 14 | Scale | 15 | Reshape | 16 | ArgMax | +| 17 | Crop | 18 | Flatten | 19 | Power | 20 | Reduction | +| 21 | Axpy | 22 | ROIPolling | 23 | Permute | 24 | DetectionOutput | +| 25 | Normalize | 26 | Select | 27 | ShuffleChannel | 28 | ConvolutionDepthwise | +| 29 | ReLU | 30 | AbsVal | 31 | Sigmoid | 32 | TanH | ## ONNX