Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
23fa4be9
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
23fa4be9
编写于
10月 10, 2022
作者:
J
Jason
提交者:
GitHub
10月 10, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #903 from wjj19950828/Add_onnx_tests
Fixed ToPILImage && rm SymbolicShapeInference
上级
270c5dc0
0680f324
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
28 addition
and
24 deletion
+28
-24
docs/pytorch_project_convertor/API_docs/vision/torchvision.transforms.ToPILImage.md
...rtor/API_docs/vision/torchvision.transforms.ToPILImage.md
+17
-16
x2paddle/decoder/onnx_decoder.py
x2paddle/decoder/onnx_decoder.py
+6
-5
x2paddle/decoder/onnx_shape_inference.py
x2paddle/decoder/onnx_shape_inference.py
+5
-3
未找到文件。
docs/pytorch_project_convertor/API_docs/vision/torchvision.transforms.ToPILImage.md
浏览文件 @
23fa4be9
...
...
@@ -18,7 +18,8 @@ from paddle.vision.transforms import functional as F
class
ToPILImage
(
BaseTransform
):
def
__init__
(
self
,
mode
=
None
,
keys
=
None
):
super
(
ToTensor
,
self
).
__init__
(
keys
)
super
(
ToPILImage
,
self
).
__init__
(
keys
)
self
.
mode
=
mode
def
_apply_image
(
self
,
pic
):
"""
...
...
@@ -53,7 +54,7 @@ class ToPILImage(BaseTransform):
npimg
=
pic
if
isinstance
(
pic
,
paddle
.
Tensor
)
and
"float"
in
str
(
pic
.
numpy
(
).
dtype
)
and
mode
!=
'F'
:
).
dtype
)
and
self
.
mode
!=
'F'
:
pic
=
pic
.
mul
(
255
).
byte
()
if
isinstance
(
pic
,
paddle
.
Tensor
):
npimg
=
np
.
transpose
(
pic
.
numpy
(),
(
1
,
2
,
0
))
...
...
@@ -74,40 +75,40 @@ class ToPILImage(BaseTransform):
expected_mode
=
'I'
elif
npimg
.
dtype
==
np
.
float32
:
expected_mode
=
'F'
if
mode
is
not
None
and
mode
!=
expected_mode
:
if
self
.
mode
is
not
None
and
self
.
mode
!=
expected_mode
:
raise
ValueError
(
"Incorrect mode ({}) supplied for input type {}. Should be {}"
.
format
(
mode
,
np
.
dtype
,
expected_mode
))
mode
=
expected_mode
.
format
(
self
.
mode
,
np
.
dtype
,
expected_mode
))
self
.
mode
=
expected_mode
elif
npimg
.
shape
[
2
]
==
2
:
permitted_2_channel_modes
=
[
'LA'
]
if
mode
is
not
None
and
mode
not
in
permitted_2_channel_modes
:
if
self
.
mode
is
not
None
and
self
.
mode
not
in
permitted_2_channel_modes
:
raise
ValueError
(
"Only modes {} are supported for 2D inputs"
.
format
(
permitted_2_channel_modes
))
if
mode
is
None
and
npimg
.
dtype
==
np
.
uint8
:
mode
=
'LA'
if
self
.
mode
is
None
and
npimg
.
dtype
==
np
.
uint8
:
self
.
mode
=
'LA'
elif
npimg
.
shape
[
2
]
==
4
:
permitted_4_channel_modes
=
[
'RGBA'
,
'CMYK'
,
'RGBX'
]
if
mode
is
not
None
and
mode
not
in
permitted_4_channel_modes
:
if
self
.
mode
is
not
None
and
self
.
mode
not
in
permitted_4_channel_modes
:
raise
ValueError
(
"Only modes {} are supported for 4D inputs"
.
format
(
permitted_4_channel_modes
))
if
mode
is
None
and
npimg
.
dtype
==
np
.
uint8
:
mode
=
'RGBA'
if
self
.
mode
is
None
and
npimg
.
dtype
==
np
.
uint8
:
self
.
mode
=
'RGBA'
else
:
permitted_3_channel_modes
=
[
'RGB'
,
'YCbCr'
,
'HSV'
]
if
mode
is
not
None
and
mode
not
in
permitted_3_channel_modes
:
if
self
.
mode
is
not
None
and
self
.
mode
not
in
permitted_3_channel_modes
:
raise
ValueError
(
"Only modes {} are supported for 3D inputs"
.
format
(
permitted_3_channel_modes
))
if
mode
is
None
and
npimg
.
dtype
==
np
.
uint8
:
mode
=
'RGB'
if
self
.
mode
is
None
and
npimg
.
dtype
==
np
.
uint8
:
self
.
mode
=
'RGB'
if
mode
is
None
:
if
self
.
mode
is
None
:
raise
TypeError
(
'Input type {} is not supported'
.
format
(
npimg
.
dtype
))
return
Image
.
fromarray
(
npimg
,
mode
=
mode
)
return
Image
.
fromarray
(
npimg
,
mode
=
self
.
mode
)
```
x2paddle/decoder/onnx_decoder.py
浏览文件 @
23fa4be9
...
...
@@ -184,14 +184,15 @@ class ONNXGraph(Graph):
self
.
value_infos
=
{}
self
.
graph
=
onnx_model
.
graph
self
.
get_place_holder_nodes
()
print
(
"shape inferencing ..."
)
print
(
"Shape inferencing ..."
)
try
:
self
.
graph
=
SymbolicShapeInference
.
infer_shapes
(
onnx_model
,
fixed_input_shape
=
self
.
fixed_input_shape
)
if
self
.
graph
is
None
:
except
:
print
(
'[WARNING] Shape inference by ONNX offical interface.'
)
onnx_model
=
shape_inference
.
infer_shapes
(
onnx_model
)
self
.
graph
=
onnx_model
.
graph
print
(
"
s
hape inferenced."
)
print
(
"
S
hape inferenced."
)
self
.
build
()
self
.
collect_value_infos
()
self
.
allocate_shapes
()
...
...
x2paddle/decoder/onnx_shape_inference.py
浏览文件 @
23fa4be9
...
...
@@ -265,7 +265,7 @@ class SymbolicShapeInference:
if
pending_nodes
and
self
.
verbose_
>
0
:
print
(
'SymbolicShapeInference: orphaned nodes discarded: '
)
print
(
*
[
n
.
op_type
+
': '
+
n
.
output
[
0
]
for
n
in
pending_nodes
],
*
[
n
.
op_type
+
': '
+
n
.
output
[
0
]
for
n
in
pending_nodes
],
sep
=
'
\n
'
)
if
input_shapes
is
not
None
:
...
...
@@ -1588,7 +1588,9 @@ class SymbolicShapeInference:
assert
version
.
parse
(
onnx
.
__version__
)
>=
version
.
parse
(
"1.5.0"
)
onnx_opset
=
get_opset
(
in_mp
)
if
not
onnx_opset
or
onnx_opset
<
7
:
print
(
'[WARNING] Symbolic shape inference only support models of onnx opset 7 and above.'
)
print
(
'[WARNING] Symbolic shape inference only support models of onnx opset 7 and above.'
)
return
symbolic_shape_inference
=
SymbolicShapeInference
(
int_max
,
auto_merge
,
guess_output_rank
,
verbose
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录