From 28f4b2fff21a57a36f4a3ab9357713be9c28a8b7 Mon Sep 17 00:00:00 2001 From: jiangjiajun Date: Fri, 25 Sep 2020 07:41:39 +0000 Subject: [PATCH] update tensorflow module --- x2paddle/__init__.py | 12 - x2paddle/convert.py | 41 +- x2paddle/core/program.py | 47 + x2paddle/decoder/tf_decoder.py | 6 + x2paddle/op_mapper/tf_op_mapper.py | 1842 ++++++++++--------- x2paddle/op_mapper/tf_op_mapper_nhwc.py | 1115 ----------- x2paddle/optimizer/tensorflow/__init__.py | 0 x2paddle/optimizer/tensorflow/batch_norm.py | 179 ++ x2paddle/optimizer/tensorflow/bias.py | 74 + x2paddle/optimizer/tensorflow/transpose.py | 261 +++ x2paddle/optimizer/tf_optimizer.py | 1084 ----------- 11 files changed, 1600 insertions(+), 3061 deletions(-) delete mode 100644 x2paddle/op_mapper/tf_op_mapper_nhwc.py create mode 100644 x2paddle/optimizer/tensorflow/__init__.py create mode 100644 x2paddle/optimizer/tensorflow/batch_norm.py create mode 100644 x2paddle/optimizer/tensorflow/bias.py create mode 100644 x2paddle/optimizer/tensorflow/transpose.py delete mode 100644 x2paddle/optimizer/tf_optimizer.py diff --git a/x2paddle/__init__.py b/x2paddle/__init__.py index ff7b40b..8293d5e 100644 --- a/x2paddle/__init__.py +++ b/x2paddle/__init__.py @@ -3,15 +3,3 @@ __version__ = "0.8.5" from .core.program import PaddleGraph program = PaddleGraph() - -name_counter = dict() - - -def gen_name(op_name, var_name): - name = "{}.{}".format(op_name, var_name) - if name not in name_counter: - name_counter[name] = 0 - else: - name_counter[name] += 1 - name = name + "." + str(name_counter[name]) - return name diff --git a/x2paddle/convert.py b/x2paddle/convert.py index d5c78e7..1a1baab 100644 --- a/x2paddle/convert.py +++ b/x2paddle/convert.py @@ -98,7 +98,7 @@ def arg_parser(): def tf2paddle(model_path, save_dir, - without_data_format_optimization, + without_data_format_optimization=False, define_input_shape=False, params_merge=False): # check tensorflow installation and version @@ -117,37 +117,24 @@ def tf2paddle(model_path, "[ERROR] Tensorflow is not installed, use \"pip install tensorflow\"." ) return - + from x2paddle import program from x2paddle.decoder.tf_decoder import TFDecoder from x2paddle.op_mapper.tf_op_mapper import TFOpMapper - from x2paddle.op_mapper.tf_op_mapper_nhwc import TFOpMapperNHWC - from x2paddle.optimizer.tf_optimizer import TFOptimizer + from x2paddle.optimizer.tensorflow.bias import BiasOpt + from x2paddle.optimizer.tensorflow.transpose import TransposeOpt + from x2paddle.optimizer.tensorflow.batch_norm import BatchNormOpt print("Now translating model from tensorflow to paddle.") model = TFDecoder(model_path, define_input_shape=define_input_shape) - if not without_data_format_optimization: - mapper = TFOpMapper(model) - optimizer = TFOptimizer(mapper) - # neccesary optimization - optimizer.delete_redundance_code() - # optimizer below is experimental - optimizer.optimize_elementwise_op() - optimizer.merge_activation() - optimizer.merge_bias() - optimizer.optimize_sub_graph() - -# optimizer.merge_batch_norm() -# optimizer.merge_prelu() - else: - mapper = TFOpMapperNHWC(model) - optimizer = TFOptimizer(mapper) - optimizer.delete_redundance_code() - optimizer.strip_graph() - optimizer.merge_activation() - optimizer.merge_bias() - optimizer.make_nchw_input_output() - optimizer.remove_transpose() - mapper.save_inference_model(save_dir, params_merge) + mapper = TFOpMapper(model) + program.build() + bias_opt = BiasOpt() + transpose_opt = TransposeOpt() + batch_norm_opt = BatchNormOpt() + bias_opt.run(program) + batch_norm_opt.run(program) + transpose_opt.run(program) + program.gen_model(save_dir) def caffe2paddle(proto, weight, save_dir, caffe_proto, params_merge=False): diff --git a/x2paddle/core/program.py b/x2paddle/core/program.py index 9f35a8b..625786c 100644 --- a/x2paddle/core/program.py +++ b/x2paddle/core/program.py @@ -99,6 +99,53 @@ class PaddleGraph(object): self.layers[layer_id] = layer return layer_id + def del_layer(self, layer_id): + layer = self.layers[layer_id] + outputs = self.edges_out.get(layer_id, []) + inputs = self.edges_in.get(layer_id, []) + + assert len( + inputs) <= 1, "There should be 0 or 1 input for deleted layer." + + if len(inputs) == 0: + for out in outputs: + while layer_id in self.edges_in[out]: + index = self.edges_in[out].index(layer_id) + del self.edges_in[out][index] + + input_keys = list(self.layers[out].inputs.keys()) + for k in input_keys: + if self.layers[out].inputs[k] == layer.outputs[0]: + del self.layers[out].inputs[k] + + del self.layers[layer_id] + if layer_id in self.edges_in: + del self.edges_in[layer_id] + if layer_id in self.edges_out: + del self.edges_out[layer_id] + return + + # 将所有输出layer的输入layer进行替换 + for out in outputs: + for i in range(len(self.edges_in[out])): + if self.edges_in[out][i] == layer_id: + self.edges_in[out][i] = inputs[0] + + # 将输出layer赋给输入layer的输出 + replace_index = self.edges_out[inputs[0]].index(layer_id) + del self.edges_out[inputs[0]][replace_index] + for i, out in enumerate(outputs): + self.edges_out[inputs[0]].insert(replace_index + i, out) + for k, v in self.layers[out].inputs.items(): + if v == layer.outputs[0]: + self.layers[out].inputs[k] = list(layer.inputs.values())[0] + + del self.layers[layer_id] + if layer_id in self.edges_out: + del self.edges_out[layer_id] + if layer_id in self.edges_in: + del self.edges_in[layer_id] + def build(self, inputs=None, outputs=None): self.clear_edges() outputs_from_nodes = dict() diff --git a/x2paddle/decoder/tf_decoder.py b/x2paddle/decoder/tf_decoder.py index 97714e8..dc04172 100644 --- a/x2paddle/decoder/tf_decoder.py +++ b/x2paddle/decoder/tf_decoder.py @@ -89,6 +89,12 @@ class TFGraphNode(GraphNode): field = getattr(attr, attr.WhichOneof('value')) return tensor_util.MakeNdarray(field) + @property + def name(self): + if hasattr(self, 'index'): + return self.layer_name + "_p{}".format(self.index) + return self.layer_name + def get_attr(self, name): if name not in self.layer.attr: return None diff --git a/x2paddle/op_mapper/tf_op_mapper.py b/x2paddle/op_mapper/tf_op_mapper.py index 3a88f47..c15ccb0 100644 --- a/x2paddle/op_mapper/tf_op_mapper.py +++ b/x2paddle/op_mapper/tf_op_mapper.py @@ -15,10 +15,25 @@ from x2paddle.decoder.tf_decoder import TFGraph from x2paddle.core.op_mapper import OpMapper from x2paddle.core.util import * +from x2paddle import program +import traceback +import math import inspect import numpy import sys +name_counter = dict() + + +def gen_name(op_name, var_name): + name = "{}_{}".format(op_name, var_name) + if name not in name_counter: + name_counter[name] = 0 + else: + name_counter[name] += 1 + name = name + '_' + str(name_counter[name]) + return name + # compute padding size for SAME mode def get_same_padding(in_size, kernel_size, stride): @@ -31,45 +46,34 @@ def get_same_padding(in_size, kernel_size, stride): return [pad0, pad1] -def nhwc_dim_to_nchw(node, dim): - tf_data_format = list(node.tf_data_format) - pd_data_format = list(node.pd_data_format) - if isinstance(dim, list): - for i in range(len(dim)): - char = tf_data_format[dim[i]] - dim[i] = pd_data_format.index(char) - else: - char = tf_data_format[dim] - dim = pd_data_format.index(char) - return dim - - if dim < 0: - dim += 4 - if dim > 0: - dim = (dim + 1) % 4 + int((dim + 1) / 4) - return dim - - class TFOpMapper(OpMapper): directly_map_ops = { 'Relu': ['relu'], 'Relu6': ['relu6'], - 'Shape': ['shape'], 'Abs': ['abs'], 'Sigmoid': ['sigmoid'], 'Exp': ['exp'], 'Rsqrt': ['rsqrt'], + 'Sqrt': ['sqrt'], 'swish_f32': ['swish'], 'Tanh': ['tanh'], + 'Softplus': ['softplus'], 'LeakyRelu': ['leaky_relu', { 'alpha': 'alpha' - }] + }], + 'Floor': ['floor'], + 'Erf': ['erf'], + 'Square': ['square'] } elementwise_ops = { 'Add': 'elementwise_add', + 'AddV2': 'elementwise_add', 'RealDiv': 'elementwise_div', 'Sub': 'elementwise_sub', 'Maximum': 'elementwise_max', + 'Minimum': 'elementwise_min', + 'LessEqual': 'less_equal', + 'GreaterEqual': 'greater_equal', 'Mul': 'elementwise_mul', 'FloorDiv': 'elementwise_floordiv' } @@ -78,24 +82,30 @@ class TFOpMapper(OpMapper): super(TFOpMapper, self).__init__() self.decoder = decoder self.graph = decoder.tf_graph - self.batch_node = None self.weights = dict() self.omit_nodes = list() self.used_custom_layers = dict() + program.clear() not_placeholder = list() for name in self.graph.input_nodes: - if self.graph.get_node(name).layer_type != "Placeholder" \ - and self.graph.get_node(name).layer_type != "OneShotIterator": + if self.graph.get_node( + name).layer_type != "Placeholder" and self.graph.get_node( + name + ).layer_type != "OneShotIterator" and self.graph.get_node( + name).layer_type != "IteratorV2": not_placeholder.append(name) for name in not_placeholder: idx = self.graph.input_nodes.index(name) del self.graph.input_nodes[idx] - sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort))) + program.inputs = self.graph.input_nodes + program.outputs = self.graph.output_nodes + unsupported_ops = set() + sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort))) for i, node_name in enumerate(self.graph.topo_sort): - sys.stderr.write("\rConverting node {} ... ".format(i + 1)) + sys.stderr.write("\rConverting node {} ... ".format(i + 1)) node = self.graph.get_node(node_name) op = node.layer_type if op in self.directly_map_ops: @@ -110,173 +120,74 @@ class TFOpMapper(OpMapper): if len(unsupported_ops) > 0: continue func = getattr(self, op) - func(node) + try: + func(node) + except Exception as e: + unsupported_ops.add(op) + print("\n{}\n".format(traceback.format_exc())) else: unsupported_ops.add(op) if len(unsupported_ops) > 0: - sys.stderr.write("=========={} Ops are not supported yet======\n". - format(len(unsupported_ops))) + print("\n========= {} OPs are not supported yet ===========".format( + len(unsupported_ops))) for op in unsupported_ops: - sys.stderr.write("========== {} ==========\n".format(op)) + print("========== {} ============".format(op)) sys.exit(-1) - sys.stderr.write('\nDone!\n') - - def add_omit_nodes(self, in_node_name, out_node_name): - in_node = self.graph.get_node(in_node_name) - out_node = self.graph.get_node(out_node_name) - index = in_node.outputs.index(out_node_name) - # del in_node.outputs[index] - index = out_node.inputs.index(in_node_name) - # del out_node.inputs[index] - self.omit_nodes.append(in_node.layer_name) + sys.stderr.write("\nDone!\n") def directly_map(self, node): assert node.layer_type in self.directly_map_ops op_info = self.directly_map_ops[node.layer_type] - input = self.graph.get_node(node.layer.input[0], copy=True) + input = self.graph.get_node(node.layer.input[0]) attr = dict() for param in op_info[1:]: tf_param_name = list(param.keys())[0] pd_param_name = list(param.values())[0] tf_param = node.get_attr(tf_param_name) attr[pd_param_name] = tf_param - node.fluid_code.add_layer( - op_info[0], inputs=input, output=node, param_attr=attr) + + program.add_layer( + kernel="fluid.layers.{}".format(op_info[0]), + inputs={"x": input.name}, + outputs=[node.name], + **attr) def elementwise_map(self, node): assert node.layer_type in self.elementwise_ops op_type = self.elementwise_ops[node.layer_type] - x = self.graph.get_node(node.layer.input[0], copy=True) - y = self.graph.get_node(node.layer.input[1], copy=True) + x = self.graph.get_node(node.layer.input[0]) + y = self.graph.get_node(node.layer.input[1]) x_shape = x.out_shapes[0] y_shape = y.out_shapes[0] - if len(x_shape) == 0: - x_shape = [1] - if len(y_shape) == 0: - y_shape = [1] - # incomplement broadcasting support for paddle - x_input = x - y_input = y - if len(x_shape) < len(y_shape): - unrevertable_ops = [ - "elementwise_sub", "elementwise_div", "elementwise_floordiv", - "elementwise_mod", "elementwise_pow" - ] - if op_type not in unrevertable_ops: - x_input = y - y_input = x - x_shape = y.out_shapes[0] - if len(x_shape) == 0: - x_shape = [1] - y_shape = x.out_shapes[0] - if len(y_shape) == 0: - y_shape = [1] - else: - if len(x_shape) == 1 and len(y_shape) == 4 and x_shape[ - 0] == y_shape[-1] and y_shape.count(-1) < 1: - shape = [1, x_shape[0], 1, 1] - attr = {"shape": shape} - node.fluid_code.add_layer( - "reshape", - inputs=x_input, - output="reshape_x", - param_attr=attr) - if y_shape[0] != 1: - attr = {"expand_times": [y_shape[0], 1, 1, 1]} - node.fluid_code.add_layer( - "expand", - inputs="reshape_x", - output="reshape_x", - param_attr=attr) - inputs = {"x": "reshape_x", "y": y_input} - node.fluid_code.add_layer( - op_type, inputs=inputs, output=node, param_attr=None) - return - else: - raise Exception("Unexpected situation happend") - - if len(x_shape) == 4 and len(y_shape) == 1: - if x_input.tf_data_format == "NHWC": - axis = 1 - else: - axis = -1 - attr = {"axis": axis} - inputs = {"x": x_input, "y": y_input} - node.fluid_code.add_layer( - op_type, inputs=inputs, output=node, param_attr=attr) - return - - is_sub_seq = True - for i in range(len(y_shape)): - index = -1 * i - 1 - if y_shape[index] != x_shape[index]: - is_sub_seq = False - if not is_sub_seq: - if x_shape.count(-1) > 2: - x_shape = self.decoder.infer_tensor_shape(x_input) - if y_shape.count(-1) > 2: - y_shape = self.decoder.infer_tensor_shape(y_input) - x_expand_times = [1] * len(x_shape) - y_expand_times = [1] * len(y_shape) - x_need_expand = False - y_need_expand = False - for i in range(len(y_shape)): - index = -1 * i - 1 - if y_shape[index] != x_shape[index]: - if y_shape[index] == 1: - y_expand_times[index] = x_shape[index] - y_need_expand = True - elif x_shape[index] == 1: - x_expand_times[index] = y_shape[index] - x_need_expand = True - else: - raise Exception("Unexpected situation happend") - if x_need_expand: - if len(x_expand_times) == 3 and x.tf_data_format == "NHWC": - x_expand_times = [x_expand_times[i] for i in [2, 0, 1]] - if len(x_expand_times) == 4 and x.tf_data_format == "NHWC": - x_expand_times = [x_expand_times[i] for i in [0, 3, 1, 2]] - attr = {"expand_times": x_expand_times} - node.fluid_code.add_layer( - "expand", inputs=x_input, output="x_tmp", param_attr=attr) - x_input = "x_tmp" - if y_need_expand: - if len(y_expand_times) == 3 and y.tf_data_format == "NHWC": - y_expand_times = [y_expand_times[i] for i in [2, 0, 1]] - if len(y_expand_times) == 4 and y.tf_data_format == "NHWC": - y_expand_times = [y_expand_times[i] for i in [0, 3, 1, 2]] - attr = {"expand_times": y_expand_times} - node.fluid_code.add_layer( - "expand", inputs=y_input, output="y_tmp", param_attr=attr) - y_input = "y_tmp" - inputs = {"x": x_input, "y": y_input} - node.fluid_code.add_layer( - op_type, inputs=inputs, output=node, param_attr=None) + layer_id = program.add_layer( + kernel="fluid.layers.{}".format(op_type), + inputs={"x": x.name, + "y": y.name}, + outputs=[node.name]) + program.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape} + + def NotEqual(self, node): + x = self.graph.get_node(node.layer.input[0]) + y = self.graph.get_node(node.layer.input[1]) + + program.add_layer( + kernel="fluid.layers.not_equal", + inputs={"x": x.name, + "y": y.name}, + outputs=[node.name]) def Placeholder(self, node): shape = node.out_shapes[0] assert len(shape) != 0, "Unknown shape of input nodes[{}].".format( node.layer_name) - if node.tf_data_format == "NHWC" and len(shape) == 4: - shape = [shape[i] for i in [0, 3, 1, 2]] - elif node.tf_data_format == "NCHW" and len(shape) == 4: - self.graph.data_format_propagation(node) dtype = node.dtype - attr = { - 'dtype': string(dtype), - 'shape': shape, - 'name': string(node.layer_name), - 'append_batch_size': False - } - - if shape[0] < 0: - self.batch_node = node - - node.fluid_code.add_layer( - "data", inputs=None, output=node, param_attr=attr) - - def OneShotIterator(self, node): - return self.Placeholder(node) + program.add_layer( + kernel="fluid.data", + inputs={}, + outputs=[node.name], + dtype=string(dtype), + shape=shape, + name=string(node.name)) def Const(self, node): shape = node.out_shapes[0] @@ -286,615 +197,864 @@ class TFOpMapper(OpMapper): if len(shape) == 0: assert value.size == 1, "Unexpected situation happend" shape = [1] + if value == float('inf'): + value = "float('inf')" initializer = "Constant({})".format(value) - self.weights[node.layer_name] = node.value - - if node.tf_data_format == "NHWC": - if len(shape) == 4: - shape = [shape[i] for i in [0, 3, 1, 2]] - if len(shape) == 3: - shape = [shape[i] for i in [2, 0, 1]] - self.weights[node.layer_name] = numpy.transpose(node.value, - (2, 0, 1)) - elif node.tf_data_format == "NCHW": - if len(shape) == 4: - self.graph.data_format_propagation(node) - - attr = { - 'dtype': string(dtype), - 'shape': shape, - 'name': string(node.layer_name), - 'default_initializer': initializer - } - node.fluid_code.add_layer( - "create_parameter", inputs=None, output=node, param_attr=attr) + program.parameters[node.name] = node.value + program.add_layer( + kernel="fluid.layers.create_parameter", + inputs={}, + outputs=[node.name], + dtype=string(dtype), + shape=shape, + name=string(node.name), + default_initializer=initializer) def Transpose(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - perm = self.graph.get_node(node.layer.input[1], copy=True) + input = self.graph.get_node(node.layer.input[0]) + perm = self.graph.get_node(node.layer.input[1]) assert perm.layer_type == "Const", "Perm of transpose OP should be Const" - del self.weights[perm.layer_name.replace('/', '_')] - perm.fluid_code.clear() perm = perm.value.tolist() - if perm == [0, 3, 1, 2] and input.data_format == "NHWC": - input_name = input.layer_name - if hasattr(input, "index"): - input_name = input_name + "[{}]".format(input.index) - node.fluid_code.add_layer("{} = {}").format(node.layer_name, - input_name) - node.tf_data_format = "NCHW" - self.graph.data_format_propagation(node) - elif perm == [0, 2, 3, 1] and input.tf_data_format == "NCHW": - input_name = input.layer_name - if hasattr(input, "index"): - input_name = input_name + "[{}]".format(input.index) - node.fluid_code.add_layer("{} = {}").format(node.layer_name, - input_name) - node.tf_data_format = "NHWC" - self.graph.data_format_propagation(node) - elif len(input.out_shapes[0]) > 4: - tf_data_format = list(input.tf_data_format) - pd_data_format = list(input.pd_data_format) - new_perm = [i for i in range(len(perm))] - for i in range(len(perm)): - char0 = tf_data_format[i] - char1 = tf_data_format[perm[i]] - index0 = pd_data_format.index(char0) - index1 = pd_data_format.index(char1) - new_perm[index0] = index1 - node.tf_data_format = [tf_data_format[i] for i in perm] - node.pd_data_format = [pd_data_format[i] for i in perm] - attr = {'perm': new_perm} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=attr) - elif len(node.out_shapes[0]) != 4: - attr = {'perm': perm} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=attr) + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": input.name}, + outputs=[node.name], + perm=perm) + + def Fill(self, node): + dims = self.graph.get_node(node.layer.input[0]) + input_value = self.graph.get_node(node.layer.input[1]) + inputs = dict() + attr = dict() + assert input_value.layer_type == "Const", "Value of fill OP should be Const" + if dims.layer_type == "Const": + attr["shape"] = dims.value.tolist() else: - raise Exception("Unexpected situation happend in Transpose OP") + inputs["shape"] = dims.name + attr["dtype"] = string(input_value.dtype) + attr["value"] = input_value.value - def MaxPool(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) + program.add_layer( + "fluid.layers.fill_constant", + inputs=inputs, + outputs=[node.name], + **attr) - in_shape = input.out_shapes[0] - if in_shape.count(-1) > 2: - in_shape = self.decoder.infer_tensor(input).shape + def DepthToSpace(self, node): + input = self.graph.get_node(node.layer.input[0]) + + block_size = node.get_attr("block_size") + data_format = node.get_attr("data_format").decode() + if data_format == "NHWC": + n, h, w, c = input.out_shapes[0] + else: + n, c, h, w = input.out_shapes[0] + + input_name = input.name + if data_format == "NHWC": + transpose_name = gen_name("depth_to_space", "transpose") + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": input.name}, + outputs=[transpose_name], + perm=[0, 3, 1, 2]) + input_name = transpose_name + + shape = [0, block_size * block_size, -1, h, w] + reshape_name = gen_name("depth_to_space", "reshape") + program.add_layer( + kernel="fluid.layers.reshape", + inputs={"x": input_name}, + outputs=[reshape_name], + shape=shape) + + transpose_name = gen_name("depth_to_space", "transpose") + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": reshape_name}, + outputs=[transpose_name], + perm=[0, 2, 1, 3, 4]) + + reshape_name = gen_name("depth_to_space", "reshape") + program.add_layer( + kernel="fluid.layers.reshape", + inputs={"x": transpose_name}, + outputs=[reshape_name], + shape=[0, c, h, w]) + + program.add_layer( + kernel="fluid.layers.pixel_shuffle", + inputs={"x": reshape_name}, + outputs=[node.name], + upscale_factor=block_size) + + if data_format == "NHWC": + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": node.name}, + outputs=[node.name], + perm=[0, 2, 3, 1]) + + def MaxPool(self, node): + input = self.graph.get_node(node.layer.input[0]) k_size = node.get_attr("ksize") strides = node.get_attr("strides") data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() - channel_first = data_format == "NCHW" - if not channel_first: - in_shape = [in_shape[i] for i in [0, 3, 1, 2]] + input_name = input.name + if data_format == "NHWC": + transpose_name = gen_name("max_pool", "transpose") + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": input.name}, + outputs=[transpose_name], + perm=[0, 3, 1, 2]) strides = [strides[i] for i in [0, 3, 1, 2]] k_size = [k_size[i] for i in [0, 3, 1, 2]] - else: - self.graph.data_format_propagation(node) - - attr = { - "pool_size": k_size[2:4], - "pool_type": string("max"), - "pool_padding": string(pad_mode), - "pool_stride": strides[2:4] - } - node.fluid_code.add_layer( - "pool2d", inputs=input, output=node, param_attr=attr) + input_name = transpose_name + + program.add_layer( + kernel="fluid.layers.pool2d", + inputs={"input": input_name}, + outputs=[node.name], + pool_size=k_size[2:4], + pool_type=string("max"), + pool_stride=strides[2:4], + pool_padding=string(pad_mode)) + + if data_format == "NHWC": + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": node.name}, + outputs=[node.name], + perm=[0, 2, 3, 1]) def Conv2D(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - kernel = self.graph.get_node(node.layer.input[1], copy=True) - assert kernel.layer_type == "Const", "Kernel of Conv2D should be Const" - self.add_omit_nodes(kernel.layer_name, node.layer_name) + input = self.graph.get_node(node.layer.input[0]) + kernel = self.graph.get_node(node.layer.input[1]) - in_shape = input.out_shapes[0] - if in_shape.count(-1) > 2: - in_shape = self.decoder.infer_tensor(input).shape k_size = kernel.out_shapes[0] - if k_size.count(-1) > 2: - k_size = self.decoder.infer_tensor(kernel).shape - strides = node.get_attr("strides") dilations = node.get_attr("dilations") data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() - channel_first = data_format == "NCHW" + if data_format == "NHWC": + n, h, w, c = input.out_shapes[0] + else: + n, c, h, w = input.out_shapes[0] - self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( - kernel.value, (3, 2, 0, 1)) + if kernel.layer_type == 'Const': + kernel_value = kernel.value + kernel_weight_name = kernel.name.replace('/', '_') + else: + kernel_value = self.decoder.infer_tensor(kernel) + if kernel.layer_type == 'Split': + kernel_weight_name = "{}_{}_kernel".format(node.name, + kernel.name) + else: + kernel_weight_name = kernel.name.replace('/', '_') + program.parameters[kernel_weight_name] = numpy.transpose(kernel_value, + (3, 2, 0, 1)) - if not channel_first: - in_shape = [in_shape[i] for i in [0, 3, 1, 2]] + input_name = input.name + if data_format == "NHWC": strides = [strides[i] for i in [0, 3, 1, 2]] dilations = [dilations[i] for i in [0, 3, 1, 2]] - else: - self.graph.data_format_propagation(node) - - attr = { - "bias_attr": False, - "param_attr": string(kernel.layer_name), - "num_filters": k_size[3], - "filter_size": k_size[0:2], - "stride": strides[2:4], - "dilation": dilations[2:4], - "padding": string(pad_mode) - } - node.fluid_code.add_layer( - "conv2d", inputs=input, output=node, param_attr=attr) + transpose_name = gen_name("conv2d", "transpose") + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": input.name}, + outputs=[transpose_name], + perm=[0, 3, 1, 2]) + input_name = transpose_name + + if c == -1: + attr = {"shape": [0, k_size[2], 0, 0]} + node.fluid_code.add_layer( + "reshape", inputs=input, output=input, param_attr=attr) + program.add_layer( + kernel="fluid.layers.reshape", + inputs={"x": input_name}, + outputs=[input_name], + shape=[0, k_size[2], 0, 0]) + + program.add_layer( + kernel="fluid.layers.conv2d", + inputs={"input": input_name}, + outputs=[node.name], + bias_attr=False, + param_attr=string(kernel_weight_name), + num_filters=k_size[3], + filter_size=k_size[0:2], + stride=strides[2:4], + dilation=dilations[2:4], + padding=string(pad_mode)) + + if data_format == "NHWC": + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": node.name}, + outputs=[node.name], + perm=[0, 2, 3, 1]) def BiasAdd(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - bias = self.graph.get_node(node.layer.input[1], copy=True) - axis = -1 - if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4: - axis = 1 - inputs = {"x": input, "y": bias} - attr = {"axis": axis} - node.fluid_code.add_layer( - "elementwise_add", inputs=inputs, output=node, param_attr=attr) + input = self.graph.get_node(node.layer.input[0]) + bias = self.graph.get_node(node.layer.input[1]) + program.add_layer( + kernel="fluid.layers.elementwise_add", + inputs={"x": input.name, + "y": bias.name}, + outputs=[node.name]) def FusedBatchNorm(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - gamma = self.graph.get_node(node.layer.input[1], copy=True) - beta = self.graph.get_node(node.layer.input[2], copy=True) - moving_mean = self.graph.get_node(node.layer.input[3], copy=True) - moving_var = self.graph.get_node(node.layer.input[4], copy=True) + input = self.graph.get_node(node.layer.input[0]) + gamma = self.graph.get_node(node.layer.input[1]) + beta = self.graph.get_node(node.layer.input[2]) + moving_mean = self.graph.get_node(node.layer.input[3]) + moving_var = self.graph.get_node(node.layer.input[4]) data_format = node.get_attr("data_format").decode() - channel_first = data_format == "NCHW" assert gamma.layer_type == "Const" assert beta.layer_type == "Const" assert moving_mean.layer_type == "Const" assert moving_var.layer_type == "Const" - self.add_omit_nodes(gamma.layer_name, node.layer_name) - self.add_omit_nodes(beta.layer_name, node.layer_name) - self.add_omit_nodes(moving_mean.layer_name, node.layer_name) - self.add_omit_nodes(moving_var.layer_name, node.layer_name) - if channel_first: - self.data_format_propagation(node) - - attr = { - "epsilon": node.get_attr("epsilon"), - "param_attr": string(gamma.layer_name), - "bias_attr": string(beta.layer_name), - "moving_mean_name": string(moving_mean.layer_name), - "moving_variance_name": string(moving_var.layer_name), - "is_test": True - } - - node.fluid_code.add_layer( - "batch_norm", inputs=input, output=node, param_attr=attr) - - def FusedBatchNormV3(self, node): - return self.FusedBatchNorm(node) + + input_name = input.name + if data_format == "NHWC": + transpose_name = gen_name("batch_norm", "transpose") + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": input.name}, + outputs=[transpose_name], + perm=[0, 3, 1, 2]) + input_name = transpose_name + + program.add_layer( + kernel="fluid.layers.batch_norm", + inputs={"input": input_name}, + outputs=[node.name], + epsilon=node.get_attr("epsilon"), + param_attr=string(gamma.name), + bias_attr=string(beta.name), + moving_mean_name=string(moving_mean.name), + moving_variance_name=string(moving_var.name), + is_test=True) + + if data_format == "NHWC": + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": node.name}, + outputs=[node.name], + perm=[0, 2, 3, 1]) + + def Mean(self, node): + input = self.graph.get_node(node.layer.input[0]) + reduce_idx = self.graph.get_node(node.layer.input[1]) + assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" + dims = reduce_idx.value.tolist() + keep_dims = node.get_attr("keep_dims") + + program.add_layer( + kernel="fluid.layers.reduce_mean", + inputs={"input": input.name}, + outputs=[node.name], + dim=dims, + keep_dim=keep_dims) + + def Reshape(self, node): + input = self.graph.get_node(node.layer.input[0]) + param = self.graph.get_node(node.layer.input[1]) + + input_name = input.name + if input.dtype == 'bool': + cast_name = gen_name('reshape', 'cast') + program.add_layer( + kernel="fluid.layers.cast", + inputs={"x": input_name}, + outputs=[cast_name], + dtype="'int32'") + input_name = cast_name + + if param.layer_type == "Const": + shape = param.value.tolist() + program.add_layer( + kernel="fluid.layers.reshape", + inputs={"x": input_name}, + outputs=[node.name], + shape=shape) + else: + program.add_layer( + kernel="fluid.layers.reshape", + inputs={"x": input_name, + "shape": param.name}, + outputs=[node.name]) + if param.layer_type != "Const": + out_shape = numpy.array(node.out_shapes[0]) + if (out_shape > 0).any(): + out_shape[out_shape < 0] = 0 + program.add_layer( + kernel="fluid.layers.reshape", + inputs={"x": node.name}, + outputs=[node.name], + shape=out_shape.tolist()) + + if input.dtype == 'bool': + program.add_layer( + kernel="fluid.layers.cast", + inputs={"x": node.name}, + outputs=[node.name], + dtype="'bool'") + + def Pad(self, node): + input = self.graph.get_node(node.layer.input[0]) + paddings = self.graph.get_node(node.layer.input[1]) + assert paddings.layer_type == "Const", "Padding should be Const" + paddings = paddings.value.flatten().tolist() + + if len(input.out_shapes[0]) == 4: + if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0: + new_padding = paddings[2:6] + transpose_name = gen_name("pad", "transpose") + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": input.name}, + outputs=[transpose_name], + perm=[0, 3, 1, 2]) + program.add_layer( + kernel="fluid.layers.pad2d", + inputs={"input": transpose_name}, + outputs=[node.name], + paddings=new_padding) + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": node.name}, + outputs=[node.name], + perm=[0, 2, 3, 1]) + return + + program.add_layer( + kernel="fluid.layers.pad", + inputs={"input": input.name}, + outputs=[node.name], + paddings=paddings) + + def Squeeze(self, node): + input = self.graph.get_node(node.layer.input[0]) + squeeze_dims = node.get_attr('squeeze_dims') + program.add_layer( + kernel="fluid.layers.squeeze", + inputs={"input": input.name}, + outputs=[node.name], + axes=squeeze_dims) + + def Softmax(self, node): + input = self.graph.get_node(node.layer.input[0]) + axis = node.get_attr("axis") + program.add_layer( + kernel="fluid.layers.softmax", + inputs={"input": input.name}, + outputs=[node.name], + axis=axis) + + def Shape(self, node): + input = self.graph.get_node(node.layer.input[0]) + input_name = input.name + if input.dtype == 'bool': + cast_name = gen_name('shape', 'cast') + program.add_layer( + kernel="fluid.layers.cast", + inputs={"x": input.name}, + outputs=[cast_name], + dtype="'int32'") + input_name = cast_name + program.add_layer( + kernel="fluid.layers.shape", + inputs={"input": input_name}, + outputs=[node.name]) + + def ArgMax(self, node): + input = self.graph.get_node(node.layer.input[0]) + axis = self.graph.get_node(node.layer.input[1]) + assert axis.layer_type == "Const", "ArgMax only support Const parameter" + axis = axis.value + program.add_layer( + kernel="fluid.layers.argmax", + inputs={"x": input.name}, + outputs=[node.name], + axis=axis) + + def MatMul(self, node): + x = self.graph.get_node(node.layer.input[0]) + y = self.graph.get_node(node.layer.input[1]) + transpose_a = node.get_attr('transpose_a') + transpose_b = node.get_attr('transpose_b') + if transpose_a is None: + transpose_a = node.get_attr('adj_x') + if transpose_b is None: + transpose_b = node.get_attr('adj_y') + program.add_layer( + kernel="fluid.layers.matmul", + inputs={"x": x.name, + "y": y.name}, + outputs=[node.name], + transpose_x=transpose_a, + transpose_y=transpose_b) + + def BatchMatMul(self, node): + return self.MatMul(node) + + def BatchMatMulV2(self, node): + return self.MatMul(node) def DepthwiseConv2dNative(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - kernel = self.graph.get_node(node.layer.input[1], copy=True) + input = self.graph.get_node(node.layer.input[0]) + kernel = self.graph.get_node(node.layer.input[1]) assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const" - self.add_omit_nodes(kernel.layer_name, node.layer_name) in_shape = input.out_shapes[0] - if in_shape.count(-1) > 2: - in_shape = self.decoder.infer_tensor(input).shape k_size = kernel.out_shapes[0] - if k_size.count(-1) > 2: - k_size = self.decoder.infer_tensor(kernel).shape - strides = node.get_attr("strides") dilations = node.get_attr("dilations") data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() - channel_first = data_format == "NCHW" - self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( - kernel.value, (2, 3, 0, 1)) + program.parameters[kernel.layer_name.replace( + '/', '_')] = numpy.transpose(kernel.value, (2, 3, 0, 1)) - if not channel_first: + input_name = input.name + if data_format == "NHWC": in_shape = [in_shape[i] for i in [0, 3, 1, 2]] strides = [strides[i] for i in [0, 3, 1, 2]] dilations = [dilations[i] for i in [0, 3, 1, 2]] - else: - self.data_format_propagation(node) - - attr = { - "bias_attr": False, - "param_attr": string(kernel.layer_name), - "num_filters": in_shape[1], - "filter_size": k_size[0:2], - "stride": strides[2:4], - "dilation": dilations[2:4], - "groups": k_size[3] * in_shape[1], - "use_cudnn": False, - "padding": string(pad_mode) - } - node.fluid_code.add_layer( - "conv2d", inputs=input, output=node, param_attr=attr) - - def Reshape(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - param = self.graph.get_node(node.layer.input[1], copy=True) - is_variable = False - if param.layer_type == "Const": - attr = {"shape": param.value.tolist()} - self.add_omit_nodes(param.layer_name, node.layer_name) - else: - # Here is a trick method to solove tensor parameter in tensorflow - shape = self.decoder.infer_shape_tensor(param, node.out_shapes[0]) - if shape.count(-1) <= 1: - attr = {"shape": shape} - self.add_omit_nodes(param.layer_name, node.layer_name) - elif shape.count(-1) == 2 and shape[0] == -1: - shape[0] = 0 - attr = {"shape": shape} - self.add_omit_nodes(param.layer_name, node.layer_name) - else: - assert len(param.out_shapes[ - 0]) == 1, "Unexpected situation of shape parameter" - attr = {"shape": [-1]} - node.fluid_code.add_layer( - "reshape", - inputs=param, - output="shape_param", - param_attr=attr) - attr = {"num_or_sections": param.out_shapes[0][0], "dim": 0} - node.fluid_code.add_layer( - "split", inputs="shape_param", output=node, param_attr=attr) - new_param = "[" - for i in range(param.out_shapes[0][0]): - new_param += (node.layer_name + "[{}]".format(i) + ", ") - new_param = new_param.strip(", ") + "]" - attr = {"shape": new_param} - is_variable = True - - # to change [192, -1]->[-1, 192], allways put -1 in the first dimension - # optimization for Paddle-Lite - in_shape = input.out_shapes[0] - if not is_variable and in_shape.count(-1) < 1: - total_size = 1 - for i in range(len(in_shape)): - total_size *= in_shape[i] - for i in range(len(attr["shape"])): - if attr["shape"][i] == 0: - attr["shape"][i] = in_shape[i] - if attr["shape"][i] != -1: - total_size /= attr["shape"][i] - if attr["shape"].count(-1) > 0: - index = attr["shape"].index(-1) - attr["shape"][index] = int(total_size) - attr["shape"][0] = -1 - - if len(input.out_shapes[0]) == 4 and node.tf_data_format == "NHWC": - if len(attr["shape"]) < 3: - perm = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=perm) - node.fluid_code.add_layer( - "reshape", inputs=node, output=node, param_attr=attr) - return - - if len(attr["shape"]) == 4 and node.tf_data_format == "NHWC": - input_shape = self.decoder.infer_tensor(input).shape - if input_shape[1] == attr["shape"][1]: - attr["shape"] = [attr["shape"][i] for i in [0, 3, 1, 2]] - else: - perm = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=perm) - node.fluid_code.add_layer( - "reshape", inputs=node, output=node, param_attr=attr) - perm = {"perm": [0, 3, 1, 2]} - node.fluid_code.add_layer( - "transpose", inputs=node, output=node, param_attr=perm) - return - if len(attr["shape"]) == 5: - attr["shape"] = [attr["shape"][i] for i in [0, 1, 4, 2, 3]] - - node.fluid_code.add_layer( - "reshape", inputs=input, output=node, param_attr=attr) + transpose_name = gen_name('depthwise_conv2d', 'transpose') + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": input.name}, + outputs=[transpose_name], + perm=[0, 3, 1, 2]) + input_name = transpose_name + + program.add_layer( + kernel="fluid.layers.conv2d", + inputs={"input": input_name}, + outputs=[node.name], + num_filters=in_shape[1], + filter_size=k_size[0:2], + stride=strides[2:4], + dilation=dilations[2:4], + groups=k_size[3] * in_shape[1], + padding=string(pad_mode), + param_attr=string(kernel.layer_name), + bias_attr=False) + + if data_format == "NHWC": + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": node.name}, + outputs=[node.name], + perm=[0, 2, 3, 1]) def AvgPool(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - - in_shape = input.out_shapes[0] - if in_shape.count(-1) > 2: - in_shape = self.decoder.infer_tensor(input).shape + input = self.graph.get_node(node.layer.input[0]) k_size = node.get_attr("ksize") strides = node.get_attr("strides") data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() - channel_first = data_format == "NCHW" - if not channel_first: - in_shape = [in_shape[i] for i in [0, 3, 1, 2]] + input_name = input.name + if data_format == "NHWC": + transpose_name = gen_name("avg_pool", "transpose") + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": input.name}, + outputs=[transpose_name], + perm=[0, 3, 1, 2]) strides = [strides[i] for i in [0, 3, 1, 2]] k_size = [k_size[i] for i in [0, 3, 1, 2]] - else: - self.graph.data_format_propagation(node) - - attr = { - "pool_size": k_size[2:4], - "pool_type": string("avg"), - "pool_stride": strides[2:4], - "pool_padding": string(pad_mode) - } - node.fluid_code.add_layer( - "pool2d", inputs=input, output=node, param_attr=attr) - - def SplitV(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - num_sections = self.graph.get_node(node.layer.input[1], copy=True) - dim = self.graph.get_node(node.layer.input[2], copy=True) - assert num_sections.layer_type == "Const" - assert dim.layer_type == "Const" - self.add_omit_nodes(num_sections.layer_name, node.layer_name) - self.add_omit_nodes(dim.layer_name, node.layer_name) - dim = dim.value - if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4: - dim = nhwc_dim_to_nchw(input, dim) - attr = { - "num_or_sections": num_sections.value.tolist(), - "dim": dim.value - } - node.fluid_code.add_layer( - "split", inputs=input, output=node, param_attr=attr) - - def ConcatV2(self, node): - inputs = [ - self.graph.get_node( - name, copy=True) for name in node.layer.input[:-1] - ] - axis = self.graph.get_node(node.layer.input[-1], copy=True) - assert axis.layer_type == "Const" - self.add_omit_nodes(axis.layer_name, node.layer_name) - axis = axis.value - if inputs[0].tf_data_format == "NHWC" and len(inputs[0].out_shapes[ - 0]) == 4: - axis = nhwc_dim_to_nchw(inputs[0], axis) - attr = {"axis": axis} - node.fluid_code.add_layer( - "concat", inputs=inputs, output=node, param_attr=attr) - - def Tile(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - expand_times = self.graph.get_node(node.layer.input[1], copy=True) - self.add_omit_nodes(expand_times.layer_name, node.layer_name) - if expand_times.layer_type == "Const": - expand_times = expand_times.value.tolist() - else: - expand_times = self.decoder.infer_shape_tensor(expand_times) - if input.tf_data_format == "NHWC": - if len(input.out_shapes[0]) == 4: - expand_times = [expand_times[i] for i in [0, 3, 1, 2]] - elif len(input.out_shapes[0]) == 3: - expand_times = [expand_times[i] for i in [2, 0, 1]] - for i in range(len(expand_times)): - if expand_times[i] < 0: - expand_times[i] = 1 - - attr = {"expand_times": expand_times} - node.fluid_code.add_layer( - "expand", inputs=input, output=node, param_attr=attr) + input_name = transpose_name + + program.add_layer( + kernel="fluid.layers.pool2d", + inputs={"input": input_name}, + outputs=[node.name], + pool_size=k_size[2:4], + pool_type=string("avg"), + pool_stride=strides[2:4], + pool_padding=string(pad_mode)) + + if data_format == "NHWC": + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": node.name}, + outputs=[node.name], + perm=[0, 2, 3, 1]) def Pack(self, node): - inputs = [ - self.graph.get_node( - name, copy=True) for name in node.layer.input - ] + inputs = [self.graph.get_node(name) for name in node.layer.input] + input_names = [i.name for i in inputs] axis = node.get_attr("axis") - if inputs[0].tf_data_format == "NHWC" and len(inputs[0].out_shapes[ - 0]) == 4: - tf_data_format = list(inputs[0].tf_data_format) - tf_data_format.insert(axis, str(len(tf_data_format))) - axis = nhwc_dim_to_nchw(inputs[0], axis) - pd_data_format = list(inputs[0].pd_data_format) - pd_data_format.insert(axis, str(len(pd_data_format))) - node.tf_data_format = "".join(tf_data_format) - node.pd_data_format = "".join(pd_data_format) - - attr = {"axis": axis} - node.fluid_code.add_layer( - "stack", inputs=inputs, output=node, param_attr=attr) - - def Pad(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - paddings = self.graph.get_node(node.layer.input[1], copy=True) - assert paddings.layer_type == "Const", "Padding should be Const" - self.add_omit_nodes(paddings.layer_name, node.layer_name) - paddings = paddings.value.flatten().tolist() - if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4: - paddings = [paddings[i] for i in [0, 1, 6, 7, 2, 3, 4, 5]] + program.add_layer( + kernel="fluid.layers.stack", + inputs={"x": input_names}, + outputs=[node.name], + axis=axis) + if len(node.out_shapes[0]) == 1: + program.add_layer( + kernel="fluid.layers.reshape", + inputs={"x": node.name}, + outputs=[node.name], + shape=[-1]) + + def Unpack(self, node): + input = self.graph.get_node(node.layer.input[0]) + axis = node.get_attr("axis") + num = node.get_attr("num") + shape = input.out_shapes[0] + input_name = input.name + if len(shape) == 1: + if shape[0] > 0 and num == shape[0]: + program.add_layer( + kernel="fluid.layers.unsqueeze", + inputs={"input": input.name}, + outputs=[node.name], + axes=[0]) + input_name = node.name + axis = 1 + else: + raise Exception("Unexpected situation happend in Unpack OP") + program.add_layer( + kernel="fluid.layers.unstack", + inputs={"x": input_name}, + outputs=["{}_p{}".format(node.layer_name, i) for i in range(num)], + axis=axis, + num=num) - pad_op = "pad" - if len(input.out_shapes[0]) == 4: - if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0: - paddings = paddings[4:] - pad_op = "pad2d" - attr = {"paddings": paddings} - node.fluid_code.add_layer( - pad_op, inputs=input, output=node, param_attr=attr) - - def MirrorPad(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - paddings = self.graph.get_node(node.layer.input[1], copy=True) - assert paddings.layer_type == "Const", "Padding should be Const" - self.add_omit_nodes(paddings.layer_name, node.layer_name) - paddings = paddings.value.flatten().tolist() - mode = node.get_attr("mode").decode() - assert mode == "REFLECT", "Only support 'REFLECT` mode in MirrorPad" - if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4: - paddings = [paddings[i] for i in [0, 1, 6, 7, 2, 3, 4, 5]] + def ConcatV2(self, node): + inputs = [self.graph.get_node(name) for name in node.layer.input[:-1]] + axis = self.graph.get_node(node.layer.input[-1]) + assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const" + axis = axis.value + if axis < 0: + axis += len(inputs[0].out_shapes[0]) + + input_names = [i.name for i in inputs] + for i, ipt in enumerate(inputs): + if node.dtype == 'bool': + cast_name = gen_name('concat', 'cast') + program.add_layer( + kernel="fluid.layers.cast", + inputs={"x": ipt.name}, + outputs=[cast_name], + dtype="'int32'") + input_names[i] = cast_name + program.add_layer( + kernel="fluid.layers.concat", + inputs={"input": input_names}, + outputs=[node.name], + axis=axis) + if node.dtype == 'bool': + program.add_layer( + kernel="fluid.layers.cast", + inputs={"x": node.name}, + outputs=[node.name], + dtype="'bool'") - pad_op = "pad" - if len(input.out_shapes[0]) == 4: - if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0: - paddings = paddings[4:] - pad_op = "pad2d" - attr = {"paddings": paddings, "mode": string("reflect")} - node.fluid_code.add_layer( - pad_op, inputs=input, output=node, param_attr=attr) + def StridedSlice(self, node): + input = self.graph.get_node(node.layer.input[0]) + begin = self.graph.get_node(node.layer.input[1]) + end = self.graph.get_node(node.layer.input[2]) + strides = self.graph.get_node(node.layer.input[3]) - def Range(self, node): - start = self.graph.get_node(node.layer.input[0], copy=True) - limit = self.graph.get_node(node.layer.input[1], copy=True) - delta = self.graph.get_node(node.layer.input[2], copy=True) - self.add_omit_nodes(start.layer_name, node.layer_name) - self.add_omit_nodes(limit.layer_name, node.layer_name) - self.add_omit_nodes(delta.layer_name, node.layer_name) - if start.layer_type == "Const": - start = start.value + if strides.layer_type == "Const": + strides = strides.value.tolist() else: - start = self.decoder.infer_tensor(start) - if limit.layer_type == "Const": - limit = limit.value + strides = self.decoder.infer_shape_tensor(strides) + if begin.layer_type == "Const": + begin = begin.value.tolist() else: - limit = self.decoder.infer_tensor(limit) - if delta.layer_type == "Const": - delta = delta.value + begin = self.decoder.infer_shape_tensor(begin) + if end.layer_type == "Const": + end = end.value.tolist() else: - delta = self.decoder.infer_tensor(delta) + end = self.decoder.infer_shape_tensor(end) - inputs = {"start": start, "end": limit, "step": delta} - attr = {"dtype": string(node.dtype)} - node.fluid_code.add_layer( - "range", inputs=inputs, output=node, param_attr=attr) - - def Mean(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - reduce_idx = self.graph.get_node(node.layer.input[1], copy=True) - assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" - dims = reduce_idx.value.tolist() - keep_dims = node.get_attr("keep_dims") - - if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4: - for i in range(len(dims)): - dims[i] = nhwc_dim_to_nchw(input, dims[i]) - - attr = {"dim": dims, "keep_dim": keep_dims} - node.fluid_code.add_layer( - "reduce_mean", inputs=input, output=node, param_attr=attr) - - def MatMul(self, node): - x = self.graph.get_node(node.layer.input[0], copy=True) - y = self.graph.get_node(node.layer.input[1], copy=True) - transpose_a = node.get_attr('transpose_a') - transpose_b = node.get_attr('transpose_b') - inputs = {"x": x, "y": y} - # fix paddle shape infer problem - # should be removed after paddle 1.6 - if x.out_shapes[0][-1] < 0 and y.out_shapes[0][0] > 0: - shape = x.out_shapes[0] - shape[-1] = y.out_shapes[0][0] - attr = {"shape": shape} - node.fluid_code.add_layer( - "reshape", inputs=x, output=x, param_attr=attr) - attr = {"transpose_x": transpose_a, "transpose_y": transpose_b} - node.fluid_code.add_layer( - "matmul", inputs=inputs, output=node, param_attr=attr) - - def ArgMax(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - axis = self.graph.get_node(node.layer.input[1], copy=True) - assert axis.layer_type == "Const", "ArgMax only support Const parameter" - self.add_omit_nodes(axis.layer_name, node.layer_name) - axis = axis.value - if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4: - axis = nhwc_dim_to_nchw(input, axis) - attr = {"axis": axis} - node.fluid_code.add_layer( - "argmax", inputs=input, output=node, param_attr=attr) - - def StridedSlice(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - begin = self.graph.get_node(node.layer.input[1], copy=True) - end = self.graph.get_node(node.layer.input[2], copy=True) - strides = self.graph.get_node(node.layer.input[3], copy=True) - assert begin.layer_type == "Const" - assert end.layer_type == "Const" - assert strides.layer_type == "Const" - self.add_omit_nodes(begin.layer_name, node.layer_name) - self.add_omit_nodes(end.layer_name, node.layer_name) - self.add_omit_nodes(strides.layer_name, node.layer_name) - strides = strides.value.tolist() - assert len(set(strides)) == 1 and strides[0] == 1 - - begin = begin.value.tolist() - end = end.value.tolist() - if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4: - begin = [begin[i] for i in [0, 3, 1, 2]] - end = [end[i] for i in [0, 3, 1, 2]] + assert len(set(strides)) == 1 and strides[ + 0] == 1, "Only support strides be 1 in StridedSlice OP" + if len(begin) < len(input.out_shapes[0]): + begin = begin + [0] * (len(input.out_shapes[0]) - len(begin)) + if len(end) < len(input.out_shapes[0]): + end = end + [0] * (len(input.out_shapes[0]) - len(end)) for i in range(len(end)): if end[i] == 0: end[i] = 999999 - attr = { - "axes": [i for i in range(len(strides))], - "starts": begin, - "ends": end - } - + begin_mask = node.get_attr('begin_mask') + end_mask = node.get_attr('end_mask') + ellipsis_mask = node.get_attr('ellipsis_mask') + new_axis_mask = node.get_attr('new_axis_mask') shrink_axis_mask = node.get_attr('shrink_axis_mask') - squeeze_dims = list() - for i in range(len(begin)): - x = shrink_axis_mask >> i & 1 - if x == 1: - squeeze_dims.append(i) - node.fluid_code.add_layer( - "slice", inputs=input, output=node, param_attr=attr) - if shrink_axis_mask > 0 and len(input.out_shapes[0]) == 5: - attr = {"axes": squeeze_dims} - node.fluid_code.add_layer( - "squeeze", inputs=node, output=node, param_attr=attr) + + assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format( + node.layer_type, node.layer.name, ellipsis_mask) + + # TODO codes without validation + # Use it carefully + new_begin = list() + new_end = list() + new_axes = list() + shrink_axes = list() + for i, item in enumerate(begin): + mask = (new_axis_mask >> i) & 1 + if mask != 0: + new_axes.append(i) + continue + + mask = (shrink_axis_mask >> i) & 1 + if mask != 0: + shrink_axes.append(i) + + mask = (begin_mask >> i) & 1 + if mask != 0: + new_begin.append(0) + else: + new_begin.append(item) + + mask = (end_mask >> i) & 1 + if mask != 0: + new_end.append(999999) + else: + new_end.append(end[i]) + + program.add_layer( + kernel="fluid.layers.slice", + inputs={"input": input.name}, + outputs=[node.name], + axes=[i for i in range(len(new_begin))], + starts=new_begin, + ends=new_end) + if len(new_axes) > 0: + program.add_layer( + kernel="fluid.layers.unsqueeze", + inputs={"input": node.name}, + outputs=[node.name], + axes=new_axes) + if len(shrink_axes) > 0: + if len(input.out_shapes[0]) + len(new_axes) <= 1: + pass + else: + program.add_layer( + kernel="fluid.layers.squeeze", + inputs={"input": node.name}, + outputs=[node.name], + axes=shrink_axes) + + def Split(self, node): + dim = self.graph.get_node(node.layer.input[0]) + input = self.graph.get_node(node.layer.input[1]) + assert dim.layer_type == "Const" + num_split = node.get_attr('num_split') + dim = dim.value + + program.add_layer( + kernel="fluid.layers.split", + inputs={"input": input.name}, + outputs=[ + "{}_p{}".format(node.layer_name, i) for i in range(num_split) + ], + num_or_sections=num_split, + dim=dim) def Slice(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - begin = self.graph.get_node(node.layer.input[1], copy=True) - size = self.graph.get_node(node.layer.input[2], copy=True) - self.add_omit_nodes(begin.layer_name, node.layer_name) - self.add_omit_nodes(size.layer_name, node.layer_name) + input = self.graph.get_node(node.layer.input[0]) + begin = self.graph.get_node(node.layer.input[1]) + size = self.graph.get_node(node.layer.input[2]) + + inputs = {"x": input.name} + attrs = {} if begin.layer_type == "Const": begin = begin.value.tolist() + attrs['offsets'] = begin else: + # shape = begin.out_shapes[0] + # reshape_name = gen_name("slice", "reshape") + # program.add_layer( + # kernel="fluid.layers.reshape", + # inputs={"x": begin.name}, + # outputs=[reshape_name], + # shape=shape) + # inputs['offsets'] = reshape_name begin = self.decoder.infer_tensor(begin).tolist() - if size.layer_type == "const": + attrs['offsets'] = begin + if size.layer_type == "Const": size = size.value.tolist() + attrs['shape'] = size + else: + shape = size.out_shapes[0] + reshape_name = gen_name("slice", "reshape") + program.add_layer( + kernel="fluid.layers.reshape", + inputs={"x": size.name}, + outputs=[reshape_name], + shape=shape) + inputs['shape'] = reshape_name + program.add_layer( + kernel="fluid.layers.crop_tensor", + inputs=inputs, + outputs=[node.name], + **attrs) + + def ResizeNearestNeighbor(self, node): + input = self.graph.get_node(node.layer.input[0]) + resize_shape = self.graph.get_node(node.layer.input[1]) + data_format = "NHWC" + inputs = {"input": input.name} + attrs = {"align_corners": node.get_attr("align_corners")} + + if resize_shape.layer_type == "Const": + resize_shape = resize_shape.value.tolist() + attrs["out_shape"] = resize_shape else: - size = self.decoder.infer_tensor(size).tolist() + shape = resize_shape.out_shapes[0] + reshape_name = gen_name("resize_nearest", "reshape") + program.add_layer( + kernel="fluid.layers.reshape", + inputs={"x": resize_shape.name}, + outputs=[reshape_name], + shape=shape) + inputs["out_shape"] = reshape_name + + if data_format == "NHWC": + transpose_name = gen_name("resize_nearest", "reshape") + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": input.name}, + outputs=[transpose_name], + perm=[0, 3, 1, 2]) + inputs["input"] = transpose_name + + program.add_layer( + kernel="fluid.layers.resize_nearest", + inputs=inputs, + outputs=[node.name], + **attrs) + + if data_format == "NHWC": + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": node.name}, + outputs=[node.name], + perm=[0, 2, 3, 1]) - if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4: - size = [size[i] for i in [0, 3, 1, 2]] - begin = [begin[i] for i in [0, 3, 1, 2]] + def ResizeBilinear(self, node): + input = self.graph.get_node(node.layer.input[0]) + resize_shape = self.graph.get_node(node.layer.input[1]) + data_format = "NHWC" + inputs = {"input": input.name} + attrs = {"align_corners": node.get_attr("align_corners")} - for i in range(len(size)): - if size[i] < 0: - size[i] = 99999999 - else: - size[i] = size[i] + begin[i] + if resize_shape.layer_type == "Const": + resize_shape = resize_shape.value.tolist() + attrs["out_shape"] = resize_shape + else: + shape = resize_shape.out_shapes[0] + reshape_name = gen_name("resize_bilinear", "reshape") + program.add_layer( + kernel="fluid.layers.reshape", + inputs={"x": resize_shape.name}, + outputs=[reshape_name], + shape=shape) + inputs["out_shape"] = reshape_name + + if data_format == "NHWC": + transpose_name = gen_name("resize_bilinear", "reshape") + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": input.name}, + outputs=[transpose_name], + perm=[0, 3, 1, 2]) + inputs["input"] = transpose_name + + program.add_layer( + kernel="fluid.layers.resize_bilinear", + inputs=inputs, + outputs=[node.name], + **attrs) + + if data_format == "NHWC": + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": node.name}, + outputs=[node.name], + perm=[0, 2, 3, 1]) + + def Cast(self, node): + input = self.graph.get_node(node.layer.input[0]) + dtype = node.dtype + program.add_layer( + kernel="fluid.layers.cast", + inputs={"x": input.name}, + outputs=[node.name], + dtype=string(dtype)) + + def Sum(self, node): + input = self.graph.get_node(node.layer.input[0]) + reduce_idx = self.graph.get_node(node.layer.input[1]) + assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" + keep_dims = node.get_attr("keep_dims") + dim = reduce_idx.value.tolist() + + program.add_layer( + kernel="fluid.layers.reduce_sum", + inputs={"input": input.name}, + outputs=[node.name], + dim=dim, + keep_dim=keep_dims) + + def Max(self, node): + input = self.graph.get_node(node.layer.input[0]) + reduce_idx = self.graph.get_node(node.layer.input[1]) + assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" + keep_dims = node.get_attr("keep_dims") + dim = reduce_idx.value.tolist() + program.add_layer( + kernel="fluid.layers.reduce_max", + inputs={"input": input.name}, + outputs=[node.name], + dim=dim, + keep_dim=keep_dims) - attr = { - "axes": [i for i in range(len(size))], - "starts": begin, - "ends": size - } - node.fluid_code.add_layer( - "slice", inputs=input, output=node, param_attr=attr) + def RandomUniform(self, node): + shape = self.graph.get_node(node.layer.input[0]) + if shape.layer_type == "Const": + shape = shape.value.tolist() + program.add_layer( + kernel="fluid.layers.uniform_random", + inputs={}, + outputs=[node.name], + shape=shape, + min=0.0, + max=0.9999) + else: + program.add_layer( + kernel="fluid.layers.uniform_random", + inputs={'shape': shape.name}, + outputs=[node.name], + min=0.0, + max=0.9999) def Conv2DBackpropInput(self, node): - out_shape = self.graph.get_node(node.layer.input[0], copy=True) - kernel = self.graph.get_node(node.layer.input[1], copy=True) - input = self.graph.get_node(node.layer.input[2], copy=True) + out_shape = self.graph.get_node(node.layer.input[0]) + kernel = self.graph.get_node(node.layer.input[1]) + input = self.graph.get_node(node.layer.input[2]) assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const" - self.add_omit_nodes(kernel.layer_name, node.layer_name) - self.add_omit_nodes(out_shape.layer_name, node.layer_name) - if out_shape.layer_type == "Const": out_shape = out_shape.value.tolist() else: @@ -912,163 +1072,199 @@ class TFOpMapper(OpMapper): strides = node.get_attr("strides") dilations = node.get_attr("dilations") data_format = node.get_attr("data_format").decode() - channel_first = data_format == "NCHW" - self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( - kernel.value, (3, 2, 0, 1)) - if not channel_first: + program.parameters[kernel.layer_name.replace( + '/', '_')] = numpy.transpose(kernel.value, (3, 2, 0, 1)) + + input_name = input.name + if data_format == "NHWC": in_shape = [in_shape[i] for i in [0, 3, 1, 2]] strides = [strides[i] for i in [0, 3, 1, 2]] dilations = [dilations[i] for i in [0, 3, 1, 2]] - else: - self.data_format_propagation(node) - - attr = { - "bias_attr": False, - "param_attr": string(kernel.layer_name), - "num_filters": k_size[2], - "filter_size": k_size[0:2], - "stride": strides[2:4], - "dilation": dilations[2:4], - "padding": string(pad_mode), - "output_size": out_shape[1:3] - } - node.fluid_code.add_layer( - "conv2d_transpose", inputs=input, output=node, param_attr=attr) + transpose_name = gen_name("conv2dbackpropinput", "transpose") + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": input.name}, + outputs=[transpose_name], + perm=[0, 3, 1, 2]) + input_name = transpose_name + + program.add_layer( + kernel="fluid.layers.conv2d_transpose", + inputs={"input": input_name}, + outputs=[node.name], + bias_attr=False, + param_attr=string(kernel.layer_name), + num_filters=k_size[2], + filter_size=k_size[0:2], + stride=strides[2:4], + dilation=dilations[2:4], + padding=string(pad_mode), + output_size=out_shape[1:3]) + + if data_format == "NHWC": + program.add_layer( + kernel="fluid.layers.transpose", + inputs={"x": node.name}, + outputs=[node.name], + perm=[0, 2, 3, 1]) - def Max(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - reduce_idx = self.graph.get_node(node.layer.input[1], copy=True) - assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" - keep_dims = node.get_attr("keep_dims") - dim = reduce_idx.value.tolist() - if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4: - dim = nhwc_dim_to_nchw(input, dim) - - attr = {"dim": dim, "keep_dim": keep_dims} - node.fluid_code.add_layer( - "reduce_max", inputs=input, output=node, param_attr=attr) - - def Sum(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - reduce_idx = self.graph.get_node(node.layer.input[1], copy=True) - assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" - keep_dims = node.get_attr("keep_dims") - dim = reduce_idx.value.tolist() - if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4: - dim = nhwc_dim_to_nchw(input, dim) - - attr = {"dim": dim, "keep_dim": keep_dims} - node.fluid_code.add_layer( - "reduce_sum", inputs=input, output=node, param_attr=attr) - - def Cast(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - dtype = node.dtype_map[node.get_attr('DstT')] - attr = {"dtype": string(dtype)} - node.fluid_code.add_layer( - "cast", inputs=input, output=node, param_attr=attr) - - def Split(self, node): - dim = self.graph.get_node(node.layer.input[0], copy=True) - input = self.graph.get_node(node.layer.input[1], copy=True) - self.add_omit_nodes(dim.layer_name, node.layer_name) - num_split = node.get_attr('num_split') - dim = dim.value - if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4: - dim = nhwc_dim_to_nchw(input, dim) - - attr = {"num_or_sections": num_split, "dim": dim} - node.fluid_code.add_layer( - "split", inputs=input, output=node, param_attr=attr) + def Tile(self, node): + input = self.graph.get_node(node.layer.input[0]) + expand_times = self.graph.get_node(node.layer.input[1]) + inputs = {"x": input.name} + attr = dict() + if expand_times.layer_type == "Const": + expand_times = expand_times.value.tolist() + attr["expand_times"] = expand_times + else: + inputs["expand_times"] = expand_times.name - def Squeeze(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - squeeze_dims = node.get_attr('squeeze_dims') - if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4: - for i in range(len(squeeze_dims)): - squeeze_dims[i] = nhwc_dim_to_nchw(input, squeeze_dims[i]) - attr = {"axes": squeeze_dims} - node.fluid_code.add_layer( - "squeeze", inputs=input, output=node, param_attr=attr) + program.add_layer( + kernel="fluid.layers.expand", + inputs=inputs, + outputs=[node.name], + **attr) - def Softmax(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - axis = node.get_attr("axis") - if axis is None: - axis = -1 + len(input.out_shapes[0]) - if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4: - axis = nhwc_dim_to_nchw(input, axis) - attr = {"axis": axis} - node.fluid_code.add_layer( - "softmax", inputs=input, output=node, param_attr=attr) - - def ResizeNearestNeighbor(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - resize_shape = self.graph.get_node(node.layer.input[1], copy=True) - self.add_omit_nodes(resize_shape.layer_name, node.layer_name) - if resize_shape.layer_type == "Const": - resize_shape = resize_shape.value.tolist() - else: - resize_shape = self.decoder.infer_shape_tensor(resize_shape, - node.out_shapes[0]) - align_corners = node.get_attr("align_corners") - attr = {"align_corners": align_corners, "out_shape": resize_shape} - node.fluid_code.add_layer( - "resize_nearest", inputs=input, output=node, param_attr=attr) + def Range(self, node): + start = self.graph.get_node(node.layer.input[0]) + limit = self.graph.get_node(node.layer.input[1]) + delta = self.graph.get_node(node.layer.input[2]) + inputs = dict() + attr = dict() - def ResizeBilinear(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - resize_shape = self.graph.get_node(node.layer.input[1], copy=True) - self.add_omit_nodes(resize_shape.layer_name, node.layer_name) - if resize_shape.layer_type == "Const": - resize_shape = resize_shape.value.tolist() + if start.layer_type == "Const": + attr["start"] = start.value else: - resize_shape = self.decoder.infer_shape_tensor(resize_shape, - node.out_shapes[0]) - align_corners = node.get_attr("align_corners") - attr = { - "align_corners": align_corners, - "out_shape": resize_shape, - "align_mode": 1 - } - node.fluid_code.add_layer( - "resize_bilinear", inputs=input, output=node, param_attr=attr) - - def GreaterEqual(self, node): - x = self.graph.get_node(node.layer.input[0], copy=True) - y = self.graph.get_node(node.layer.input[1], copy=True) - inputs = {"x": x, "y": y} - node.fluid_code.add_layer( - "greater_equal", inputs=inputs, output=node, param_attr=None) - - def RandomUniform(self, node): - shape = self.graph.get_node(node.layer.input[0], copy=True) - self.add_omit_nodes(shape.layer_name, node.layer_name) - if shape.layer_type == "Const": - shape = shape.value.tolist() + inputs["start"] = start.name + if limit.layer_type == "Const": + attr["end"] = limit.value else: - shape = self.decoder.infer_shape_tensor(shape) - if len(shape) == 4 and node.tf_data_format == "NHWC": - shape = [shape[i] for i in [0, 3, 1, 2]] - attr = {"shape": shape, "min": 0.0, "max": 0.9999} - if shape[0] < 0: - input = self.batch_node - node.fluid_code.add_layer( - "uniform_random_batch_size_like", - inputs=input, - output=node, - param_attr=attr) + inputs["end"] = limit.name + if delta.layer_type == "Const": + attr["step"] = delta.value else: - node.fluid_code.add_layer( - "uniform_random", inputs=None, output=node, param_attr=attr) + inputs["step"] = delta.name + attr["dtype"] = string(node.dtype) + + program.add_layer( + kernel="fluid.layers.range", + inputs=inputs, + outputs=[node.name], + **attr) def SquaredDifference(self, node): + x = self.graph.get_node(node.layer.input[0]) + y = self.graph.get_node(node.layer.input[1]) + inputs = {"x": x.name, "y": y.name} + x_shape = x.out_shapes[0] + y_shape = y.out_shapes[0] + layer_id = program.add_layer( + "fluid.layers.elementwise_sub", inputs=inputs, outputs=[node.name]) + program.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape} + + inputs = {"x": node.name, "y": node.name} + x_shape = node.out_shapes[0] + y_shape = node.out_shapes[0] + layer_id = program.add_layer( + "fluid.layers.elementwise_mul", inputs=inputs, outputs=[node.name]) + program.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape} + + def OneHot(self, node): + input = self.graph.get_node(node.layer.input[0]) + depth = self.graph.get_node(node.layer.input[1]) + on_value = self.graph.get_node(node.layer.input[2]) + off_value = self.graph.get_node(node.layer.input[3]) + assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot' + assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot' + assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot' + + attr = {'depth': depth.value} + on_value = on_value.value + off_value = off_value.value + assert math.fabs(on_value - + 1.0) < 1e-06, "on_value should be 1 in OneHot" + assert math.fabs(off_value - + 0.0) < 1e-06, "off_value should be 0 in OneHot" + + program.add_layer( + "fluid.one_hot", + inputs={"input": input.name}, + outputs=[node.name], + depth=depth.value) + + def Pow(self, node): + x = self.graph.get_node(node.layer.input[0]) + factor = self.graph.get_node(node.layer.input[1]) + inputs = {"x": x.name} + attr = dict() + if factor.layer_type == 'Const': + attr["factor"] = factor.value.tolist() + else: + inputs["factor"] = factor.name + program.add_layer( + "fluid.layers.pow", inputs=inputs, outputs=[node.name], **attr) + + def All(self, node): + input = self.graph.get_node(node.layer.input[0]) + reduce_idx = self.graph.get_node(node.layer.input[1]) + assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" + attr = dict() + attr["dim"] = reduce_idx.value.tolist() + attr["keep_dim"] = node.get_attr("keep_dims") + + program.add_layer( + "fluid.layers.reduce_all", + inputs={"input": input.name}, + outputs=[node.name], + **attr) + + node.layer.attr['dtype'].type = 10 + + def GatherV2(self, node): + embeddings = self.graph.get_node(node.layer.input[0]) + index = self.graph.get_node(node.layer.input[1]) + axis = self.graph.get_node(node.layer.input[2]) + assert axis.layer_type == 'Const', "Only support Const parameter[axis]" + axis = axis.value.tolist() + assert axis == 0, "Only support axis=0 in GatherV2 OP" + index_name = index.name + if len(index.out_shapes[0]) != 1: + reshape_name = gen_name("gather", "reshape") + index_name = reshape_name + program.add_layer( + "fluid.layers.reshape", + inputs={"x": index.name}, + outputs=[reshape_name], + shape=[-1]) + inputs = {'input': embeddings.name, 'index': index_name} + program.add_layer( + "fluid.layers.gather", + inputs=inputs, + outputs=[node.name], + overwrite=False) + if len(index.out_shapes[0]) != 1: + out_shape = node.out_shapes[0] + program.add_layer( + kernel="fluid.layers.reshape", + inputs={"x": node.name}, + outputs=[node.name], + shape=out_shape) + + def ExpandDims(self, node): x = self.graph.get_node(node.layer.input[0], copy=True) y = self.graph.get_node(node.layer.input[1], copy=True) - inputs = {"x": x, "y": y} - node.fluid_code.add_layer( - "elementwise_sub", inputs=inputs, output=node, param_attr=None) - inputs = {"x": node, "y": node} - node.fluid_code.add_layer( - "elementwise_mul", inputs=inputs, output=node, param_attr=None) + inputs = {"input": x.name} + attr = dict() + if y.layer_type == 'Const': + dim = y.value.tolist() + if not isinstance(dim, list): + dim = [dim] + attr['axes'] = dim + else: + inputs['axes'] = y.name + program.add_layer( + "fluid.layers.unsqueeze", + inputs=inputs, + outputs=[node.name], + **attr) diff --git a/x2paddle/op_mapper/tf_op_mapper_nhwc.py b/x2paddle/op_mapper/tf_op_mapper_nhwc.py deleted file mode 100644 index a83a303..0000000 --- a/x2paddle/op_mapper/tf_op_mapper_nhwc.py +++ /dev/null @@ -1,1115 +0,0 @@ -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License" -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from x2paddle.decoder.tf_decoder import TFGraph -from x2paddle.core.op_mapper import OpMapper -from x2paddle.core.util import * -import math -import inspect -import numpy -import sys - - -# compute padding size for SAME mode -def get_same_padding(in_size, kernel_size, stride): - new_size = int(math.ceil(in_size * 1.0 / stride)) - pad_size = (new_size - 1) * stride + kernel_size - in_size - if pad_size < 0: - pad_size = 0 - pad0 = int(pad_size / 2) - pad1 = pad_size - pad0 - return [pad0, pad1] - - -class TFOpMapperNHWC(OpMapper): - directly_map_ops = { - 'Relu': ['relu'], - 'Relu6': ['relu6'], - 'Shape': ['shape'], - 'Abs': ['abs'], - 'Sigmoid': ['sigmoid'], - 'Exp': ['exp'], - 'Rsqrt': ['rsqrt'], - 'Sqrt': ['sqrt'], - 'swish_f32': ['swish'], - 'Tanh': ['tanh'], - 'Softplus': ['softplus'], - 'LeakyRelu': ['leaky_relu', { - 'alpha': 'alpha' - }], - 'Floor': ['floor'], - 'Erf': ['erf'] - } - elementwise_ops = { - 'Add': 'elementwise_add', - 'AddV2': 'elementwise_add', - 'RealDiv': 'elementwise_div', - 'Sub': 'elementwise_sub', - 'Maximum': 'elementwise_max', - 'Minimum': 'elementwise_min', - 'LessEqual': 'less_equal', - 'Mul': 'elementwise_mul', - 'FloorDiv': 'elementwise_floordiv' - } - - def __init__(self, decoder): - super(TFOpMapperNHWC, self).__init__() - self.decoder = decoder - self.graph = decoder.tf_graph - self.weights = dict() - self.batch_node = None - self.omit_nodes = list() - self.used_custom_layers = dict() - - not_placeholder = list() - for name in self.graph.input_nodes: - if self.graph.get_node( - name).layer_type != "Placeholder" and self.graph.get_node( - name - ).layer_type != "OneShotIterator" and self.graph.get_node( - name).layer_type != "IteratorV2": - not_placeholder.append(name) - for name in not_placeholder: - idx = self.graph.input_nodes.index(name) - del self.graph.input_nodes[idx] - - unsupported_ops = set() - sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort))) - for i, node_name in enumerate(self.graph.topo_sort): - sys.stderr.write("\rConverting node {} ... ".format(i + 1)) - node = self.graph.get_node(node_name) - op = node.layer_type - if op in self.directly_map_ops: - if len(unsupported_ops) > 0: - continue - self.directly_map(node) - elif op in self.elementwise_ops: - if len(unsupported_ops) > 0: - continue - self.elementwise_map(node) - elif hasattr(self, op): - if len(unsupported_ops) > 0: - continue - func = getattr(self, op) - try: - func(node) - except Exception as e: - unsupported_ops.add(op) - print(e) - else: - unsupported_ops.add(op) - if len(unsupported_ops) > 0: - print("========= {} OPs are not supported yet ===========".format( - len(unsupported_ops))) - for op in unsupported_ops: - print("========== {} ============".format(op)) - sys.exit(-1) - sys.stderr.write("\nDone!\n") - - def add_omit_nodes(self, in_node_name, out_node_name): - in_node = self.graph.get_node(in_node_name) - out_node = self.graph.get_node(out_node_name) - index = in_node.outputs.index(out_node_name) - del in_node.outputs[index] - index = out_node.inputs.index(in_node_name) - del out_node.inputs[index] - self.omit_nodes.append(in_node.layer_name) - - def directly_map(self, node): - assert node.layer_type in self.directly_map_ops - op_info = self.directly_map_ops[node.layer_type] - input = self.graph.get_node(node.layer.input[0], copy=True) - attr = dict() - for param in op_info[1:]: - tf_param_name = list(param.keys())[0] - pd_param_name = list(param.values())[0] - tf_param = node.get_attr(tf_param_name) - attr[pd_param_name] = tf_param - - if len(input.out_shapes[0]) == 4 and op_info[0] != 'shape': - attr1 = {"perm": [0, 3, 1, 2]} - node.fluid_code.add_layer( - 'transpose', inputs=input, output=node, param_attr=attr1) - input = node - node.fluid_code.add_layer( - op_info[0], inputs=input, output=node, param_attr=attr) - input = node - attr2 = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - 'transpose', inputs=input, output=node, param_attr=attr2) - else: - node.fluid_code.add_layer( - op_info[0], inputs=input, output=node, param_attr=attr) - - def elementwise_map(self, node): - assert node.layer_type in self.elementwise_ops - op_type = self.elementwise_ops[node.layer_type] - x = self.graph.get_node(node.layer.input[0], copy=True) - y = self.graph.get_node(node.layer.input[1], copy=True) - inputs = {"x": x, "y": y} - node.fluid_code.add_layer( - op_type, inputs=inputs, output=node, param_attr=None) - - def Placeholder(self, node): - shape = node.out_shapes[0] - assert len(shape) != 0, "Unknown shape of input nodes[{}].".format( - node.layer_name) - dtype = node.dtype - if shape[0] < 0: - self.batch_node = node - attr = { - 'dtype': string(dtype), - 'shape': shape, - 'name': string(node.layer_name), - 'append_batch_size': False - } - - node.fluid_code.add_layer( - "data", inputs=None, output=node, param_attr=attr) - - def Const(self, node): - shape = node.out_shapes[0] - dtype = node.dtype - value = node.value - initializer = "Constant(0.0)" - if len(shape) == 0: - assert value.size == 1, "Unexpected situation happend" - shape = [1] - initializer = "Constant({})".format(value) - - self.weights[node.layer_name] = node.value - - attr = { - 'dtype': string(dtype), - 'shape': shape, - 'name': string(node.layer_name), - 'default_initializer': initializer - } - node.fluid_code.add_layer( - "create_parameter", inputs=None, output=node, param_attr=attr) - - def Transpose(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - perm = self.graph.get_node(node.layer.input[1], copy=True) - assert perm.layer_type == "Const", "Perm of transpose OP should be Const" - del self.weights[perm.layer_name.replace('/', '_')] - perm.fluid_code.clear() - perm = perm.value.tolist() - - attr = {'perm': perm} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=attr) - - def Fill(self, node): - dims = self.graph.get_node(node.layer.input[0], copy=True) - input_value = self.graph.get_node(node.layer.input[1], copy=True) - - assert input_value.layer_type == "Const", "Value of fill OP should be Const" - - self.add_omit_nodes(input_value.layer_name, node.layer_name) - input_value = input_value.value - input_dtype = string(input_value.dtype) - attr = {'value': input_value, 'dtype': input_dtype} - - node.fluid_code.add_layer( - "fill_constant", inputs=dims, output=node, param_attr=attr) - - def DepthToSpace(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - - block_size = node.get_attr("block_size") - data_format = node.get_attr("data_format").decode() - - if data_format == "NHWC": - attr = {"perm": [0, 3, 1, 2]} - node.fluid_code.add_layer( - "transpose", inputs=input, output=input, param_attr=attr) - n, h, w, c = input.out_shapes[0] - - attr = {'shape': [0, block_size * block_size, -1, h, w]} - node.fluid_code.add_layer( - "reshape", inputs=input, output=input, param_attr=attr) - - attr = {'perm': [0, 2, 1, 3, 4]} - node.fluid_code.add_layer( - "transpose", inputs=input, output=input, param_attr=attr) - attr = {'shape': [0, c, h, w]} - node.fluid_code.add_layer( - "reshape", inputs=input, output=input, param_attr=attr) - - attr = {'upscale_factor': block_size} - node.fluid_code.add_layer( - "pixel_shuffle", inputs=input, output=node, param_attr=attr) - - if data_format == "NHWC": - attr = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - "transpose", inputs=node, output=node, param_attr=attr) - - def MaxPool(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - - k_size = node.get_attr("ksize") - strides = node.get_attr("strides") - data_format = node.get_attr("data_format").decode() - pad_mode = node.get_attr("padding").decode() - channel_first = data_format == "NCHW" - - if not channel_first: - attr = {"perm": [0, 3, 1, 2]} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=attr) - strides = [strides[i] for i in [0, 3, 1, 2]] - k_size = [k_size[i] for i in [0, 3, 1, 2]] - input = node - - attr = { - "pool_size": k_size[2:4], - "pool_type": string("max"), - "pool_stride": strides[2:4], - "pool_padding": string(pad_mode) - } - node.fluid_code.add_layer( - "pool2d", inputs=input, output=node, param_attr=attr) - - if not channel_first: - attr = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - "transpose", inputs=node, output=node, param_attr=attr) - - def Conv2D(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - kernel = self.graph.get_node(node.layer.input[1], copy=True) - self.add_omit_nodes(kernel.layer_name, node.layer_name) - - k_size = kernel.out_shapes[0] - strides = node.get_attr("strides") - dilations = node.get_attr("dilations") - data_format = node.get_attr("data_format").decode() - pad_mode = node.get_attr("padding").decode() - channel_first = data_format == "NCHW" - if data_format == "NHWC": - n, h, w, c = input.out_shapes[0] - else: - n, c, h, w = input.out_shapes[0] - - if kernel.layer_type == 'Const': - kernel_value = kernel.value - kernel_weight_name = kernel.layer_name.replace('/', '_') - else: - kernel_value = self.decoder.infer_tensor(kernel) - if kernel.layer_type == 'Split': - kernel_weight_name = "{}_{}_kernel".format(node.layer_name, - kernel.layer_name) - else: - kernel_weight_name = kernel.layer_name.replace('/', '_') - self.weights[kernel_weight_name] = numpy.transpose(kernel_value, - (3, 2, 0, 1)) - - if not channel_first: - strides = [strides[i] for i in [0, 3, 1, 2]] - dilations = [dilations[i] for i in [0, 3, 1, 2]] - attr = {"perm": [0, 3, 1, 2]} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=attr) - input = node - attr = { - "bias_attr": False, - "param_attr": string(kernel_weight_name), - "num_filters": k_size[3], - "filter_size": k_size[0:2], - "stride": strides[2:4], - "dilation": dilations[2:4], - "padding": string(pad_mode) - } - if hasattr(node, 'dilation') and attr['dilation'] == [1, 1]: - if len(node.dilation) == 1: - attr['dilation'] = [1, node.dilation[0]] - - if c == -1: - reshape_attr = {"shape": [0, k_size[2], 0, 0]} - node.fluid_code.add_layer( - "reshape", inputs=input, output=input, param_attr=reshape_attr) - - node.fluid_code.add_layer( - "conv2d", inputs=input, output=node, param_attr=attr) - if not channel_first: - attr = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - "transpose", inputs=node, output=node, param_attr=attr) - - def BiasAdd(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - bias = self.graph.get_node(node.layer.input[1], copy=True) - inputs = {"x": input, "y": bias} - node.fluid_code.add_layer( - "elementwise_add", inputs=inputs, output=node, param_attr=None) - - def FusedBatchNorm(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - gamma = self.graph.get_node(node.layer.input[1], copy=True) - beta = self.graph.get_node(node.layer.input[2], copy=True) - moving_mean = self.graph.get_node(node.layer.input[3], copy=True) - moving_var = self.graph.get_node(node.layer.input[4], copy=True) - data_format = node.get_attr("data_format").decode() - channel_first = data_format == "NCHW" - - assert gamma.layer_type == "Const" - assert beta.layer_type == "Const" - assert moving_mean.layer_type == "Const" - assert moving_var.layer_type == "Const" - self.add_omit_nodes(gamma.layer_name, node.layer_name) - self.add_omit_nodes(beta.layer_name, node.layer_name) - self.add_omit_nodes(moving_mean.layer_name, node.layer_name) - self.add_omit_nodes(moving_var.layer_name, node.layer_name) - - if not channel_first: - attr = {"perm": [0, 3, 1, 2]} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=attr) - input = node - - attr = { - "epsilon": node.get_attr("epsilon"), - "param_attr": string(gamma.layer_name), - "bias_attr": string(beta.layer_name), - "moving_mean_name": string(moving_mean.layer_name), - "moving_variance_name": string(moving_var.layer_name), - "is_test": True - } - - node.fluid_code.add_layer( - "batch_norm", inputs=input, output=node, param_attr=attr) - - if not channel_first: - attr = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - "transpose", inputs=node, output=node, param_attr=attr) - - def DepthwiseConv2dNative(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - kernel = self.graph.get_node(node.layer.input[1], copy=True) - assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const" - self.add_omit_nodes(kernel.layer_name, node.layer_name) - - in_shape = input.out_shapes[0] - k_size = kernel.out_shapes[0] - strides = node.get_attr("strides") - dilations = node.get_attr("dilations") - data_format = node.get_attr("data_format").decode() - pad_mode = node.get_attr("padding").decode() - channel_first = data_format == "NCHW" - - self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( - kernel.value, (2, 3, 0, 1)) - - if not channel_first: - in_shape = [in_shape[i] for i in [0, 3, 1, 2]] - strides = [strides[i] for i in [0, 3, 1, 2]] - dilations = [dilations[i] for i in [0, 3, 1, 2]] - attr = {"perm": [0, 3, 1, 2]} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=attr) - input = node - - attr = { - "bias_attr": False, - "param_attr": string(kernel.layer_name), - "num_filters": in_shape[1], - "filter_size": k_size[0:2], - "stride": strides[2:4], - "dilation": dilations[2:4], - "groups": k_size[3] * in_shape[1], - "use_cudnn": False, - "padding": string(pad_mode) - } - node.fluid_code.add_layer( - "conv2d", inputs=input, output=node, param_attr=attr) - - if not channel_first: - attr = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - "transpose", inputs=node, output=node, param_attr=attr) - - def Reshape(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - param = self.graph.get_node(node.layer.input[1], copy=True) - if param.layer_type == "Const": - self.add_omit_nodes(param.layer_name, node.layer_name) - shape = param.value.tolist() - else: - shape = param - inputs = {"x": input, "shape": shape} - node.fluid_code.add_layer( - "reshape", inputs=inputs, output=node, param_attr=None) - if param.layer_type != "Const": - out_shape = numpy.array(node.out_shapes[0]) - if (out_shape > 0).any(): - out_shape[out_shape < 0] = 0 - attr = {'shape': out_shape.tolist()} - node.fluid_code.add_layer( - "reshape", inputs=node, output=node, param_attr=attr) - - def AvgPool(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - - k_size = node.get_attr("ksize") - strides = node.get_attr("strides") - data_format = node.get_attr("data_format").decode() - pad_mode = node.get_attr("padding").decode() - channel_first = data_format == "NCHW" - - if not channel_first: - strides = [strides[i] for i in [0, 3, 1, 2]] - k_size = [k_size[i] for i in [0, 3, 1, 2]] - attr = {"perm": [0, 3, 1, 2]} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=attr) - input = node - - attr = { - "pool_size": k_size[2:4], - "pool_type": string("avg"), - "pool_stride": strides[2:4], - "pool_padding": string(pad_mode) - } - node.fluid_code.add_layer( - "pool2d", inputs=input, output=node, param_attr=attr) - - if not channel_first: - attr = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - "transpose", inputs=node, output=node, param_attr=attr) - - def SplitV(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - num_sections = self.graph.get_node(node.layer.input[1], copy=True) - dim = self.graph.get_node(node.layer.input[2], copy=True) - assert num_sections.layer_type == "Const" - assert dim.layer_type == "Const" - self.add_omit_nodes(num_sections.layer_name, node.layer_name) - self.add_omit_nodes(dim.layer_name, node.layer_name) - dim = dim.value - attr = { - "num_or_sections": num_sections.value.tolist(), - "dim": dim.value - } - node.fluid_code.add_layer( - "split", inputs=input, output=node, param_attr=attr) - - def ConcatV2(self, node): - inputs = [ - self.graph.get_node( - name, copy=True) for name in node.layer.input[:-1] - ] - axis = self.graph.get_node(node.layer.input[-1], copy=True) - assert axis.layer_type == "Const" - self.add_omit_nodes(axis.layer_name, node.layer_name) - axis = axis.value - if axis < 0: - axis += len(inputs[0].out_shapes[0]) - attr = {"axis": axis} - node.fluid_code.add_layer( - "concat", inputs=inputs, output=node, param_attr=attr) - - def Tile(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - expand_times = self.graph.get_node(node.layer.input[1], copy=True) - if expand_times.layer_type == "Const": - self.add_omit_nodes(expand_times.layer_name, node.layer_name) - expand_times = expand_times.value.tolist() - else: - expand_times = expand_times - inputs = {"x": input, "expand_times": expand_times} - node.fluid_code.add_layer( - "expand", inputs=inputs, output=node, param_attr=None) - - def Pack(self, node): - inputs = [ - self.graph.get_node( - name, copy=True) for name in node.layer.input - ] - reshape_shape = list() - for input_node in inputs: - k_size = input_node.out_shapes[0] - if len(k_size) and k_size[-1] != -1: - reshape_shape = [0] * len(k_size) - reshape_shape[-1] = k_size[-1] - break - if len(reshape_shape): - for i, input_node in enumerate(inputs): - node.fluid_code.add_layer( - "reshape", - inputs=input_node, - output='tmp_{}'.format(i), - param_attr={"shape": reshape_shape}) - axis = node.get_attr("axis") - attr = {"axis": axis} - if len(reshape_shape): - inputs = ['tmp_{}'.format(i) for i in range(len(inputs))] - node.fluid_code.add_layer( - "stack", inputs=inputs, output=node, param_attr=attr) - - def Pad(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - paddings = self.graph.get_node(node.layer.input[1], copy=True) - assert paddings.layer_type == "Const", "Padding should be Const" - self.add_omit_nodes(paddings.layer_name, node.layer_name) - paddings = paddings.value.flatten().tolist() - data_format = input.tf_data_format - - if len(input.out_shapes[0]) == 4: - new_padding = None - if input.tf_data_format == "NHWC": - if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0: - new_padding = paddings[2:6] - else: - if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0: - new_padding = paddings[4:] - if new_padding is not None: - if input.tf_data_format == "NHWC": - attr = {"perm": [0, 3, 1, 2]} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=attr) - input = node - attr = {"paddings": new_padding} - node.fluid_code.add_layer( - "pad2d", inputs=input, output=node, param_attr=attr) - if input.tf_data_format == "NHWC": - attr = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - "transpose", inputs=node, output=node, param_attr=attr) - - return - - attr = {"paddings": paddings} - node.fluid_code.add_layer( - "pad", inputs=input, output=node, param_attr=attr) - - def Range(self, node): - start = self.graph.get_node(node.layer.input[0], copy=True) - limit = self.graph.get_node(node.layer.input[1], copy=True) - delta = self.graph.get_node(node.layer.input[2], copy=True) - - if start.layer_type == "Const": - self.add_omit_nodes(start.layer_name, node.layer_name) - start = start.value - if limit.layer_type == "Const": - self.add_omit_nodes(limit.layer_name, node.layer_name) - limit = limit.value - if delta.layer_type == "Const": - self.add_omit_nodes(delta.layer_name, node.layer_name) - delta = delta.value - - dtype = node.dtype - inputs = { - "start": start, - "end": limit, - "step": delta, - } - attr = {"dtype": string(node.dtype)} - node.fluid_code.add_layer( - "range", inputs=inputs, output=node, param_attr=attr) - - def Mean(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - reduce_idx = self.graph.get_node(node.layer.input[1], copy=True) - assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" - dims = reduce_idx.value.tolist() - keep_dims = node.get_attr("keep_dims") - - attr = {"dim": dims, "keep_dim": keep_dims} - node.fluid_code.add_layer( - "reduce_mean", inputs=input, output=node, param_attr=attr) - - def MatMul(self, node): - x = self.graph.get_node(node.layer.input[0], copy=True) - y = self.graph.get_node(node.layer.input[1], copy=True) - transpose_a = node.get_attr('transpose_a') - transpose_b = node.get_attr('transpose_b') - inputs = {"x": x, "y": y} - # fix paddle shape infer problem - # should be removed after paddle 1.6 - if x.out_shapes[0][-1] < 0 and y.out_shapes[0][0] > 0: - shape = x.out_shapes[0] - shape[-1] = y.out_shapes[0][0] - attr = {"shape": shape} - node.fluid_code.add_layer( - "reshape", inputs=x, output=x, param_attr=attr) - if transpose_a is None: - transpose_a = node.get_attr('adj_x') - if transpose_b is None: - transpose_b = node.get_attr('adj_y') - attr = {"transpose_x": transpose_a, "transpose_y": transpose_b} - node.fluid_code.add_layer( - "matmul", inputs=inputs, output=node, param_attr=attr) - - def BatchMatMul(self, node): - return self.MatMul(node) - - def BatchMatMulV2(self, node): - return self.MatMul(node) - - def ArgMax(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - axis = self.graph.get_node(node.layer.input[1], copy=True) - assert axis.layer_type == "Const", "ArgMax only support Const parameter" - self.add_omit_nodes(axis.layer_name, node.layer_name) - axis = axis.value - attr = {"axis": axis} - node.fluid_code.add_layer( - "argmax", inputs=input, output=node, param_attr=attr) - - def StridedSlice(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - begin = self.graph.get_node(node.layer.input[1], copy=True) - end = self.graph.get_node(node.layer.input[2], copy=True) - strides = self.graph.get_node(node.layer.input[3], copy=True) - assert begin.layer_type == "Const" - assert end.layer_type == "Const" - assert strides.layer_type == "Const" - self.add_omit_nodes(begin.layer_name, node.layer_name) - self.add_omit_nodes(end.layer_name, node.layer_name) - self.add_omit_nodes(strides.layer_name, node.layer_name) - strides = strides.value.tolist() - assert len(set(strides)) == 1 and strides[ - 0] == 1, "Only support strides be 1 in StridedSlice OP" - - begin = begin.value.tolist() - end = end.value.tolist() - - for i in range(len(end)): - if end[i] == 0: - end[i] = 999999 - - begin_mask = node.get_attr('begin_mask') - end_mask = node.get_attr('end_mask') - ellipsis_mask = node.get_attr('ellipsis_mask') - new_axis_mask = node.get_attr('new_axis_mask') - shrink_axis_mask = node.get_attr('shrink_axis_mask') - - assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format( - node.layer_type, node.layer.name, ellipsis_mask) - - # TODO codes without validation - # Use it carefully - new_begin = list() - new_end = list() - new_axes = list() - shrink_axes = list() - for i, item in enumerate(begin): - mask = (new_axis_mask >> i) & 1 - if mask != 0: - new_axes.append(i) - continue - - mask = (shrink_axis_mask >> i) & 1 - if mask != 0: - shrink_axes.append(i) - - mask = (begin_mask >> i) & 1 - if mask != 0: - new_begin.append(0) - else: - new_begin.append(item) - - mask = (end_mask >> i) & 1 - if mask != 0: - new_end.append(999999) - else: - new_end.append(end[i]) - - attr = { - "axes": [i for i in range(len(new_begin))], - "starts": new_begin, - "ends": new_end - } - node.fluid_code.add_layer( - "slice", inputs=input, output=node, param_attr=attr) - if len(new_axes) > 0: - attr = {"axes": new_axes} - node.fluid_code.add_layer( - "unsqueeze", inputs=node, output=node, param_attr=attr) - if len(shrink_axes) > 0: - if len(input.out_shapes[0]) + len(new_axes) <= 1: - pass - else: - attr = {"axes": shrink_axes} - node.fluid_code.add_layer( - "squeeze", inputs=node, output=node, param_attr=attr) - - def Slice(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - begin = self.graph.get_node(node.layer.input[1], copy=True) - size = self.graph.get_node(node.layer.input[2], copy=True) - if begin.layer_type == "Const": - self.add_omit_nodes(begin.layer_name, node.layer_name) - begin = begin.value.tolist() - else: - begin = self.decoder.infer_tensor(begin).tolist() - -# shape = begin.out_shapes[0] -# attr = {"shape": shape} -# node.fluid_code.add_layer( -# "reshape", inputs=begin, output=begin, param_attr=attr) - if size.layer_type == "Const": - self.add_omit_nodes(size.layer_name, node.layer_name) - size = size.value.tolist() - else: - size = size - shape = size.out_shapes[0] - attr = {"shape": shape} - node.fluid_code.add_layer( - "reshape", inputs=size, output=size, param_attr=attr) - inputs = {"x": input, "offsets": begin, "shape": size} - node.fluid_code.add_layer( - "crop_tensor", inputs=inputs, output=node, param_attr=None) - - def Conv2DBackpropInput(self, node): - out_shape = self.graph.get_node(node.layer.input[0], copy=True) - kernel = self.graph.get_node(node.layer.input[1], copy=True) - input = self.graph.get_node(node.layer.input[2], copy=True) - - assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const" - - self.add_omit_nodes(kernel.layer_name, node.layer_name) - self.add_omit_nodes(out_shape.layer_name, node.layer_name) - - if out_shape.layer_type == "Const": - out_shape = out_shape.value.tolist() - else: - out_shape = self.decoder.infer_shape_tensor(out_shape, - node.out_shapes[0]) - - in_shape = input.out_shapes[0] - if in_shape.count(-1) > 2: - in_shape = self.decoder.infer_tensor(input).shape - k_size = kernel.out_shapes[0] - if k_size.count(-1) > 2: - k_size = self.decoder.infer_tensor(kernel).shape - - pad_mode = node.get_attr("padding").decode() - strides = node.get_attr("strides") - dilations = node.get_attr("dilations") - data_format = node.get_attr("data_format").decode() - channel_first = data_format == "NCHW" - - self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( - kernel.value, (3, 2, 0, 1)) - if not channel_first: - in_shape = [in_shape[i] for i in [0, 3, 1, 2]] - strides = [strides[i] for i in [0, 3, 1, 2]] - dilations = [dilations[i] for i in [0, 3, 1, 2]] - attr = {"perm": [0, 3, 1, 2]} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=attr) - input = node - else: - self.graph.data_format_propagation(node) - - attr = { - "bias_attr": False, - "param_attr": string(kernel.layer_name), - "num_filters": k_size[2], - "filter_size": k_size[0:2], - "stride": strides[2:4], - "dilation": dilations[2:4], - "padding": string(pad_mode), - "output_size": out_shape[1:3] - } - node.fluid_code.add_layer( - "conv2d_transpose", inputs=input, output=node, param_attr=attr) - - if not channel_first: - attr = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - "transpose", inputs=node, output=node, param_attr=attr) - - def Max(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - reduce_idx = self.graph.get_node(node.layer.input[1], copy=True) - assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" - keep_dims = node.get_attr("keep_dims") - dim = reduce_idx.value.tolist() - - attr = {"dim": dim, "keep_dim": keep_dims} - node.fluid_code.add_layer( - "reduce_max", inputs=input, output=node, param_attr=attr) - - def Sum(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - reduce_idx = self.graph.get_node(node.layer.input[1], copy=True) - assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" - keep_dims = node.get_attr("keep_dims") - dim = reduce_idx.value.tolist() - - attr = {"dim": dim, "keep_dim": keep_dims} - node.fluid_code.add_layer( - "reduce_sum", inputs=input, output=node, param_attr=attr) - - def Cast(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - dtype = node.dtype_map[node.get_attr('DstT')] - attr = {"dtype": string(dtype)} - node.fluid_code.add_layer( - "cast", inputs=input, output=node, param_attr=attr) - - def Split(self, node): - dim = self.graph.get_node(node.layer.input[0], copy=True) - input = self.graph.get_node(node.layer.input[1], copy=True) - assert dim.layer_type == "Const" - self.add_omit_nodes(dim.layer_name, node.layer_name) - num_split = node.get_attr('num_split') - dim = dim.value - - attr = {"num_or_sections": num_split, "dim": dim} - node.fluid_code.add_layer( - "split", inputs=input, output=node, param_attr=attr) - - def Squeeze(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - squeeze_dims = node.get_attr('squeeze_dims') - attr = {"axes": squeeze_dims} - node.fluid_code.add_layer( - "squeeze", inputs=input, output=node, param_attr=attr) - - def Softmax(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - axis = node.get_attr("axis") - attr = {"axis": axis} - node.fluid_code.add_layer( - "softmax", inputs=input, output=node, param_attr=attr) - - def ResizeNearestNeighbor(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - resize_shape = self.graph.get_node(node.layer.input[1], copy=True) - if resize_shape.layer_type == "Const": - self.add_omit_nodes(resize_shape.layer_name, node.layer_name) - resize_shape = resize_shape.value.tolist() - else: - resize_shape = resize_shape - shape = resize_shape.out_shapes[0] - attr = {"shape": shape} - node.fluid_code.add_layer( - "reshape", - inputs=resize_shape, - output=resize_shape, - param_attr=attr) - - align_corners = node.get_attr("align_corners") - attr = {"perm": [0, 3, 1, 2]} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=attr) - inputs = {"input": node, "out_shape": resize_shape} - attr = {"align_corners": align_corners} - node.fluid_code.add_layer( - "resize_nearest", inputs=inputs, output=node, param_attr=attr) - attr = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - "transpose", inputs=node, output=node, param_attr=attr) - - def ResizeBilinear(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - resize_shape = self.graph.get_node(node.layer.input[1], copy=True) - if resize_shape.layer_type == "Const": - self.add_omit_nodes(resize_shape.layer_name, node.layer_name) - resize_shape = resize_shape.value.tolist() - else: - shape = resize_shape.out_shapes[0] - attr = {"shape": shape} - node.fluid_code.add_layer( - "reshape", - inputs=resize_shape, - output=resize_shape, - param_attr=attr) - align_corners = node.get_attr("align_corners") - attr = {"perm": [0, 3, 1, 2]} - node.fluid_code.add_layer( - "transpose", inputs=input, output=node, param_attr=attr) - inputs = {"input": node, "out_shape": resize_shape} - attr = { - #"out_shape": resize_shape, - "align_corners": align_corners, - "align_mode": 1 - } - node.fluid_code.add_layer( - "resize_bilinear", inputs=inputs, output=node, param_attr=attr) - attr = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - "transpose", inputs=node, output=node, param_attr=attr) - - def GreaterEqual(self, node): - x = self.graph.get_node(node.layer.input[0], copy=True) - y = self.graph.get_node(node.layer.input[1], copy=True) - inputs = {"x": x, "y": y} - node.fluid_code.add_layer( - "greater_equal", inputs=inputs, output=node, param_attr=None) - - def RandomUniform(self, node): - shape = self.graph.get_node(node.layer.input[0], copy=True) - if shape.layer_type == "Const": - self.add_omit_nodes(shape.layer_name, node.layer_name) - shape = shape.value.tolist() - else: - shape = shape - attr = {"min": 0.0, "max": 0.9999} - - node.fluid_code.add_layer( - "uniform_random", inputs=shape, output=node, param_attr=attr) - - def SquaredDifference(self, node): - x = self.graph.get_node(node.layer.input[0], copy=True) - y = self.graph.get_node(node.layer.input[1], copy=True) - inputs = {"x": x, "y": y} - node.fluid_code.add_layer( - "elementwise_sub", inputs=inputs, output=node, param_attr=None) - inputs = {"x": node, "y": node} - node.fluid_code.add_layer( - "elementwise_mul", inputs=inputs, output=node, param_attr=None) - - def ExpandDims(self, node): - x = self.graph.get_node(node.layer.input[0], copy=True) - y = self.graph.get_node(node.layer.input[1], copy=True) - if y.layer_type == 'Const': - self.add_omit_nodes(y.layer_name, node.layer_name) - dim = y.value.tolist() - if not isinstance(dim, list): - dim = [dim] - attr = {'axes': dim} - else: - attr = {'axes': y} - node.fluid_code.add_layer( - "unsqueeze", inputs=x, output=node, param_attr=attr) - - def BatchToSpaceND(self, node): - x = self.graph.get_node(node.layer.input[0], copy=True) - y = self.graph.get_node(node.layer.input[1], copy=True) - if hasattr(node, 'skip') and node.skip: - node.fluid_code.add_layer( - "=", inputs=x, output=node, param_attr=None) - else: - raise Exception("BatchToSpaceND is not supported") - - def SpaceToBatchND(self, node): - x = self.graph.get_node(node.layer.input[0], copy=True) - y = self.graph.get_node(node.layer.input[1], copy=True) - if hasattr(node, 'skip') and node.skip: - node.fluid_code.add_layer( - "=", inputs=x, output=node, param_attr=None) - else: - raise Exception("SpaceToBatchND is not supported") - - def OneHot(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - depth = self.graph.get_node(node.layer.input[1], copy=True) - on_value = self.graph.get_node(node.layer.input[2], copy=True) - off_value = self.graph.get_node(node.layer.input[3], copy=True) - assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot' - assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot' - assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot' - self.add_omit_nodes(depth.layer_name, node.layer_name) - self.add_omit_nodes(on_value.layer_name, node.layer_name) - self.add_omit_nodes(off_value.layer_name, node.layer_name) - depth = depth.value - on_value = on_value.value - off_value = off_value.value - assert math.fabs(on_value - - 1.0) < 1e-06, "on_value should be 1 in OneHot" - assert math.fabs(off_value - - 0.0) < 1e-06, "off_value should be 0 in OneHot" - attr = {'depth': depth} - node.fluid_code.add_layer( - "one_hot", - inputs=input, - output=node, - param_attr=attr, - use_fluid=True) - - def Pow(self, node): - x = self.graph.get_node(node.layer.input[0], copy=True) - factor = self.graph.get_node(node.layer.input[1], copy=True) - self.add_omit_nodes(factor.layer_name, node.layer_name) - if factor.layer_type == 'Const': - factor = factor.value.tolist() - else: - factor = self.decoder.infer_tensor(factor) - attr = {'factor': factor} - node.fluid_code.add_layer("pow", inputs=x, output=node, param_attr=attr) - - def All(self, node): - input = self.graph.get_node(node.layer.input[0], copy=True) - reduce_idx = self.graph.get_node(node.layer.input[1], copy=True) - self.add_omit_nodes(reduce_idx.layer_name, node.layer_name) - assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" - dims = reduce_idx.value.tolist() - keep_dims = node.get_attr("keep_dims") - - attr = {"dim": dims, "keep_dim": keep_dims} - node.fluid_code.add_layer( - "reduce_all", inputs=input, output=node, param_attr=attr) - - def GatherV2(self, node): - embeddings = self.graph.get_node(node.layer.input[0], copy=True) - index = self.graph.get_node(node.layer.input[1], copy=True) - axis = self.graph.get_node(node.layer.input[2], copy=True) - self.add_omit_nodes(axis.layer_name, node.layer_name) - assert axis.layer_type == 'Const', "Only support Const parameter[axis]" - axis = axis.value.tolist() - assert axis == 0, "Only support axis=0 in GatherV2 OP" - attr = {'overwrite': False} - embeddings_shape = embeddings.out_shapes[0][-1] - reshape_list = list() - reshape_name = index.layer_name - if len(index.out_shapes[0]) != 1: - reshape_list = index.out_shapes[0] - reshape_attr = {"shape": [-1]} - reshape_name = "{}_reshape".format(index.layer_name) - node.fluid_code.add_layer( - "reshape", - inputs=index, - output=reshape_name, - param_attr=reshape_attr) - inputs = {'input': embeddings, 'index': reshape_name} - node.fluid_code.add_layer( - "gather", inputs=inputs, output=node, param_attr=attr) - if len(index.out_shapes[0]) != 1: - reshape_attr = {"shape": reshape_list + [embeddings_shape]} - node.fluid_code.add_layer( - "reshape", inputs=node, output=node, param_attr=reshape_attr) - - def OneShotIterator(self, node): - return self.Placeholder(node) - - def IteratorV2(self, node): - dtype_map = { - 1: "float32", - 3: "int32", - 4: "uint8", - 9: "int64", - 10: "bool" - } - shapes = node.out_shapes - dtypes = node.layer.attr['output_types'].list.type - node.fluid_code.add_note("{} = [0] * {}".format(node.layer_name, - len(shapes))) - for i, shape in enumerate(shapes): - attr = { - 'dtype': string(dtype_map[dtypes[i]]), - 'shape': shape, - 'name': string("{}_{}".format(node.layer_name, i)), - 'append_batch_size': False - } - output = "{}[{}]".format(node.layer_name, i) - node.fluid_code.add_layer( - "data", inputs=None, output=output, param_attr=attr) diff --git a/x2paddle/optimizer/tensorflow/__init__.py b/x2paddle/optimizer/tensorflow/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/x2paddle/optimizer/tensorflow/batch_norm.py b/x2paddle/optimizer/tensorflow/batch_norm.py new file mode 100644 index 0000000..315e949 --- /dev/null +++ b/x2paddle/optimizer/tensorflow/batch_norm.py @@ -0,0 +1,179 @@ +import copy +from collections import OrderedDict +from x2paddle.core.program import PaddleLayer + + +class BatchNormOpt: + def __init__(self): + pass + + def run(self, graph): + layers = copy.deepcopy(graph.layers) + for layer_id, layer in layers.items(): + if layer.kernel != "fluid.layers.elementwise_add": + continue + axis = layer.attrs.get('axis', -1) + if axis != -1 and axis != 3: + continue + + input_ids0 = graph.edges_in[layer_id] + mul_layer0 = graph.layers[input_ids0[0]] + sub_layer0 = graph.layers[input_ids0[1]] + if mul_layer0.kernel != "fluid.layers.elementwise_mul": + continue + if sub_layer0.kernel != "fluid.layers.elementwise_sub": + continue + axis = mul_layer0.attrs.get('axis', -1) + if axis != -1 and axis != 3: + continue + axis = sub_layer0.attrs.get('axis', -1) + if axis != -1 and axis != 0: + continue + if len(graph.edges_out.get(input_ids0[0], [])) != 1: + continue + if len(graph.edges_out.get(input_ids0[1], [])) != 1: + continue + + input_ids1 = graph.edges_in[input_ids0[0]] + nhwc_input = graph.layers[input_ids1[0]] + mul_layer1 = graph.layers[input_ids1[1]] + if mul_layer1.kernel != "fluid.layers.elementwise_mul": + continue + axis = mul_layer1.attrs.get('axis', -1) + if axis != -1 and axis != 0: + continue + if len(graph.edges_out.get(input_ids1[1], [])) != 2: + continue + + input_ids2 = graph.edges_in[input_ids0[1]] + beta = graph.layers[input_ids2[0]] + mul_layer2 = graph.layers[input_ids2[1]] + if beta.kernel != "fluid.layers.create_parameter": + continue + axis = mul_layer2.attrs.get('axis', -1) + if axis != -1 and axis != 0: + continue + if len(graph.edges_out.get(input_ids2[0], [])) != 1: + continue + if len(graph.edges_out.get(input_ids2[1], [])) != 1: + continue + if beta.outputs[0] not in graph.parameters: + continue + beta_shape = graph.parameters[beta.outputs[0]].shape + if len(beta_shape) != 1: + continue + + input_ids3 = graph.edges_in[input_ids2[1]] + mean = graph.layers[input_ids3[0]] + mul_layer3 = graph.layers[input_ids3[1]] + if mean.kernel != "fluid.layers.create_parameter": + continue + axis = mul_layer3.attrs.get('axis', -1) + if axis != -1 and axis != 0: + continue + if len(graph.edges_out.get(input_ids3[0], [])) != 1: + continue + if len(graph.edges_out.get(input_ids3[1], [])) != 2: + continue + if mul_layer3.id != mul_layer1.id: + continue + if mean.outputs[0] not in graph.parameters: + continue + mean_shape = graph.parameters[mean.outputs[0]].shape + if mean_shape != beta_shape: + continue + + input_ids4 = graph.edges_in[input_ids3[1]] + rsqrt_layer = graph.layers[input_ids4[0]] + gamma = graph.layers[input_ids4[1]] + if rsqrt_layer.kernel != "fluid.layers.rsqrt": + continue + if gamma.kernel != "fluid.layers.create_parameter": + continue + if len(graph.edges_out.get(input_ids4[0], [])) != 1: + continue + if len(graph.edges_out.get(input_ids4[1], [])) != 1: + continue + if gamma.outputs[0] not in graph.parameters: + continue + gamma_shape = graph.parameters[gamma.outputs[0]].shape + if gamma_shape != beta_shape: + continue + + input_ids5 = graph.edges_in[input_ids4[0]] + add_layer = graph.layers[input_ids5[0]] + if add_layer.kernel != "fluid.layers.elementwise_add": + continue + axis = add_layer.attrs.get('axis', -1) + if axis != -1 and axis != 0: + continue + if len(graph.edges_out.get(input_ids5[0], [])) != 1: + continue + + input_ids6 = graph.edges_in[input_ids5[0]] + variance = graph.layers[input_ids6[0]] + other = graph.layers[input_ids6[1]] + if variance.kernel != "fluid.layers.create_parameter": + continue + if other.kernel != "fluid.layers.create_parameter": + continue + if len(graph.edges_out.get(input_ids6[0], [])) != 1: + continue + if len(graph.edges_out.get(input_ids6[1], [])) != 1: + continue + if variance.outputs[0] not in graph.parameters: + continue + variance_shape = graph.parameters[variance.outputs[0]].shape + if variance_shape != beta_shape: + continue + if other.outputs[0] not in graph.parameters: + continue + if graph.parameters[other.outputs[0]].size != 1: + continue + + ids = set([ + layer_id, mul_layer0.id, sub_layer0.id, mul_layer1.id, beta.id, + mul_layer2.id, mean.id, mul_layer2.id, rsqrt_layer.id, gamma.id, + add_layer.id, variance.id, other.id + ]) + + for id in ids: + del graph.layers[id] + if id in graph.edges_in: + del graph.edges_in[id] + if id in graph.edges_out: + del graph.edges_out[id] + + copy_layers = copy.deepcopy(graph.layers) + graph.layers = OrderedDict() + for k, v in copy_layers.items(): + if k != nhwc_input.id: + graph.layers[k] = v + continue + graph.layers[k] = v + transpose0 = PaddleLayer( + id='{}_1'.format(k), + kernel="fluid.layers.transpose", + inputs={"x": v.outputs[0]}, + outputs=["transpose_for_bn"], + perm=[0, 3, 1, 2]) + bn = PaddleLayer( + id='{}_2'.format(k), + kernel="fluid.layers.batch_norm", + inputs={"input": "transpose_for_bn"}, + outputs=layer.outputs, + epsilon=graph.parameters[other.outputs[0]], + param_attr="'{}'".format(gamma.outputs[0]), + bias_attr="'{}'".format(beta.outputs[0]), + moving_mean_name="'{}'".format(mean.outputs[0]), + moving_variance_name="'{}'".format(variance.outputs[0])) + transpose1 = PaddleLayer( + id=layer_id, + kernel="fluid.layers.transpose", + inputs={"x": layer.outputs[0]}, + outputs=layer.outputs, + perm=[0, 2, 3, 1]) + graph.layers[transpose0.id] = transpose0 + graph.layers[bn.id] = bn + graph.layers[transpose1.id] = transpose1 + graph.build() diff --git a/x2paddle/optimizer/tensorflow/bias.py b/x2paddle/optimizer/tensorflow/bias.py new file mode 100644 index 0000000..ced691a --- /dev/null +++ b/x2paddle/optimizer/tensorflow/bias.py @@ -0,0 +1,74 @@ +import copy + + +class BiasOpt: + def __init__(self): + self.conv_layers = [ + 'fluid.layers.conv2d', 'fluid.layers.conv2d_transpose' + ] + self.act_layers = [ + 'fluid.layers.relu', 'fluid.layers.relu6', 'fluid.layers.sigmoid', + 'fluid.layers.exp', 'fluid.layers.tanh', 'fluid.layers.softplus', + 'fluid.layers.leaky_relu' + ] + + def run(self, graph): + layers = copy.deepcopy(graph.layers) + for layer_id, layer in layers.items(): + if layer.kernel in self.conv_layers or layer.kernel == "fluid.layers.transpose": + if len(graph.edges_out.get(layer_id, [])) > 1: + continue + if layer.outputs[0] in graph.outputs: + continue + + out_layer_id = graph.edges_out[layer_id][0] + if graph.layers[ + out_layer_id].kernel != "fluid.layers.elementwise_add": + continue + if graph.layers[out_layer_id].attrs.get('axis', -1) != -1: + continue + + in_layer_id = graph.edges_in[out_layer_id] + bias_layer_id = in_layer_id[1 - in_layer_id.index(layer_id)] + if graph.layers[ + bias_layer_id].kernel != "fluid.layers.create_parameter": + continue + + bias_layer = graph.layers[bias_layer_id] + if len(bias_layer.attrs['shape']) != 1: + continue + if len(graph.edges_out[bias_layer_id]) != 1: + continue + + if layer.kernel == "fluid.layers.transpose": + if layer.attrs['perm'] != [0, 2, 3, 1]: + continue + in_layer_id = graph.edges_in[layer_id][0] + if graph.layers[in_layer_id].kernel not in self.conv_layers: + continue + if graph.layers[in_layer_id].attrs['bias_attr'] != False: + continue + if graph.layers[in_layer_id].outputs[0] in graph.outputs: + continue + if len(graph.edges_out[in_layer_id]) != 1: + continue + graph.layers[in_layer_id].attrs[ + 'bias_attr'] = bias_layer.attrs['name'] + else: + graph.layers[layer_id].attrs[ + 'bias_attr'] = bias_layer.attrs['name'] + bias_add_outs = graph.edges_out.get(out_layer_id, []) + bias_add_output = graph.layers[out_layer_id].outputs[0] + graph.del_layer(bias_layer_id) + graph.del_layer(out_layer_id) + + for out in bias_add_outs: + for k, v in graph.layers[out].inputs.items(): + if v == layer.outputs[0]: + graph.layers[out].inputs[k] = bias_add_output + graph.layers[layer_id].outputs[0] = bias_add_output + + if layer.kernel == "fluid.layers.transpose": + in_layer_id = graph.edges_in[layer_id][0] + graph.layers[in_layer_id].outputs[0] = bias_add_output + graph.layers[layer_id].inputs['x'] = bias_add_output diff --git a/x2paddle/optimizer/tensorflow/transpose.py b/x2paddle/optimizer/tensorflow/transpose.py new file mode 100644 index 0000000..81bd073 --- /dev/null +++ b/x2paddle/optimizer/tensorflow/transpose.py @@ -0,0 +1,261 @@ +import copy +import sys + + +class TransposeOpt: + def __init__(self): + self.image_layers = [ + 'fluid.layers.conv2d', 'fluid.layers.batch_norm', + 'fluid.layers.conv2d_transpose', 'fluid.layers.resize_nearest', + 'fluid.layers.resize_bilinear', 'fluid.layers.pool2d', + 'fluid.layers.pad2d' + ] + self.direct_layers = [ + 'fluid.layers.relu', 'fluid.layers.relu6', 'fluid.layers.abs', + 'fluid.layers.sigmoid', 'fluid.layers.exp', 'fluid.layers.rsqrt', + 'fluid.layers.swish_f32', 'fluid.layers.tanh', + 'fluid.layers.softplus', 'fluid.layers.leaky_relu', + 'fluid.layers.floor', 'fluid.layers.erf', 'fluid.layers.swish' + ] + self.elementwise_layers = [ + 'fluid.layers.elementwise_add', 'fluid.layers.elementwise_sub', + 'fluid.layers.elementwise_mul', 'fluid.layers.elementwise_div' + ] + # self.reduce_layers = [] + self.reduce_layers = [ + 'fluid.layers.reduce_mean', 'fluid.layers.reduce_all', + 'fluid.layers.reduce_max', 'fluid.layers.reduce_any', + 'fluid.layers.reduce_sum', 'fluid.layers.reduce_prod' + ] + + def get_transpose_num(self, graph): + count = 0 + for layer_id, layer in graph.layers.items(): + if layer.kernel == "fluid.layers.transpose": + count += 1 + return count + + def run(self, graph): + total_layer_num = len(graph.layers) + scanned_layers = set() + optimized_transpose_layers = list() + optimized_reduce_layers = list() + optimized_concat_layers = list() + optimized_elementwise_layers = list() + + def strip_transpose(_graph): + layers = copy.deepcopy(_graph.layers) + for layer_id, layer in layers.items(): + if layer_id in scanned_layers: + continue + scanned_layers.add(layer_id) + percent = round(len(scanned_layers) / total_layer_num * 100, 2) + sys.stderr.write("\rOptimize Transpose Layers...{}%".format( + percent)) + + if layer.kernel != "fluid.layers.transpose": + continue + if layer.attrs["perm"] != [0, 2, 3, 1]: + continue + transpose_layers = list() + propagate_layers = list() + reduce_layers = list() + concat_layers = list() + # 此elementwise_layers专用于存储shape(4) + shape(1)的形式layer + elementwise_layers = list() + can_be_optimized = True + for out in _graph.edges_out.get(layer_id, []): + if _graph.layers[out].kernel == "fluid.layers.transpose": + if _graph.layers[out].attrs["perm"] != [0, 3, 1, 2]: + can_be_optimized = False + break + transpose_layers.append(out) + elif _graph.layers[out].kernel in self.elementwise_layers: + propagate_layers.append(out) + elif _graph.layers[out].kernel in self.direct_layers: + if _graph.layers[out].outputs[0] in _graph.outputs: + can_be_optimized = False + break + propagate_layers.append(out) + elif _graph.layers[out].kernel in self.reduce_layers: + if _graph.layers[out].outputs[0] in _graph.outputs: + can_be_optimized = False + break + if not _graph.layers[out].attrs.get('keep_dim', False): + can_be_optimized = False + break + propagate_layers.append(out) + reduce_layers.append(out) + elif _graph.layers[out].kernel == "fluid.layers.concat": + if _graph.layers[out].outputs[0] in _graph.outputs: + can_be_optimized = False + break + propagate_layers.append(out) + concat_layers.append(out) + else: + can_be_optimized = False + break + + visited_layers = set() + while len(propagate_layers) > 0 and can_be_optimized: + current_id = propagate_layers.pop(0) + visited_layers.add(current_id) + for out in _graph.edges_out.get(current_id, []): + if _graph.layers[ + out].kernel == "fluid.layers.transpose": + if _graph.layers[out].attrs["perm"] != [0, 3, 1, 2]: + can_be_optimized = False + break + transpose_layers.append(out) + elif _graph.layers[ + out].kernel in self.elementwise_layers: + if _graph.layers[out].outputs[0] in _graph.outputs: + can_be_optimized = False + break + if out not in visited_layers: + propagate_layers.append(out) + elif _graph.layers[out].kernel in self.direct_layers: + if _graph.layers[out].outputs[0] in _graph.outputs: + can_be_optimized = False + break + if out not in visited_layers: + propagate_layers.append(out) + elif _graph.layers[out].kernel in self.reduce_layers: + if _graph.layers[out].outputs[0] in _graph.outputs: + can_be_optimized = False + break + if not _graph.layers[out].attrs.get('keep_dim', + False): + can_be_optimized = False + break + if out not in visited_layers: + propagate_layers.append(out) + reduce_layers.append(out) + elif _graph.layers[out].kernel == "fluid.layers.concat": + if _graph.layers[out].outputs[0] in _graph.outputs: + can_be_optimized = False + break + if out not in visited_layers: + propagate_layers.append(out) + concat_layers.append(out) + else: + can_be_optimized = False + break + for ipt in _graph.edges_in.get(current_id, []): + if _graph.layers[ + current_id].kernel in self.elementwise_layers: + try: + x_shape = _graph.layers[ + current_id].input_shapes['x'] + y_shape = _graph.layers[ + current_id].input_shapes['y'] + if _graph.layers[ipt].outputs[ + 0] == _graph.layers[current_id].inputs[ + 'x']: + if len(x_shape) <= 1: + elementwise_layers.append(current_id) + continue + elif _graph.layers[ipt].outputs[ + 0] == _graph.layers[current_id].inputs[ + 'y']: + if len(y_shape) <= 1: + elementwise_layers.append(current_id) + continue + else: + raise Exception( + "Unexcepted situation happend while optimizing transpose" + ) + except Exception as e: + can_be_optimized = False + break + if _graph.layers[ + ipt].kernel == "fluid.layers.transpose": + if _graph.layers[ipt].attrs["perm"] != [0, 2, 3, 1]: + can_be_optimized = False + break + if ipt not in visited_layers: + transpose_layers.append(ipt) + elif _graph.layers[ + ipt].kernel in self.elementwise_layers: + if _graph.layers[ipt].outputs[0] in _graph.outputs: + can_be_optimized = False + break + if ipt not in visited_layers: + propagate_layers.append(ipt) + elif _graph.layers[ipt].kernel in self.direct_layers: + if _graph.layers[ipt].outputs[0] in _graph.outputs: + can_be_optimized = False + break + if ipt not in visited_layers: + propagate_layers.append(ipt) + elif _graph.layers[ipt].kernel in self.reduce_layers: + if _graph.layers[ipt].outputs[0] in _graph.outputs: + can_be_optimized = False + break + if not _graph.layers[ipt].attrs.get('keep_dim', + False): + can_be_optimized = False + break + if ipt not in visited_layers: + propagate_layers.append(ipt) + reduce_layers.append(ipt) + elif _graph.layers[ipt].kernel == "fluid.layers.concat": + if _graph.layers[ipt].outputs[0] in _graph.outputs: + can_be_optimized = False + break + if ipt not in visited_layers: + propagate_layers.append(ipt) + concat_layers.append(ipt) + else: + can_be_optimized = False + break + if not can_be_optimized: + break + if not can_be_optimized: + continue + + transpose_layers.append(layer_id) + transpose_layers = list(set(transpose_layers)) + for l in transpose_layers: + if graph.layers[l].outputs[0] in graph.outputs: + can_be_optimized = False + break + if not can_be_optimized: + continue + + for l in transpose_layers: + _graph.del_layer(l) + + optimized_transpose_layers.extend(transpose_layers) + optimized_reduce_layers.extend(reduce_layers) + optimized_concat_layers.extend(concat_layers) + optimized_elementwise_layers.extend(elementwise_layers) + return True + return False + + before_transpose_num = self.get_transpose_num(graph) + opt_graph = copy.deepcopy(graph) + total_layer_num = len(opt_graph.layers) + + while strip_transpose(opt_graph): + pass + + for layer_id in list(set(optimized_transpose_layers)): + graph.del_layer(layer_id) + for layer_id in list(set(optimized_reduce_layers)): + dim = graph.layers[layer_id].attrs.get('dim', None) + if dim is not None: + for i in range(len(dim)): + dim[i] = [0, 2, 3, 1][dim[i]] + graph.layers[layer_id].attrs['dim'] = dim + for layer_id in list(set(optimized_concat_layers)): + axis = graph.layers[layer_id].attrs.get('axis', 0) + graph.layers[layer_id].attrs['axis'] = [0, 2, 3, 1][axis] + for layer_id in list(set(optimized_elementwise_layers)): + axis = graph.layers[layer_id].attrs.get('axis', -1) + graph.layers[layer_id].attrs['axis'] = [0, 2, 3, 1][axis] + + current_transpose_num = self.get_transpose_num(graph) + print( + "\nTranspose layers optimized, before: transpose_num={}, after: transpose_num={}". + format(before_transpose_num, current_transpose_num)) diff --git a/x2paddle/optimizer/tf_optimizer.py b/x2paddle/optimizer/tf_optimizer.py deleted file mode 100644 index 7847219..0000000 --- a/x2paddle/optimizer/tf_optimizer.py +++ /dev/null @@ -1,1084 +0,0 @@ -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License" -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# TODO useless node remove -from x2paddle.op_mapper.tf_op_mapper import TFOpMapper -from x2paddle.core.fluid_code import Layer -from x2paddle.core.util import * -import six -import numpy -import copy as cp - - -def exist_act(node): - for layer in node.fluid_code.layers: - if layer.param_attr is not None: - act = layer.param_attr.get("act", None) - if act is not None: - return True - return False - - -class TFOptimizer(object): - activation_ops = { - 'Relu': 'relu', - 'Sigmoid': 'sigmoid', - 'Relu6': 'relu6', - 'swish_f32': 'swish' - } - layers_with_act = [ - 'Conv2D', 'BiasAdd', 'DepthwiseConv2dNative', 'Conv2DBackpropInput', - 'FusedBatchNorm', 'conv2d', 'elementwise_add', 'conv2d_transpose', - 'batch_norm' - ] - layers_with_bias = [ - 'Conv2D', 'DepthwiseConv2dNative', 'Conv2DBackpropInput', 'conv2d', - 'conv2d_transpose' - ] - - def __init__(self, op_mapper): - self.op_mapper = op_mapper - self.graph = op_mapper.graph - - def delete_redundance_code(self): - for node_name in self.graph.topo_sort: - if node_name in self.op_mapper.omit_nodes: - node = self.graph.get_node(node_name) - if node is None: - continue - omit_freq = self.op_mapper.omit_nodes.count(node_name) - if len(node.outputs) <= omit_freq: - node.fluid_code.clear() - - # remove node from graph - input_names = node.inputs - output_names = node.outputs - for in_name in input_names: - in_node = self.graph.get_node(in_name) - index = in_node.outputs.index(node_name) - del in_node.outputs[index] - for out_name in output_names: - out_node = self.graph.get_node(out_name) - index = out_node.inputs.index(node_name) - del out_node.inputs[index] - del self.graph.node_map[node_name] - - def strip_graph(self): - visited_nodes = set() - - def visit(node_name): - if node_name in visited_nodes: - return - visited_nodes.add(node_name) - input_names = self.graph.get_node(node_name).inputs - for in_name in input_names: - visit(in_name) - - for node_name in self.graph.output_nodes: - visit(node_name) - - for i, node_name in enumerate(self.graph.topo_sort): - if node_name not in visited_nodes: - node = self.graph.get_node(node_name) - if node is None: - continue - input_names = node.inputs - output_names = node.outputs - for in_name in input_names: - in_node = self.graph.get_node(in_name) - index = in_node.outputs.index(node_name) - del in_node.outputs[index] - for out_name in output_names: - out_node = self.graph.get_node(out_name) - index = out_node.inputs.index(node_name) - del out_node.inputs[index] - del self.graph.node_map[node_name] - - def optimize_elementwise_op(self): - elementwise_ops = [ - 'Sub', 'Add', 'RealDiv', 'Maximum', 'Mul', 'FloorDiv', - 'GreaterEqual' - ] - revertable_ops = ['Add', 'Mul'] - for node_name in self.graph.topo_sort: - node = self.graph.get_node(node_name) - if node is None: - continue - if node.layer_type in elementwise_ops: - if len(node.fluid_code.layers) != 2: - continue - if node.fluid_code.layers[0].op != "expand": - continue - expand_out = node.fluid_code.layers[0].output - expand_in = node.fluid_code.layers[0].inputs - expand_times = node.fluid_code.layers[0].param_attr[ - "expand_times"] - - x = node.fluid_code.layers[1].inputs["x"] - y = node.fluid_code.layers[1].inputs["y"] - if isinstance( - x, - six.string_types) and node.layer_type in revertable_ops: - node.fluid_code.layers[1].inputs["y"] = x - node.fluid_code.layers[1].inputs["x"] = y - x = node.fluid_code.layers[1].inputs["x"] - y = expand_in - elif isinstance(y, six.string_types): - y = expand_in - else: - continue - - x_shape = x.out_shapes[0] - y_shape = y.out_shapes[0] - if len(x_shape) != len(y_shape): - continue - if len(x_shape) == 4: - x_shape = [x_shape[i] for i in [0, 3, 1, 2]] - y_shape = [y_shape[i] for i in [0, 3, 1, 2]] - - continue_flag = True - for i in range(len(x_shape)): - if y_shape[-1 * (i + 1)] == 1 and continue_flag: - expand_times[-1 * (i + 1)] = 1 - else: - continue_flag = False - - if expand_times.count(1) == len(expand_times): - node.fluid_code.layers[1].inputs["y"] = expand_in - del node.fluid_code.layers[0] - - def merge_activation(self): - act_nodes = list() - for node_name in self.graph.topo_sort: - node = self.graph.get_node(node_name) - if node is None: - continue - if node.layer_type in self.activation_ops: - act_nodes.append(node_name) - - for act_node_name in act_nodes: - node = self.graph.get_node(act_node_name) - input = self.graph.get_node(node.inputs[0]) - if input.layer_type not in self.layers_with_act: - continue - if len(input.fluid_code.layers) == 0: - continue - if 'act' in input.fluid_code.layers[ - -1].param_attr and input.fluid_code.layers[-1].param_attr[ - 'act'] is not None: - continue - if len(input.outputs) != 1: - continue - index = -1 - for i in range(len(input.fluid_code.layers)): - if input.fluid_code.layers[i].op in self.layers_with_act: - index = i - break - input.fluid_code.layers[index].param_attr['act'] = string( - self.activation_ops[node.layer_type]) - input.fluid_code.layers[-1].output = node.fluid_code.layers[ - 0].output - self.graph.remove_node(act_node_name) - - def merge_bias(self): - for node_name in self.graph.topo_sort: - node = self.graph.get_node(node_name) - if node is None: - continue - if node.layer_type == "BiasAdd": - input = self.graph.get_node(node.inputs[0]) - if input.layer_type not in self.layers_with_bias: - continue - if len(input.outputs) != 1: - continue - if len(input.fluid_code.layers) == 0: - continue - bias_with_act = False - if 'act' in node.fluid_code.layers[-1].param_attr: - bias_with_act = True - layer_with_act = False - index = -1 - for i in range(len(input.fluid_code.layers)): - if input.fluid_code.layers[i].op in self.layers_with_bias: - index = i - break - if 'act' in input.fluid_code.layers[ - index].param_attr and input.fluid_code.layers[ - index].param_attr['act'] is not None: - layer_with_act = True - - if bias_with_act and layer_with_act: - continue - if not input.fluid_code.layers[index].param_attr['bias_attr']: - bias_name = node.inputs[1] - input.fluid_code.layers[index].param_attr[ - 'bias_attr'] = string(bias_name) - input.fluid_code.layers[-1].output = node.fluid_code.layers[ - 0].output - if bias_with_act: - input.fluid_code.layers[index].param_attr[ - 'act'] = node.fluid_code.layers[-1].param_attr[ - 'act'] - node.fluid_code.clear() - self.graph.remove_node(node.layer_name) - self.graph.identity_map[node.layer_name] = input.layer_name - - def remove_transpose(self): - graph_copy = cp.deepcopy(self.graph) - elementwise_ops = [ - 'Sub', 'Add', 'RealDiv', 'Maximum', 'Mul', 'FloorDiv', - 'GreateerEqual' - ] - can_be_optimized_ops = [ - 'Conv2D', 'MaxPool', 'FusedBatchNorm', 'DepthwiseConv2dNative', - 'AvgPool', 'Pad', 'Conv2DBackpropInput', 'ResizeNearestNeighbor', - 'Placeholder', 'Relu', 'Relu6', 'Abs', 'Sigmoid', 'Exp', 'Rsqrt', - 'swish_f32', 'LeakyRelu', 'Cast', 'Tanh' - ] - # These ops may have one more Variable input - can_be_optimized_special_ops = ['ResizeBilinear'] - for node_name in self.graph.topo_sort: - node = graph_copy.get_node(node_name) - if node is None: - continue - if node.layer_type in can_be_optimized_ops: - if node.fluid_code.layers[ - -1].op != "transpose" or node.fluid_code.layers[ - -1].param_attr["perm"] != [0, 2, 3, 1]: - continue - can_be_removed = True - output_names = node.outputs - for out_name in output_names: - out_node = graph_copy.get_node(out_name) - if hasattr(out_node, "can_be_removed"): - if not out_node.can_be_removed: - can_be_removed = False - break - elif out_node.fluid_code.layers[ - 0].op != "transpose" or out_node.fluid_code.layers[ - 0].param_attr["perm"] != [0, 3, 1, 2]: - can_be_removed = False - break - elif out_node.layer_type in elementwise_ops or out_node.layer_type in can_be_optimized_special_ops: - can_be_removed = False - break - - if can_be_removed and len(node.fluid_code.layers) > 1: - true_node = self.graph.get_node(node_name) - if true_node.layer_type == "Placeholder": - index = self.graph.input_nodes.index( - true_node.fluid_code.layers[-2].output) - if isinstance(true_node.fluid_code.layers[-1].output, - str): - self.graph.input_nodes[ - index] = true_node.fluid_code.layers[-1].output - else: - self.graph.input_nodes[ - index] = true_node.fluid_code.layers[ - -1].output.layer_name - true_node.fluid_code.layers[ - -2].output = true_node.fluid_code.layers[-1].output - node.removed = True - del true_node.fluid_code.layers[-1] - - for out_name in output_names: - out_node = self.graph.get_node(out_name) - out_node.fluid_code.layers[ - 1].inputs = out_node.fluid_code.layers[0].inputs - del out_node.fluid_code.layers[0] - - for node_name in self.graph.topo_sort: - node = graph_copy.get_node(node_name) - if node is None: - continue - if node.layer_type in elementwise_ops: - can_be_removed = True - if node.fluid_code.layers[ - -1].op != "transpose" or node.fluid_code.layers[ - -1].param_attr["perm"] != [0, 2, 3, 1]: - continue - can_be_removed = True - - output_names = node.outputs - for out_name in output_names: - out_node = graph_copy.get_node(out_name) - if len(out_node.fluid_code.layers) < 3: - can_be_removed = False - break - if hasattr(out_node, "can_be_removed"): - if not out_node.can_be_removed: - can_be_removed = False - break - if out_node.layer_type in can_be_optimized_ops: - if out_node.fluid_code.layers[ - 0].op != "transpose" or out_node.fluid_code.layers[ - 0].param_attr["perm"] != [0, 3, 1, 2]: - can_be_removed = False - break - elif out_node.layer_type in elementwise_ops: - if out_node.fluid_code.layers[ - 0].op != "transpose" and out_node.fluid_code.layers[ - 1].op != "transpose": - can_be_removed = False - break - if out_node.fluid_code.layers[0].op == "transpose": - if out_node.fluid_code.layers[0].param_attr[ - "perm"] != [0, 3, 1, 2]: - can_be_removed = False - break - if out_node.fluid_code.layers[1].op == "transpose": - if out_node.fluid_code.layers[1].param_attr[ - "perm"] != [0, 3, 1, 2]: - can_be_removed = False - break - - if can_be_removed and len(node.fluid_code.layers) > 1: - true_node = self.graph.get_node(node_name) - true_node.fluid_code.layers[ - -2].output = true_node.fluid_code.layers[-1].output - del true_node.fluid_code.layers[-1] - for out_name in output_names: - out_node = self.graph.get_node(out_name) - if out_node.layer_type in can_be_optimized_ops: - out_node.fluid_code.layers[ - 1].inputs = out_node.fluid_code.layers[0].inputs - del out_node.fluid_code.layers[0] - elif out_node.layer_type in elementwise_ops: - if out_node.inputs[0] in node.layer_name: - if out_node.fluid_code.layers[ - 1].op == 'transpose': - out_node.fluid_code.layers[2].inputs[ - 'x'] = out_node.fluid_code.layers[ - 0].inputs - del out_node.fluid_code.layers[0] - else: - out_node.fluid_code.layers[1].inputs[ - 'x'] = out_node.fluid_code.layers[ - 0].inputs - del out_node.fluid_code.layers[0] - elif out_node.inputs[1] in node.layer_name: - if out_node.fluid_code.layers[ - 1].op == 'transpose': - out_node.fluid_code.layers[2].inputs[ - 'y'] = out_node.fluid_code.layers[ - 1].inputs - del out_node.fluid_code.layers[1] - else: - out_node.fluid_code.layers[1].inputs[ - 'y'] = out_node.fluid_code.layers[ - 0].inputs - del out_node.fluid_code.layers[0] - graph_copy = cp.deepcopy(self.graph) - for node_name in self.graph.topo_sort: - node = graph_copy.get_node(node_name) - if node is None or len(node.fluid_code.layers) < 2: - continue - if node.layer_type in can_be_optimized_ops and node.layer_type != "Placeholder": - if node.fluid_code.layers[ - -1].op != "transpose" or node.fluid_code.layers[ - -1].param_attr["perm"] != [0, 2, 3, 1]: - continue - can_be_removed = True - output_names = node.outputs - for out_name in output_names: - out_node = graph_copy.get_node(out_name) - if hasattr(out_node, "can_be_removed"): - if not out_node.can_be_removed: - can_be_removed = False - break - if len(out_node.fluid_code.layers) < 2: - can_be_removed = False - break - if out_node.layer_type in can_be_optimized_ops: - if out_node.fluid_code.layers[ - 0].op != "transpose" or out_node.fluid_code.layers[ - 0].param_attr["perm"] != [0, 3, 1, 2]: - can_be_removed = False - break - elif out_node.layer_type in elementwise_ops: - if out_node.fluid_code.layers[ - 0].op != "transpose" and out_node.fluid_code.layers[ - 1].op != "transpose": - can_be_removed = False - break - if out_node.fluid_code.layers[ - 0].op == "expand" or out_node.fluid_code.layers[ - 1].op == "expand": - can_be_removed = False - break - if out_node.fluid_code.layers[0].op == "transpose": - if out_node.fluid_code.layers[0].param_attr[ - "perm"] != [0, 3, 1, 2]: - can_be_removed = False - break - if out_node.fluid_code.layers[1].op == "transpose": - if out_node.fluid_code.layers[1].param_attr[ - "perm"] != [0, 3, 1, 2]: - can_be_removed = False - break - elif out_node.layer_type not in elementwise_ops and out_node.layer_type not in can_be_optimized_ops: - can_be_removed = False - break - - if can_be_removed: - true_node = self.graph.get_node(node_name) - if len(true_node.fluid_code.layers) < 2: - continue - true_node.fluid_code.layers[ - -2].output = true_node.fluid_code.layers[-1].output - del true_node.fluid_code.layers[-1] - for out_name in output_names: - out_node = self.graph.get_node(out_name) - if out_node.layer_type in can_be_optimized_ops: - out_node.fluid_code.layers[ - 1].inputs = out_node.fluid_code.layers[0].inputs - del out_node.fluid_code.layers[0] - elif out_node.layer_type in elementwise_ops: - if out_node.inputs[0] in node.layer_name: - if out_node.fluid_code.layers[ - 1].op == 'transpose': - if out_node.fluid_code.layers[ - 2].op == 'transpose': - out_node.fluid_code.layers[3].inputs[ - 'x'] = out_node.fluid_code.layers[ - 0].inputs - else: - out_node.fluid_code.layers[2].inputs[ - 'x'] = out_node.fluid_code.layers[ - 0].inputs - del out_node.fluid_code.layers[0] - else: - out_node.fluid_code.layers[1].inputs[ - 'x'] = out_node.fluid_code.layers[ - 0].inputs - del out_node.fluid_code.layers[0] - elif out_node.inputs[1] in node.layer_name: - if out_node.fluid_code.layers[ - 1].op == 'transpose': - out_node.fluid_code.layers[2].inputs[ - 'y'] = out_node.fluid_code.layers[ - 1].inputs - del out_node.fluid_code.layers[1] - else: - out_node.fluid_code.layers[1].inputs[ - 'y'] = out_node.fluid_code.layers[ - 0].inputs - del out_node.fluid_code.layers[0] - - graph_copy = cp.deepcopy(self.graph) - for node_name in self.graph.topo_sort: - node = graph_copy.get_node(node_name) - if node is None: - continue - if node.layer_type in elementwise_ops: - can_be_removed = True - if len(node.fluid_code.layers) < 3: - continue - - numTranspose = 0 - numNotTranspose = 0 - - for i in range(len(node.fluid_code.layers)): - if node.fluid_code.layers[i].op == 'transpose': - numTranspose += 1 - elif node.fluid_code.layers[i].op != 'expand': - numNotTranspose += 1 - if numTranspose > numNotTranspose: - if node.fluid_code.layers[0].op == 'expand': - if node.fluid_code.layers[ - 1].op != 'transpose' or node.fluid_code.layers[ - 2].op != 'transpose': - continue - else: - true_node = self.graph.get_node(node_name) - true_node.fluid_code.layers[3].inputs[ - 'x'] = true_node.fluid_code.layers[1].inputs - true_node.fluid_code.layers[3].inputs[ - 'y'] = true_node.fluid_code.layers[2].inputs - - l = Layer() - l.op = 'transpose' - l.inputs = true_node.fluid_code.layers[3].output - l.param_attr = {'perm': [0, 3, 1, 2]} - if isinstance(l.inputs, six.string_types): - l.output = l.inputs - else: - l.output = l.inputs.layer_name - true_node.fluid_code.layers.append(l) - del true_node.fluid_code.layers[1] - del true_node.fluid_code.layers[1] - else: - if node.fluid_code.layers[ - 0].op != 'transpose' or node.fluid_code.layers[ - 1].op != 'transpose': - continue - else: - true_node = self.graph.get_node(node_name) - true_node.fluid_code.layers[2].inputs[ - 'x'] = true_node.fluid_code.layers[0].inputs - true_node.fluid_code.layers[2].inputs[ - 'y'] = true_node.fluid_code.layers[1].inputs - - l = Layer() - l.op = 'transpose' - l.inputs = true_node.fluid_code.layers[2].output - l.param_attr = {'perm': [0, 3, 1, 2]} - l.output = l.inputs.layer_name - true_node.fluid_code.layers.append(l) - del true_node.fluid_code.layers[0] - del true_node.fluid_code.layers[0] - - def make_nchw_input_output(self): - for i, name in enumerate(self.graph.input_nodes): - node = self.graph.get_node(name) - if len(node.out_shapes[0]) == 4 and node.tf_data_format == "NHWC": - shape = node.fluid_code.layers[0].param_attr["shape"] - shape = [shape[j] for j in [0, 3, 1, 2]] - node.fluid_code.layers[0].param_attr["shape"] = shape - node.fluid_code.layers[0].output = "nhwc_" + name - attr = {"perm": [0, 2, 3, 1]} - node.fluid_code.add_layer( - "transpose", - inputs="nhwc_" + name, - output=node, - param_attr=attr) - self.graph.input_nodes[i] = "nhwc_" + name - for i, name in enumerate(self.graph.output_nodes): - node = self.graph.get_node(name) - if node.layer_type != "transpose": - if node.fluid_code.layers[-1].op == "transpose": - node.fluid_code.layers[-2].output = name - del node.fluid_code.layers[-1] - - def optimize_sub_graph(self): - self.merge_batch_norm() - self.merge_prelu() - self.merge_scale() - self.merge_affine_channel() - - def merge_batch_norm(self): - for i, name in enumerate(self.graph.topo_sort): - node = self.graph.get_node(name) - if node is None: - continue - is_batch_norm = True - if node.layer_type == "Add": - in_nodes0 = [ - self.graph.get_node(in_name) for in_name in node.inputs - ] - if in_nodes0[0].layer_type != "Mul" or in_nodes0[ - 1].layer_type != "Sub": - is_batch_norm = False - continue - - if exist_act(in_nodes0[0]) or exist_act(in_nodes0[1]): - is_batch_norm = False - continue - - in_nodes1 = [ - self.graph.get_node(in_name) - for in_name in in_nodes0[0].inputs - ] - in_nodes2 = [ - self.graph.get_node(in_name) - for in_name in in_nodes0[1].inputs - ] - if len(in_nodes1[0].out_shapes[0]) != 4: - is_batch_norm = False - continue - if in_nodes1[1].layer_type != "Mul": - is_batch_norm = False - continue - if exist_act(in_nodes1[1]): - is_batch_norm = False - continue - - if in_nodes2[0].layer_type != "Const" or in_nodes2[ - 1].layer_type != "Mul": - is_batch_norm = False - continue - if exist_act(in_nodes2[1]): - is_batch_norm = False - continue - - in_nodes3 = [ - self.graph.get_node(in_name) - for in_name in in_nodes1[1].inputs - ] - if in_nodes3[0].layer_type != "Rsqrt" or in_nodes3[ - 1].layer_type != "Const": - is_batch_norm = False - continue - - in_nodes4 = [ - self.graph.get_node(in_name) - for in_name in in_nodes2[1].inputs - ] - if in_nodes4[0].layer_type != "Const" or in_nodes4[ - 1].layer_name != in_nodes1[1].layer_name: - is_batch_norm = False - continue - - in_nodes5 = self.graph.get_node(in_nodes3[0].inputs[0]) - if in_nodes5.layer_type != "Add": - is_batch_norm = False - continue - if exist_act(in_nodes5): - is_batch_norm = False - continue - - in_nodes6 = [ - self.graph.get_node(in_name) for in_name in in_nodes5.inputs - ] - if in_nodes6[0].layer_type != "Const" or in_nodes6[ - 1].layer_type != "Const": - is_batch_norm = False - continue - - if len(in_nodes0[0].outputs) != 1: - is_batch_norm = False - continue - if len(in_nodes0[1].outputs) != 1: - is_batch_norm = False - continue - if len(in_nodes1[1].outputs) != 2: - is_batch_norm = False - continue - if len(in_nodes2[0].outputs) != 1: - is_batch_norm = False - continue - if len(in_nodes2[1].outputs) != 1: - is_batch_norm = False - continue - if len(in_nodes3[0].outputs) != 1: - is_batch_norm = False - continue - if len(in_nodes3[1].outputs) != 1: - is_batch_norm = False - continue - if len(in_nodes4[0].outputs) != 1: - is_batch_norm = False - continue - if len(in_nodes5.outputs) != 1: - is_batch_norm = False - continue - if len(in_nodes6[0].outputs) != 1: - is_batch_norm = False - continue - if len(in_nodes6[1].outputs) != 1: - is_batch_norm = False - continue - - conv_shape = in_nodes1[0].out_shapes[0] - if conv_shape[3] < 0: - is_batch_norm = False - continue - - # moving_variance - if in_nodes6[0].value.size != conv_shape[3]: - is_batch_norm = False - continue - - # epsilon - if in_nodes6[1].value.size != 1: - is_batch_norm = False - continue - - # gamma - if in_nodes3[1].value.size != conv_shape[3]: - is_batch_norm = False - continue - - # moving_mean - if in_nodes4[0].value.size != conv_shape[3]: - is_batch_norm = False - continue - - # beta - if in_nodes2[0].value.size != conv_shape[3]: - is_batch_norm = False - continue - - if is_batch_norm: - index = in_nodes1[0].outputs.index(in_nodes0[0].layer_name) - in_nodes1[0].outputs[index] = node.layer_name - node.layer_type = "FusedBatchNorm" - node.inputs = [in_nodes1[0].layer_name] - act = node.fluid_code.layers[-1].param_attr.get("act", None) - node.fluid_code.clear() - attr = { - "epsilon": in_nodes6[1].value, - "param_attr": string(in_nodes3[1].layer_name), - "bias_attr": string(in_nodes2[0].layer_name), - "moving_mean_name": string(in_nodes4[0].layer_name), - "moving_variance_name": string(in_nodes6[0].layer_name), - "is_test": True, - "act": act - } - - node.fluid_code.add_layer( - "batch_norm", - inputs=in_nodes1[0].fluid_code.layers[-1].output, - output=node, - param_attr=attr) - - del self.graph.node_map[in_nodes0[0].layer_name] - del self.graph.node_map[in_nodes0[1].layer_name] - del self.graph.node_map[in_nodes1[1].layer_name] - del self.graph.node_map[in_nodes2[1].layer_name] - del self.graph.node_map[in_nodes3[0].layer_name] - del self.graph.node_map[in_nodes4[0].layer_name] - del self.graph.node_map[in_nodes5.layer_name] - - def merge_prelu(self): - for i, name in enumerate(self.graph.topo_sort): - node = self.graph.get_node(name) - if node is None: - continue - is_prelu = True - if node.layer_type == "Add": - if exist_act(node): - is_prelu = False - continue - in_nodes0 = [ - self.graph.get_node(in_name) for in_name in node.inputs - ] - if in_nodes0[0].layer_type != "Relu" or in_nodes0[ - 1].layer_type != "Mul": - is_prelu = False - continue - if exist_act(in_nodes0[1]): - is_prelu = False - continue - - if len(in_nodes0[0].outputs) != 1 or len(in_nodes0[1] - .outputs) != 1: - is_prelu = False - continue - - in_nodes1 = self.graph.get_node(in_nodes0[0].inputs[0]) - in_nodes2 = [ - self.graph.get_node(in_name) - for in_name in in_nodes0[1].inputs - ] - if in_nodes2[1].layer_type != "Const" or numpy.fabs(in_nodes2[ - 1].value - 0.5) > 1e-06: - is_prelu = False - continue - if in_nodes2[0].layer_type != "Mul": - is_prelu = False - continue - if exist_act(in_nodes2[0]): - is_prelu = False - continue - if len(in_nodes2[1].outputs) != 1 or len(in_nodes2[0] - .outputs) != 1: - is_prelu = False - continue - - in_nodes3 = [ - self.graph.get_node(in_name) - for in_name in in_nodes2[0].inputs - ] - if in_nodes3[0].layer_type != "Const" or in_nodes3[ - 1].layer_type != "Sub": - is_prelu = False - continue - if exist_act(in_nodes3[1]): - is_prelu = False - continue - if len(in_nodes3[0].outputs) != 1 or len(in_nodes3[1] - .outputs) != 1: - is_prelu = False - continue - - in_nodes4 = [ - self.graph.get_node(in_name) - for in_name in in_nodes3[1].inputs - ] - if in_nodes4[0].layer_name != in_nodes1.layer_name or in_nodes4[ - 1].layer_type != "Abs": - is_prelu = False - continue - if len(in_nodes4[1].outputs) != 1: - is_prelu = False - continue - - in_nodes5 = self.graph.get_node(in_nodes4[1].inputs[0]) - if in_nodes5.layer_name != in_nodes1.layer_name: - is_prelu = False - continue - - if len(in_nodes0[0].outputs) != 1: - is_prelu = false - continue - if len(in_nodes0[1].outputs) != 1: - is_prelu = False - continue - if len(in_nodes1.outputs) < 3: - is_prelu = False - continue - if len(in_nodes2[0].outputs) != 1: - is_prelu = false - continue - if len(in_nodes2[1].outputs) != 1: - is_prelu = False - continue - if len(in_nodes3[0].outputs) != 1: - is_prelu = False - continue - if len(in_nodes3[1].outputs) != 1: - is_prelu = false - continue - if len(in_nodes4[1].outputs) != 1: - is_prelu = False - continue - - mode = None - in_shape = in_nodes1.out_shapes[0] - if in_shape == list(in_nodes3[0].value.shape): - mode = "element" - elif len(in_nodes3[0].value.shape) == 0: - mode = "all" - elif len(in_nodes3[0].value.shape) == 1 and in_nodes3[ - 0].value.shape[0] == 1: - mode = "all" - elif len(in_shape) == 4 and len(in_nodes3[ - 0].value.shape) == 1 and in_nodes3[0].value.shape[ - 0] == in_shape[-1]: - mode = "channel" - weight = self.op_mapper.weights[in_nodes3[0].layer_name] - weight = numpy.expand_dims(weight, 0) - weight = numpy.expand_dims(weight, 2) - weight = numpy.expand_dims(weight, 3) - self.op_mapper.weights[in_nodes3[0].layer_name] = weight - # fix bug in Paddle1.8.3 and may change in next version. - # self.op_mapper.weights[in_nodes3[0].layer_name + - # '_1'] = weight.reshape(1, -1) - in_nodes3[0].fluid_code.layers[0].param_attr["shape"] = [ - 1, in_shape[-1], 1, 1 - ] - else: - is_prelu = False - continue - - if is_prelu: - index = in_nodes1.outputs.index(in_nodes0[0].layer_name) - del in_nodes1.outputs[index] - index = in_nodes1.outputs.index(in_nodes3[1].layer_name) - del in_nodes1.outputs[index] - index = in_nodes1.outputs.index(in_nodes4[1].layer_name) - del in_nodes1.outputs[index] - in_nodes1.outputs.append(node.layer_name) - - node.layer_type = "Prelu" - node.inputs = [in_nodes1.layer_name] - act = node.fluid_code.layers[-1].param_attr.get("act", None) - node.fluid_code.clear() - attr = { - "mode": string(mode), - "param_attr": string(in_nodes3[0].layer_name) - } - - node.fluid_code.add_layer( - "prelu", - inputs=in_nodes1.fluid_code.layers[-1].output, - output=node, - param_attr=attr) - del self.graph.node_map[in_nodes0[0].layer_name] - del self.graph.node_map[in_nodes0[1].layer_name] - del self.graph.node_map[in_nodes2[0].layer_name] - del self.graph.node_map[in_nodes2[1].layer_name] - del self.graph.node_map[in_nodes3[1].layer_name] - del self.graph.node_map[in_nodes4[1].layer_name] - - def merge_scale(self): - for i, name in enumerate(self.graph.topo_sort): - node = self.graph.get_node(name) - if node is None: - continue - is_scale = True - if node.layer_type == "Sub": - in_nodes0 = [ - self.graph.get_node(in_name) for in_name in node.inputs - ] - if in_nodes0[0].layer_type != "Mul" or in_nodes0[ - 1].layer_type != "Const" or in_nodes0[ - 1].value.size != 1: - is_scale = False - continue - if exist_act(in_nodes0[0]): - is_scale = False - continue - if len(in_nodes0[0].outputs) != 1 or len(in_nodes0[1] - .outputs) != 1: - is_scale = False - continue - - in_nodes1 = [ - self.graph.get_node(in_name) - for in_name in in_nodes0[0].inputs - ] - if in_nodes1[0].layer_type != "Const" or in_nodes1[ - 1].layer_type != "RealDiv" or in_nodes1[ - 0].value.size != 1: - is_scale = False - continue - if exist_act(in_nodes1[1]): - is_scale = False - continue - if len(in_nodes1[0].outputs) != 1 or len(in_nodes1[1] - .outputs) != 1: - is_scale = False - continue - - in_nodes2 = [ - self.graph.get_node(in_name) - for in_name in in_nodes1[1].inputs - ] - if in_nodes2[1].layer_type != "Const" or in_nodes2[ - 1].value.size != 1: - is_scale = False - continue - - if is_scale: - in_node = self.graph.get_node(in_nodes1[1].inputs[0]) - index = in_node.outputs.index(in_nodes1[1].layer_name) - in_node.outputs[index] = node.layer_name - node.layer_type = "Scale" - node.inputs = [in_node.layer_name] - scale = 1.0 / in_nodes2[1].value * in_nodes1[0].value - act = None - if node.fluid_code.layers[0].param_attr is not None: - act = node.fluid_code.layers[0].param_attr.get("act", - None) - node.fluid_code.clear() - - attr = { - "scale": scale, - "bias": in_nodes0[1].value, - "bias_after_scale": True, - "act": act - } - node.fluid_code.add_layer( - "scale", inputs=in_node, output=node, param_attr=attr) - - del self.graph.node_map[in_nodes0[0].layer_name] - del self.graph.node_map[in_nodes0[1].layer_name] - del self.graph.node_map[in_nodes1[0].layer_name] - del self.graph.node_map[in_nodes1[1].layer_name] - del self.graph.node_map[in_nodes2[1].layer_name] - - def merge_affine_channel(self): - for i, name in enumerate(self.graph.topo_sort): - node = self.graph.get_node(name) - if node is None: - continue - is_affine_channel = True - if node.layer_type == "RealDiv": - in_nodes0 = [ - self.graph.get_node(in_name) for in_name in node.inputs - ] - bias_add = True - if (in_nodes0[0].layer_type != "Sub" and in_nodes0[0].layer_type - != "Add") or in_nodes0[1].layer_type != "Const" or len( - in_nodes0[1].value.shape) != 3: - is_affine_channel = False - continue - if in_nodes0[0].layer_type == "Sub": - bias_add = False - if exist_act(in_nodes0[0]): - is_affine_channel = False - continue - if len(in_nodes0[0].outputs) != 1 or len(in_nodes0[1] - .outputs) != 1: - is_affine_channel = False - continue - in_nodes1 = [ - self.graph.get_node(in_name) - for in_name in in_nodes0[0].inputs - ] - if len(in_nodes1[0].out_shapes[0]) != 4 or in_nodes1[ - 1].layer_type != "Const" or len(in_nodes1[1] - .value.shape) != 3: - is_affine_channel = False - continue - if len(in_nodes1[1].outputs) != 1: - is_affine_channel = False - continue - channel = in_nodes1[0].out_shapes[0][-1] - if channel < 0 or channel != in_nodes0[ - 1].value.size or channel != in_nodes1[1].value.size: - is_affine_channel = False - continue - if in_nodes0[1].out_shapes[0][-1] != in_nodes0[ - 1].value.size or in_nodes1[1].out_shapes[0][ - -1] != in_nodes1[1].value.size: - is_affine_channel = False - continue - if is_affine_channel: - in_node = in_nodes1[0] - index = in_node.outputs.index(in_nodes0[0].layer_name) - in_node.outputs[index] = node.layer_name - node.layer_type = "AffineChannel" - node.inputs = [in_node.layer_name] - scale = 1.0 / in_nodes0[1].value.flatten() - bias = in_nodes1[1].value.flatten() / in_nodes0[ - 1].value.flatten() - if not bias_add: - bias *= -1.0 - self.op_mapper.weights[node.layer_name + "_scale"] = scale - self.op_mapper.weights[node.layer_name + "_bias"] = bias - - act = None - if node.fluid_code.layers[0].param_attr is not None: - act = node.fluid_code.layers[0].param_attr.get("act", - None) - node.fluid_code.clear() - - attr = { - "dtype": string(scale.dtype), - "shape": [channel], - "name": string(node.layer_name + "_scale") - } - node.fluid_code.add_layer( - "create_parameter", - inputs=None, - output=node.layer_name + "_scale", - param_attr=attr) - attr = { - "dtype": string(scale.dtype), - "shape": [channel], - "name": string(node.layer_name + "_bias") - } - node.fluid_code.add_layer( - "create_parameter", - inputs=None, - output=node.layer_name + "_bias", - param_attr=attr) - inputs = { - "x": in_node, - "scale": node.layer_name + "_scale", - "bias": node.layer_name + "_bias" - } - attr = {"act": act} - node.fluid_code.add_layer( - "affine_channel", - inputs=inputs, - output=node, - param_attr=attr) - - del self.graph.node_map[in_nodes0[0].layer_name] - del self.graph.node_map[in_nodes0[1].layer_name] - del self.graph.node_map[in_nodes1[1].layer_name] -- GitLab