Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
2e33688a
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2e33688a
编写于
7月 30, 2019
作者:
J
jiangjiajun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add more ops support for tf
上级
808e18b9
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
200 addition
and
86 deletion
+200
-86
x2paddle/core/fluid_code.py
x2paddle/core/fluid_code.py
+11
-5
x2paddle/decoder/tf_decoder.py
x2paddle/decoder/tf_decoder.py
+34
-31
x2paddle/op_mapper/tf_op_mapper.py
x2paddle/op_mapper/tf_op_mapper.py
+155
-50
未找到文件。
x2paddle/core/fluid_code.py
浏览文件 @
2e33688a
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
# limitations under the License.
# limitations under the License.
from
x2paddle.core.graph
import
GraphNode
from
x2paddle.core.graph
import
GraphNode
import
collections
class
Layer
(
object
):
class
Layer
(
object
):
...
@@ -37,17 +38,20 @@ class Layer(object):
...
@@ -37,17 +38,20 @@ class Layer(object):
for
input
in
self
.
inputs
:
for
input
in
self
.
inputs
:
if
isinstance
(
input
,
GraphNode
):
if
isinstance
(
input
,
GraphNode
):
if
hasattr
(
input
,
"index"
):
if
hasattr
(
input
,
"index"
):
in_list
+=
(
input
.
layer_name
+
"[{}]"
.
format
(
input
.
index
)
+
", "
)
in_list
+=
(
input
.
layer_name
+
"[{}]"
.
format
(
input
.
index
)
+
", "
)
else
:
else
:
in_list
+=
(
input
.
layer_name
+
", "
)
in_list
+=
(
input
.
layer_name
+
", "
)
elif
isinstance
(
input
,
str
):
elif
isinstance
(
input
,
str
):
in_list
+=
(
input
+
", "
)
in_list
+=
(
input
+
", "
)
else
:
else
:
raise
Exception
(
"Element of inputs should GraphNode or String"
)
raise
Exception
(
"Element of inputs should GraphNode or String"
)
in_list
=
in_list
.
strip
(
", "
)
+
"], "
in_list
=
in_list
.
strip
(
", "
)
+
"], "
layer_code
+=
in_list
layer_code
+=
in_list
elif
isinstance
(
self
.
inputs
,
dict
):
elif
isinstance
(
self
.
inputs
,
dict
):
for
key
,
input
in
self
.
inputs
.
items
():
inputs
=
collections
.
OrderedDict
(
self
.
inputs
)
for
key
,
input
in
inputs
.
items
():
if
isinstance
(
input
,
GraphNode
):
if
isinstance
(
input
,
GraphNode
):
if
hasattr
(
input
,
"index"
):
if
hasattr
(
input
,
"index"
):
layer_code
=
layer_code
+
key
+
"={}, "
.
format
(
layer_code
=
layer_code
+
key
+
"={}, "
.
format
(
...
@@ -58,7 +62,8 @@ class Layer(object):
...
@@ -58,7 +62,8 @@ class Layer(object):
elif
isinstance
(
input
,
str
):
elif
isinstance
(
input
,
str
):
layer_code
=
layer_code
+
key
+
"={}, "
.
format
(
input
)
layer_code
=
layer_code
+
key
+
"={}, "
.
format
(
input
)
else
:
else
:
raise
Exception
(
"Element of inputs should GraphNode or String"
)
raise
Exception
(
"Element of inputs should GraphNode or String"
)
elif
isinstance
(
self
.
inputs
,
GraphNode
):
elif
isinstance
(
self
.
inputs
,
GraphNode
):
if
hasattr
(
self
.
inputs
,
"index"
):
if
hasattr
(
self
.
inputs
,
"index"
):
layer_code
+=
(
self
.
inputs
.
layer_name
+
layer_code
+=
(
self
.
inputs
.
layer_name
+
...
@@ -70,7 +75,8 @@ class Layer(object):
...
@@ -70,7 +75,8 @@ class Layer(object):
else
:
else
:
raise
Exception
(
"Unknown type of inputs."
)
raise
Exception
(
"Unknown type of inputs."
)
for
key
,
value
in
self
.
param_attr
.
items
():
param_attr
=
collections
.
OrderedDict
(
self
.
param_attr
)
for
key
,
value
in
param_attr
.
items
():
layer_code
=
layer_code
+
key
+
"={}, "
.
format
(
value
)
layer_code
=
layer_code
+
key
+
"={}, "
.
format
(
value
)
layer_code
=
layer_code
.
strip
(
", "
)
layer_code
=
layer_code
.
strip
(
", "
)
...
...
x2paddle/decoder/tf_decoder.py
浏览文件 @
2e33688a
...
@@ -88,6 +88,7 @@ class TFGraph(Graph):
...
@@ -88,6 +88,7 @@ class TFGraph(Graph):
def
__init__
(
self
,
model
):
def
__init__
(
self
,
model
):
super
(
TFGraph
,
self
).
__init__
(
model
)
super
(
TFGraph
,
self
).
__init__
(
model
)
self
.
identity_map
=
dict
()
self
.
identity_map
=
dict
()
self
.
multi_out_ops
=
[
'Split'
,
'SplitV'
]
def
build
(
self
):
def
build
(
self
):
for
layer
in
self
.
model
.
node
:
for
layer
in
self
.
model
.
node
:
...
@@ -119,7 +120,10 @@ class TFGraph(Graph):
...
@@ -119,7 +120,10 @@ class TFGraph(Graph):
if
items
[
0
]
in
self
.
identity_map
:
if
items
[
0
]
in
self
.
identity_map
:
items
[
0
]
=
self
.
identity_map
[
items
[
0
]]
items
[
0
]
=
self
.
identity_map
[
items
[
0
]]
new_node_name
=
":"
.
join
(
items
)
new_node_name
=
":"
.
join
(
items
)
return
super
(
TFGraph
,
self
).
get_node
(
new_node_name
,
copy
)
node
=
super
(
TFGraph
,
self
).
get_node
(
new_node_name
,
copy
)
if
len
(
items
)
==
1
and
node
.
layer_type
in
self
.
multi_out_ops
:
node
.
index
=
0
return
node
def
_remove_isolated_node
(
self
):
def
_remove_isolated_node
(
self
):
# delete isolated nodes
# delete isolated nodes
...
@@ -158,7 +162,33 @@ class TFGraph(Graph):
...
@@ -158,7 +162,33 @@ class TFGraph(Graph):
del
self
.
topo_sort
[
idx
]
del
self
.
topo_sort
[
idx
]
def
check_input_shape
(
graph_def
):
class
TFDecoder
(
object
):
def
__init__
(
self
,
pb_model
):
sess
=
tf
.
Session
()
self
.
input_example_data
=
dict
()
with
gfile
.
FastGFile
(
pb_model
,
'rb'
)
as
f
:
graph_def
=
tf
.
GraphDef
()
graph_def
.
ParseFromString
(
f
.
read
())
input_map
=
self
.
_check_input_shape
(
graph_def
)
self
.
_fix_output_shape
(
graph_def
)
sess
.
graph
.
as_default
()
tf
.
import_graph_def
(
graph_def
,
name
=
''
,
input_map
=
input_map
)
for
node
in
graph_def
.
node
:
print
(
node
.
name
,
node
.
op
,
node
.
input
)
sess
.
run
(
tf
.
global_variables_initializer
())
self
.
tf_graph
=
TFGraph
(
sess
.
graph
.
_as_graph_def
(
add_shapes
=
True
)[
0
])
self
.
tf_graph
.
build
()
def
_fix_output_shape
(
self
,
graph
):
for
i
in
range
(
len
(
graph
.
node
)):
node
=
graph
.
node
[
i
]
if
node
.
op
==
"swish_f32"
:
graph
.
node
[
i
].
attr
[
'_disable_call_shape_inference'
].
b
=
False
def
_check_input_shape
(
self
,
graph_def
):
graph_def
=
cp
.
deepcopy
(
graph_def
)
graph_def
=
cp
.
deepcopy
(
graph_def
)
input_map
=
dict
()
input_map
=
dict
()
for
layer
in
graph_def
.
node
:
for
layer
in
graph_def
.
node
:
...
@@ -182,30 +212,3 @@ def check_input_shape(graph_def):
...
@@ -182,30 +212,3 @@ def check_input_shape(graph_def):
layer
.
name
))
layer
.
name
))
input_map
[
"{}:0"
.
format
(
layer
.
name
)]
=
x2paddle_input
input_map
[
"{}:0"
.
format
(
layer
.
name
)]
=
x2paddle_input
return
input_map
return
input_map
class
TFDecoder
(
object
):
def
__init__
(
self
,
pb_model
):
sess
=
tf
.
Session
()
with
gfile
.
FastGFile
(
pb_model
,
'rb'
)
as
f
:
graph_def
=
tf
.
GraphDef
()
graph_def
.
ParseFromString
(
f
.
read
())
input_map
=
check_input_shape
(
graph_def
)
self
.
_fix_output_shape
(
graph_def
)
sess
.
graph
.
as_default
()
tf
.
import_graph_def
(
graph_def
,
name
=
''
,
input_map
=
input_map
)
# for node in graph_def.node:
# print(node.op)
sess
.
run
(
tf
.
global_variables_initializer
())
self
.
tf_graph
=
TFGraph
(
sess
.
graph
.
_as_graph_def
(
add_shapes
=
True
)[
0
])
self
.
tf_graph
.
build
()
def
_fix_output_shape
(
self
,
graph
):
for
i
in
range
(
len
(
graph
.
node
)):
node
=
graph
.
node
[
i
]
if
node
.
op
==
"swish_f32"
:
graph
.
node
[
i
].
attr
[
'_disable_call_shape_inference'
].
b
=
False
x2paddle/op_mapper/tf_op_mapper.py
浏览文件 @
2e33688a
...
@@ -46,6 +46,68 @@ class TFOpMapper(OpMapper):
...
@@ -46,6 +46,68 @@ class TFOpMapper(OpMapper):
node
=
self
.
graph
.
get_node
(
node_name
)
node
=
self
.
graph
.
get_node
(
node_name
)
self
.
net_code
+=
node
.
fluid_code
.
gen_codes
()
self
.
net_code
+=
node
.
fluid_code
.
gen_codes
()
def
elementwise_operator
(
self
,
node
,
op_type
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
x_shape
=
x
.
out_shapes
[
0
]
y_shape
=
y
.
out_shapes
[
0
]
# incomplement broadcasting support for paddle
x_input
=
x
y_input
=
y
if
len
(
x_shape
)
<
len
(
y_shape
):
unrevertable_ops
=
[
"elementwise_sub"
,
"elementwise_div"
,
"elementwise_floordiv"
,
"elementwise_mod"
,
"elementwise_pow"
]
if
op_type
not
in
unrevertable_ops
:
x_input
=
y
y_input
=
x
x_shape
=
y
.
out_shapes
[
0
]
y_shape
=
x
.
out_shapes
[
0
]
else
:
raise
Exception
(
"Unexpected situation happend"
)
is_sub_seq
=
True
for
i
in
range
(
len
(
y_shape
)):
index
=
-
1
*
i
-
1
if
y_shape
[
index
]
!=
x_shape
[
index
]:
is_sub_seq
=
False
if
not
is_sub_seq
:
x_expand_times
=
[
1
]
*
len
(
x_shape
)
y_expand_times
=
[
1
]
*
len
(
y_shape
)
x_need_expand
=
False
y_need_expand
=
False
for
i
in
range
(
len
(
y_shape
)):
index
=
-
1
*
i
-
1
if
y_shape
[
index
]
!=
x_shape
[
index
]:
if
y_shape
[
index
]
==
1
:
y_expand_times
[
index
]
=
x_shape
[
index
]
y_need_expand
=
True
elif
x_shape
[
index
]
==
1
:
x_expand_times
[
index
]
=
y_shape
[
index
]
x_need_expand
=
True
else
:
raise
Exception
(
"Unexpected situation happend"
)
if
x_need_expand
:
attr
=
{
"expand_times"
:
x_expand_times
}
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
x_input
,
output
=
"x_tmp"
,
param_attr
=
attr
)
x_input
=
"x_tmp"
if
y_need_expand
:
attr
=
{
"expand_times"
:
y_expand_times
}
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
y_input
,
output
=
"y_tmp"
,
param_attr
=
attr
)
y_input
=
"y_tmp"
inputs
=
{
"x"
:
x_input
,
"y"
:
y_input
}
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
def
Placeholder
(
self
,
node
):
def
Placeholder
(
self
,
node
):
shape
=
node
.
out_shapes
[
0
]
shape
=
node
.
out_shapes
[
0
]
assert
len
(
shape
)
!=
0
,
"Unknown shape of input nodes[{}]."
.
format
(
assert
len
(
shape
)
!=
0
,
"Unknown shape of input nodes[{}]."
.
format
(
...
@@ -99,13 +161,14 @@ class TFOpMapper(OpMapper):
...
@@ -99,13 +161,14 @@ class TFOpMapper(OpMapper):
param_attr
=
attr
)
param_attr
=
attr
)
def
RealDiv
(
self
,
node
):
def
RealDiv
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
self
.
elementwise_operator
(
node
,
"elementwise_div"
)
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
# x = self.graph.get_node(node.layer.input[0], copy=True)
inputs
=
{
'x'
:
x
,
'y'
:
y
}
# y = self.graph.get_node(node.layer.input[1], copy=True)
node
.
fluid_code
.
add_layer
(
"elementwise_div"
,
# inputs = {'x': x, 'y': y}
inputs
=
inputs
,
# node.fluid_code.add_layer("elementwise_div",
output
=
node
,
# inputs=inputs,
param_attr
=
None
)
# output=node,
# param_attr=None)
def
Relu
(
self
,
node
):
def
Relu
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
@@ -156,10 +219,11 @@ class TFOpMapper(OpMapper):
...
@@ -156,10 +219,11 @@ class TFOpMapper(OpMapper):
param_attr
=
attr
)
param_attr
=
attr
)
in_shape
=
[
in_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
in_shape
=
[
in_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
k_size
=
[
k_size
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
if
pad_mode
==
"SAME"
:
if
pad_mode
==
"SAME"
:
pad_h
=
get_same_padding
(
in_shape
[
2
],
k_size
[
0
],
strides
[
2
])
pad_h
=
get_same_padding
(
in_shape
[
2
],
k_size
[
2
],
strides
[
2
])
pad_w
=
get_same_padding
(
in_shape
[
3
],
k_size
[
1
],
strides
[
3
])
pad_w
=
get_same_padding
(
in_shape
[
3
],
k_size
[
3
],
strides
[
3
])
pad_h
=
pad_h
[
0
]
+
pad_h
[
1
]
pad_h
=
pad_h
[
0
]
+
pad_h
[
1
]
pad_w
=
pad_w
[
0
]
+
pad_w
[
1
]
pad_w
=
pad_w
[
0
]
+
pad_w
[
1
]
attr
=
{
"paddings"
:
[
0
,
pad_h
,
0
,
pad_w
],
"pad_value"
:
-
10000.0
}
attr
=
{
"paddings"
:
[
0
,
pad_h
,
0
,
pad_w
],
"pad_value"
:
-
10000.0
}
...
@@ -170,7 +234,7 @@ class TFOpMapper(OpMapper):
...
@@ -170,7 +234,7 @@ class TFOpMapper(OpMapper):
output
=
node
,
output
=
node
,
param_attr
=
attr
)
param_attr
=
attr
)
attr
=
{
attr
=
{
"pool_size"
:
k_size
[
1
:
3
],
"pool_size"
:
k_size
[
2
:
4
],
"pool_type"
:
string
(
"max"
),
"pool_type"
:
string
(
"max"
),
"pool_stride"
:
strides
[
2
:
4
]
"pool_stride"
:
strides
[
2
:
4
]
}
}
...
@@ -375,15 +439,32 @@ class TFOpMapper(OpMapper):
...
@@ -375,15 +439,32 @@ class TFOpMapper(OpMapper):
inputs
=
input
,
inputs
=
input
,
output
=
node
,
output
=
node
,
param_attr
=
attr
)
param_attr
=
attr
)
# temporary shape inference fix
if
param
.
layer_type
==
"Pack"
:
shape_slices
=
list
()
for
i
in
range
(
len
(
param
.
layer
.
input
)):
slice
=
self
.
graph
.
get_node
(
param
.
layer
.
input
[
i
],
copy
=
True
)
if
slice
.
layer_type
==
"Const"
:
shape_slices
.
append
(
slice
.
value
.
tolist
())
else
:
shape_slices
.
append
(
0
)
if
shape_slices
.
count
(
-
1
)
==
0
:
shape_slices
[
shape_slices
.
index
(
0
)]
=
-
1
attr
=
{
"shape"
:
shape_slices
}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
def
Add
(
self
,
node
):
def
Add
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
self
.
elementwise_operator
(
node
,
"elementwise_add"
)
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
# x = self.graph.get_node(node.layer.input[0], copy=True)
inputs
=
{
"x"
:
x
,
"y"
:
y
}
# y = self.graph.get_node(node.layer.input[1], copy=True)
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
# inputs = {"x": x, "y": y}
inputs
=
inputs
,
# node.fluid_code.add_layer("elementwise_add",
output
=
node
,
# inputs=inputs,
param_attr
=
None
)
# output=node,
# param_attr=None)
def
AvgPool
(
self
,
node
):
def
AvgPool
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
@@ -402,15 +483,16 @@ class TFOpMapper(OpMapper):
...
@@ -402,15 +483,16 @@ class TFOpMapper(OpMapper):
param_attr
=
attr
)
param_attr
=
attr
)
in_shape
=
[
in_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
in_shape
=
[
in_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
strides
=
[
strides
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
k_size
=
[
k_size
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
attr
=
{
attr
=
{
"pool_size"
:
k_size
[
1
:
3
],
"pool_size"
:
k_size
[
2
:
4
],
"pool_type"
:
string
(
"avg"
),
"pool_type"
:
string
(
"avg"
),
"pool_stride"
:
strides
[
2
:
4
]
"pool_stride"
:
strides
[
2
:
4
]
}
}
if
pad_mode
==
"SAME"
:
if
pad_mode
==
"SAME"
:
pad_h
=
get_same_padding
(
in_shape
[
2
],
k_size
[
0
],
strides
[
2
])
pad_h
=
get_same_padding
(
in_shape
[
2
],
k_size
[
2
],
strides
[
2
])
pad_w
=
get_same_padding
(
in_shape
[
3
],
k_size
[
1
],
strides
[
3
])
pad_w
=
get_same_padding
(
in_shape
[
3
],
k_size
[
3
],
strides
[
3
])
assert
pad_h
[
0
]
==
pad_h
[
1
]
and
pad_w
[
0
]
==
pad_w
[
assert
pad_h
[
0
]
==
pad_h
[
1
]
and
pad_w
[
0
]
==
pad_w
[
1
],
"Cannot map AvgPool"
1
],
"Cannot map AvgPool"
attr
[
"pool_padding"
]
=
[
pad_h
[
0
],
pad_w
[
0
]]
attr
[
"pool_padding"
]
=
[
pad_h
[
0
],
pad_w
[
0
]]
...
@@ -441,13 +523,14 @@ class TFOpMapper(OpMapper):
...
@@ -441,13 +523,14 @@ class TFOpMapper(OpMapper):
param_attr
=
None
)
param_attr
=
None
)
def
Maximum
(
self
,
node
):
def
Maximum
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
self
.
elementwise_operator
(
node
,
"elementwise_max"
)
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
# x = self.graph.get_node(node.layer.input[0], copy=True)
inputs
=
{
"x"
:
x
,
"y"
:
y
}
# y = self.graph.get_node(node.layer.input[1], copy=True)
node
.
fluid_code
.
add_layer
(
"elementwise_max"
,
# inputs = {"x": x, "y": y}
inputs
=
inputs
,
# node.fluid_code.add_layer("elementwise_max",
output
=
node
,
# inputs=inputs,
param_attr
=
None
)
# output=node,
# param_attr=None)
def
SplitV
(
self
,
node
):
def
SplitV
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
@@ -502,14 +585,15 @@ class TFOpMapper(OpMapper):
...
@@ -502,14 +585,15 @@ class TFOpMapper(OpMapper):
inputs
=
[
inputs
=
[
self
.
graph
.
get_node
(
name
,
copy
=
True
)
for
name
in
node
.
layer
.
input
self
.
graph
.
get_node
(
name
,
copy
=
True
)
for
name
in
node
.
layer
.
input
]
]
attr
=
{
"axis"
:
node
.
get_attr
(
"axis"
)}
node
.
fluid_code
.
add_layer
(
"stack"
,
node
.
fluid_code
.
add_layer
(
"stack"
,
inputs
=
inputs
,
inputs
=
inputs
,
output
=
node
,
output
=
node
,
param_attr
=
None
)
param_attr
=
attr
)
def
Pad
(
self
,
node
):
def
Pad
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
paddings
=
self
.
graph
.
get_node
(
N
ode
.
layer
.
input
[
1
],
copy
=
True
)
paddings
=
self
.
graph
.
get_node
(
n
ode
.
layer
.
input
[
1
],
copy
=
True
)
assert
paddings
.
layer_type
==
"Const"
,
"Padding should be Const"
assert
paddings
.
layer_type
==
"Const"
,
"Padding should be Const"
self
.
omit_nodes
.
append
(
paddings
.
layer_name
)
self
.
omit_nodes
.
append
(
paddings
.
layer_name
)
attr
=
{
"paddings"
:
paddings
.
value
.
tolist
()}
attr
=
{
"paddings"
:
paddings
.
value
.
tolist
()}
...
@@ -541,27 +625,28 @@ class TFOpMapper(OpMapper):
...
@@ -541,27 +625,28 @@ class TFOpMapper(OpMapper):
output
=
node
,
output
=
node
,
param_attr
=
None
)
param_attr
=
None
)
# def Fill(self, node):
# def Fill(self, node):
# shape = self.graph.get_node(node.layer
# shape = self.graph.get_node(node.layer
def
Mul
(
self
,
node
):
def
Mul
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
self
.
elementwise_operator
(
node
,
"elementwise_mul"
)
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
# x = self.graph.get_node(node.layer.input[0], copy=True)
inputs
=
{
"x"
:
x
,
"y"
:
y
}
# y = self.graph.get_node(node.layer.input[1], copy=True)
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
# inputs = {"x": x, "y": y}
inputs
=
inputs
,
# node.fluid_code.add_layer("elementwise_mul",
output
=
node
,
# inputs=inputs,
param_attr
=
None
)
# output=node,
# param_attr=None)
def
Sub
(
self
,
node
):
def
Sub
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
self
.
elementwise_operator
(
node
,
"elementwise_sub"
)
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
# x = self.graph.get_node(node.layer.input[0], copy=True)
inputs
=
{
"x"
:
x
,
"y"
:
y
}
# y = self.graph.get_node(node.layer.input[1], copy=True)
node
.
fluid_code
.
add_layer
(
"elementwise_sub"
,
# inputs = {"x": x, "y": y}
inputs
=
inputs
,
# node.fluid_code.add_layer("elementwise_sub",
output
=
node
,
# inputs=inputs,
param_attr
=
None
)
# output=node,
# param_attr=None)
def
Rsqrt
(
self
,
node
):
def
Rsqrt
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
@@ -738,14 +823,22 @@ class TFOpMapper(OpMapper):
...
@@ -738,14 +823,22 @@ class TFOpMapper(OpMapper):
output
=
node
,
output
=
node
,
param_attr
=
attr
)
param_attr
=
attr
)
def
GreaterEqual
(
self
,
node
):
pass
def
RandomUniform
(
self
,
node
):
# def GreaterEqual(self, node):
pass
# pass
#
# def RandomUniform(self, node):
# pass
#
def
cast
(
self
,
node
):
def
Cast
(
self
,
node
):
pass
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
dtype
=
node
.
dtype_map
[
node
.
get_attr
(
'DstT'
)]
attr
=
{
"dtype"
:
string
(
dtype
)}
node
.
fluid_code
.
add_layer
(
"cast"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
FloorDiv
(
self
,
node
):
def
FloorDiv
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
@@ -759,3 +852,15 @@ class TFOpMapper(OpMapper):
...
@@ -759,3 +852,15 @@ class TFOpMapper(OpMapper):
inputs
=
node
,
inputs
=
node
,
output
=
node
,
output
=
node
,
param_attr
=
None
)
param_attr
=
None
)
def
Split
(
self
,
node
):
dim
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
assert
dim
.
layer_type
==
"Const"
self
.
omit_nodes
.
append
(
dim
.
layer_name
)
num_split
=
node
.
get_attr
(
'num_split'
)
attr
=
{
"num_or_sections"
:
num_split
,
"dim"
:
dim
.
value
}
node
.
fluid_code
.
add_layer
(
"split"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录