未验证 提交 22c18dd4 编写于 作者: J Jason 提交者: GitHub

Merge pull request #309 from Channingss/paddle_onnx

Paddle2ONNX support export ONNX opset9,10,11
......@@ -61,6 +61,7 @@ x2paddle --framework=paddle2onnx --model=paddle_infer_model_dir --save_dir=onnx_
|--without_data_format_optimization | **[可选]** For TensorFlow, 当指定该参数时,关闭NHWC->NCHW的优化,见[文档Q2](FAQ.md) |
|--define_input_shape | **[可选]** For TensorFlow, 当指定该参数时,强制用户输入每个Placeholder的shape,见[文档Q2](FAQ.md) |
|--params_merge | **[可选]** 当指定该参数时,转换完成后,inference_model中的所有模型参数将合并保存为一个文件__params__ |
|--onnx_opset | **[可选]** 当framework为paddle2onnx时,该参数可设置转换为ONNX的OpSet版本,目前支持9、10、11,默认为10 |
......
......@@ -75,6 +75,12 @@ def arg_parser():
action="store_true",
default=False,
help="define input shape for tf model")
parser.add_argument(
"--onnx_opset",
"-oo",
type=int,
default=10,
help="when paddle2onnx set onnx opset version to export")
parser.add_argument(
"--params_merge",
"-pm",
......@@ -172,7 +178,7 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
return
print("Now translating model from onnx to paddle.")
from x2paddle.op_mapper.onnx_op_mapper import ONNXOpMapper
from x2paddle.op_mapper.onnx2paddle.onnx_op_mapper import ONNXOpMapper
from x2paddle.decoder.onnx_decoder import ONNXDecoder
from x2paddle.optimizer.onnx_optimizer import ONNXOptimizer
model = ONNXDecoder(model_path)
......@@ -186,12 +192,12 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
print("Paddle model and code generated.")
def paddle2onnx(model_path, save_dir):
def paddle2onnx(model_path, save_dir, opset_number):
from x2paddle.decoder.paddle_decoder import PaddleDecoder
from x2paddle.op_mapper.paddle_op_mapper import PaddleOpMapper
from x2paddle.op_mapper.paddle2onnx.paddle_op_mapper import PaddleOpMapper
model = PaddleDecoder(model_path, '__model__', '__params__')
mapper = PaddleOpMapper()
mapper.convert(model.program, save_dir)
mapper.convert(model.program, save_dir, opset_number=opset_number)
def main():
......@@ -258,7 +264,7 @@ def main():
elif args.framework == "paddle2onnx":
assert args.model is not None, "--model should be defined while translating paddle model to onnx"
paddle2onnx(args.model, args.save_dir)
paddle2onnx(args.model, args.save_dir, args.onnx_opset)
else:
raise Exception(
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.op_mapper.onnx_opsets.opset9 import OpSet9
from x2paddle.op_mapper.onnx2paddle.opsets.opset9 import OpSet9
from x2paddle.core.op_mapper import OpMapper
from x2paddle.op_mapper.onnx_opsets.custom_layer import *
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
import numpy as np
import sympy
def handle_negative_axis(axis, rank):
return axis if axis >= 0 else axis + rank
class ShapeInference():
def __init__(self, decoder, auto_merge=False):
self.decoder = decoder
self.fluid_data = {}
self.suggested_merge_ = {}
self.symbolic_dims_ = {}
self.auto_merge_ = auto_merge
self.dispatcher = {
# activation ops
'Relu': self.activation_ops,
'LeakyRelu': self.activation_ops,
'Elu': self.activation_ops,
'ThresholdRelu': self.activation_ops,
'Prelu': self.activation_ops,
'Tanh': self.activation_ops,
'Sigmoid': self.activation_ops,
'Softplus': self.activation_ops,
'Softsign': self.activation_ops,
'HardSigmoid': self.activation_ops,
'Shrink': self.activation_ops,
'Exp': self.activation_ops,
'Clip': self.activation_ops,
# elementwise ops
'Add': self.elementwise_ops,
'Div': self.elementwise_ops,
'Sub': self.elementwise_ops,
'Mul': self.elementwise_ops,
'Pow': self.elementwise_ops,
'Sqrt': self.elementwise_ops,
'Softmax': self.elementwise_ops,
'Constant': self.constant,
'AveragePool': self.pool,
'MaxPool': self.pool,
'Cast': self.cast,
'Conv': self.conv,
'BatchNormalization': self.batch_norm,
'Pad': self.pad,
'Gather': self.gather,
'Split': self.split,
'Transpose': self.transpose,
'Reshape': self.reshape,
'MatMul': self.matmul,
'Squeeze': self.squeeze,
'Unsqueeze': self.unsqueeze,
'Concat': self.concat,
}
self.run_ = True
self.suggested_merge_ = {}
self.symbolic_dims_ = {}
self.input_symbols_ = {}
def __call__(self):
"""
run shape inference
"""
nodes = self.decoder.model.graph.node
node_map = self.decoder.onnx_graph.node_map
value_infos = self.decoder.onnx_graph.value_infos
onnx_model = self.decoder.model
#self._apply_suggested_merge(graph_input_only=True)
for layer in nodes:
node = node_map[layer.name]
for opt in layer.output:
if opt in value_infos:
value_info = value_infos[opt]
#if len(value_info['shape']) == 0 or value_info[
# 'dtype'] is None or 0 in value_info['shape']:
# #TODO add node shape inference
# if self.is_support_inference(node):
# op_infer = self.dispatcher[node.layer_type]
# #shapes = op_infer(node)
# print(node.layer_name + ': ')
# print(node.layer_type + ': ')
#else:
# print(node.layer_name)
node.dtype = value_info['dtype']
node.out_shapes.append(value_info['shape'])
else:
#TODO add node shape inference
if self.is_support_inference(node):
op_infer = self.dispatcher[node.layer_type]
#shapes = op_infer(node)
#print(node.layer_name + ': ')
#print(node.layer_type + ': ')
def get_input_node(self, node, idx, copy=False):
return self.decoder.onnx_graph.get_input_node(node, idx=idx, copy=copy)
def get_fluid_data(self, node, return_ndarray=False):
data = None
if node.layer_name in self.fluid_data:
data = self.fluid_data[node.layer_name]
elif isinstance(node, ONNXGraphDataNode):
data = node.weight
elif isinstance(node, ONNXGraphNode):
data = node.value
if return_ndarray:
return data
else:
return data.tolist()
def is_support_inference(self, node):
if node.layer_type not in self.dispatcher:
print(
"[WARNNING] Shape inference not support Node[{}](op type: {}) ".
format(node.layer_name, node.layer_type))
return False
return True
def _try_get_value(self, node, idx):
if idx >= len(node.inputs):
return None
return self.get_input_node(node, idx=idx, return_ndarray=True)
def _get_int_values(self, node, broadcast=False):
values = [self._try_get_value(node, i) for i in range(len(node.input))]
if all([v is not None for v in values]):
# some shape compute is in floating point, cast to int for sympy
for i, v in enumerate(values):
if type(v) != np.ndarray:
continue
if len(v.shape) > 1:
new_v = None # ignore value for rank > 1
elif len(v.shape) == 0:
new_v = int(np.asscalar(v))
else:
assert len(v.shape) == 1
new_v = [int(vv) for vv in v]
values[i] = new_v
values_len = [len(v) if type(v) == list else 0 for v in values]
max_len = max(values_len)
if max_len >= 1 and broadcast:
# broadcast
for i, v in enumerate(values):
if v is None:
continue # don't broadcast if value is unknown
if type(v) == list:
if len(v) < max_len:
values[i] = v * max_len
else:
assert len(v) == max_len
else:
values[i] = [v] * max_len
return values
def _compute_on_sympy_data(self, node, op_func):
assert len(node.outputs) == 1
values = self._get_int_values(node, broadcast=True)
if all([v is not None for v in values]):
is_list = [type(v) == list for v in values]
as_list = any(is_list)
if as_list:
data = [op_func(vs) for vs in zip(*values)]
self.fluid_data[node.layer_name] = data
node.out_shapes.append(data.shape)
print('*' * 10, data)
else:
data = op_func(values)
self.fluid_data[node.layer_name] = data
print('*' * 10, data)
node.out_shapes.append(data.shape)
def _pass_on_sympy_data(self, node):
assert len(node.inputs) == 1 or node.layer_type == 'Reshape'
self._compute_on_sympy_data(node, lambda x: x[0])
def _get_sympy_shape(self, node, idx):
sympy_shape = []
for d in self._get_shape(node, idx):
if type(d) == str:
sympy_shape.append(self.symbolic_dims_[d] if d in
self.symbolic_dims_ else sympy.Symbol(
d, integer=True))
else:
assert None != d
sympy_shape.append(d)
return sympy_shape
def _check_merged_dims(self, dims, allow_broadcast=True):
if allow_broadcast:
dims = [d for d in dims if not (is_literal(d) and int(d) <= 1)]
if not all([d == dims[0] for d in dims]):
self._add_suggested_merge(dims, apply=True)
def check_specific_shape(self, input_node, output_node, shape):
if -1 in input_node.out_shapes[0]:
assert "Shape inference failed, when calculate output_node[{}]'s \
shape need specific shape, but got input_node[{}]'s shape: {}".format(
output_node.layer_name, input_node.layer_name,
input_node.out_shapes[0])
def _add_suggested_merge(self, symbols, apply=False):
assert all([(type(s) == str and s in self.symbolic_dims_) or
is_literal(s) for s in symbols])
symbols = set(symbols)
for k, v in self.suggested_merge_.items():
if k in symbols:
symbols.remove(k)
symbols.add(v)
map_to = None
# if there is literal, map to it first
for s in symbols:
if is_literal(s):
map_to = s
break
# when no literals, map to input symbolic dims, then existing symbolic dims
if map_to is None:
for s in symbols:
if s in self.input_symbols_:
map_to = s
break
if map_to is None:
for s in symbols:
if type(self.symbolic_dims_[s]) == sympy.Symbol:
map_to = s
break
# when nothing to map to, use the shorter one
if map_to is None:
if self.verbose_ > 0:
print(
'Potential unsafe merge between symbolic expressions: ({})'.
format(','.join(symbols)))
symbols_list = list(symbols)
lens = [len(s) for s in symbols_list]
map_to = symbols_list[lens.index(min(lens))]
symbols.remove(map_to)
def _merge_symbols(self, dims):
if not all([type(d) == str for d in dims]):
if self.auto_merge_:
assert len(
dims
) == 2 # only allow symbol->int merge in binary ops for now
is_int = [is_literal(d) for d in dims]
if sum(is_int) == 1:
int_dim = is_int.index(1)
if self.verbose_ > 0:
print('dim {} has been merged with value {}'.format(
dims[1 - int_dim], dims[int_dim]))
self._check_merged_dims(dims, allow_broadcast=False)
return dims[int_dim]
else:
if self.verbose_ > 0:
print('dim {} has been mergd with dim {}'.format(dims[
0], dims[1]))
return dims[0]
else:
return None
if all([d == dims[0] for d in dims]):
return dims[0]
merged = [
self.suggested_merge_[d] if d in self.suggested_merge_ else d
for d in dims
]
if all([d == merged[0] for d in merged]):
assert merged[0] in self.symbolic_dims_
return merged[0]
else:
return None
# broadcast from right to left, and merge symbolic dims if needed
def _broadcast_shapes(self, shape1, shape2):
new_shape = []
rank1 = len(shape1)
rank2 = len(shape2)
new_rank = max(rank1, rank2)
for i in range(new_rank):
dim1 = shape1[rank1 - 1 - i] if i < rank1 else 1
dim2 = shape2[rank2 - 1 - i] if i < rank2 else 1
if dim1 == 1 or dim1 == dim2:
new_dim = dim2
elif dim2 == 1:
new_dim = dim1
else:
new_dim = self._merge_symbols([dim1, dim2])
if not new_dim:
# warning about unsupported broadcast when not auto merge
# note that auto merge has the risk of incorrectly merge symbols while one of them being 1
# for example, 'a' = 1, 'b' = 5 at runtime is valid broadcasting, but with auto merge 'a' == 'b'
if self.auto_merge_:
self._add_suggested_merge([dim1, dim2], apply=True)
else:
print('unsupported broadcast between ' + str(dim1) + ' '
+ str(dim2))
new_shape = [new_dim] + new_shape
return new_shape
def _apply_suggested_merge(self, graph_input_only=False):
if not self.suggested_merge_:
return
for i in list(self.decoder.model.graph.input) + (
[] if graph_input_only else
list(self.decoder.model.graph.value_info)):
for d in i.type.tensor_type.shape.dim:
if d.dim_param in self.suggested_merge_:
v = self.suggested_merge_[d.dim_param]
if is_literal(v):
d.dim_value = int(v)
else:
d.dim_param = v
def _add_suggested_merge(self, symbols, apply=False):
assert all([(type(s) == str and s in self.symbolic_dims_) or
is_literal(s) for s in symbols])
symbols = set(symbols)
for k, v in self.suggested_merge_.items():
if k in symbols:
symbols.remove(k)
symbols.add(v)
map_to = None
# if there is literal, map to it first
for s in symbols:
if is_literal(s):
map_to = s
break
# when no literals, map to input symbolic dims, then existing symbolic dims
if map_to is None:
for s in symbols:
if s in self.input_symbols_:
map_to = s
break
if map_to is None:
for s in symbols:
if type(self.symbolic_dims_[s]) == sympy.Symbol:
map_to = s
break
# when nothing to map to, use the shorter one
if map_to is None:
if self.verbose_ > 0:
print(
'Potential unsafe merge between symbolic expressions: ({})'.
format(','.join(symbols)))
symbols_list = list(symbols)
lens = [len(s) for s in symbols_list]
map_to = symbols_list[lens.index(min(lens))]
symbols.remove(map_to)
for s in symbols:
if s == map_to:
continue
if is_literal(map_to) and is_literal(s):
assert int(map_to) == int(s)
self.suggested_merge_[s] = int(map_to) if is_literal(
map_to) else map_to
for k, v in self.suggested_merge_.items():
if v == s:
self.suggested_merge_[k] = map_to
if apply and self.auto_merge_:
self._apply_suggested_merge()
def pool_conv_ops(self, node):
fluid_shape = self.get_input_node(node, idx=0).out_shapes[0]
if len(node.inputs) > 1:
W_shape = self.get_input_node(node, idx=1).out_shapes[0]
rank = len(W_shape) - 2 # number of spatial axes
kernel_shape = W_shape[-rank:]
sympy_shape[1] = W_shape[0]
else:
W_shape = None
kernel_shape = node.get_attr('kernel_shape')
rank = len(kernel_shape)
dilations = node.get_attr('dilations', [1] * rank)
strides = node.get_attr('strides', [1] * rank)
pads = node.get_attr('pads')
effective_kernel_shape = [(k - 1) * d + 1
for k, d in zip(kernel_shape, dilations)]
if pads is None:
pads = [0] * (2 * rank)
auto_pad = node.get_attr('auto_pad', b'NOTSET').decode('utf-8')
if auto_pad != 'VALID' and auto_pad != 'NOTSET':
try:
residual = [
sympy.Mod(d, s)
for d, s in zip(fluid_shape[-rank:], strides)
]
total_pads = [
max(0, (k - s) if r == 0 else (k - r))
for k, s, r in zip(effective_kernel_shape, strides,
residual)
]
except TypeError: # sympy may throw TypeError: cannot determine truth value of Relational
total_pads = [
max(0, (k - s))
for k, s in zip(effective_kernel_shape, strides)
] # assuming no residual if sympy throws error
elif auto_pad == 'VALID':
total_pads = []
else:
total_pads = [0] * rank
else:
assert len(pads) == 2 * rank
total_pads = [p1 + p2 for p1, p2 in zip(pads[:rank], pads[rank:])]
ceil_mode = node.get_attr('ceil_mode', 0)
for i in range(rank):
effective_input_size = fluid_shape[-rank + i]
if len(total_pads) > 0:
effective_input_size = effective_input_size + total_pads[i]
if ceil_mode:
strided_kernel_positions = sympy.ceiling(
(effective_input_size - effective_kernel_shape[i]) /
strides[i])
else:
strided_kernel_positions = (
effective_input_size - effective_kernel_shape[i]
) // strides[i]
fluid_shape[-rank + i] = strided_kernel_positions + 1
node.out_shapes.append(fluid_shape)
return fluid_shape
def cast(self, node):
fluid_shape = self.get_input_node(node, idx=0).out_shape[0]
node.out_shapes.append(fluid_shape)
return fluid_shape
def pool(self, node):
return self.conv_pool_ops(node)
def conv(self, node):
return self.conv_pool_ops(node)
def batch_norm(self, node):
fluid_shape = self.get_input_node(node, idx=0).out_shapes[0]
node.out_shapes.append(fluid_shape)
return fluid_shape
def activation_ops(self, node):
fluid_shape = self.get_input_node(node, idx=0).out_shapes[0]
node.out_shapes.append(fluid_shape)
return fluid_shape
def elementwise_ops(self, node):
fluid_shape = self.get_input_node(node, idx=0).out_shapes[0]
node.out_shapes.append(fluid_shape)
return fluid_shape
def pad(self, node):
fluid_shape = self.get_input_node(node, idx=0).out_shapes[0]
# op_set <= 10
pads = node.get_attr('pads')
rank = len(fluid_shape)
fluid_shape = [
d + pad_up + pad_down
for d, pad_up, pad_down in zip(fluid_shape, pads[:rank], pads[
rank:])
]
node.out_shapes.append(fluid_shape)
return fluid_shape
def gather(self, node):
fluid_shape = self.get_input_node(node, idx=0).out_shapes[0]
axis = handle_negative_axis(node.get_attr('axis', 0), len(fluid_shape))
indices_shape = self.get_input_node(node, idx=1).out_shapes[0]
fluid_shape = fluid_shape[:axis] + list(indices_shape) + fluid_shape[
axis + 1:]
input = self.get_input_node(node, 0)
if input.layer_name in self.fluid_data:
assert 0 == axis # only handle 1D sympy compute
idx = self.get_fluid_date(indices_shape)
data = self.fluid_data[input.layer_name]
if type(data) == list:
if type(idx) == np.ndarray and len(idx.shape) == 1:
self.fluid_data[
node.layer_name] = [data[int(i)] for i in idx]
else:
self.fluid_data[node.layer_name] = data[int(idx)]
else:
assert idx == 0
self.fluid_data[node.layer_name] = data
node.out_shapes.append(fluid_shape)
return fluid_shape
def constant(self, node):
if isinstance(node, ONNXGraphNode):
fluid_shape = node.value.shape
else:
fluid_shape = node.weight.shape
node.out_shapes.append(fluid_shape)
return fluid_shape
def split(self, node):
fluid_shape = self.get_input_node(node, idx=0).out_shapes[0]
axis = handle_negative_axis(node.get_attr('axis', 0), len(fluid_shape))
split = node.get_attr('split')
if not split:
num_outputs = len(node.outputs)
split = [fluid_shape[axis] /
sympy.Integer(num_outputs)] * num_outputs
else:
split = [sympy.Integer(s) for s in split]
shapes = []
for i_o in range(len(split)):
shape = fluid_shape[:axis] + [split[i_o]] + fluid_shape[axis + 1:]
shapes.append(shape)
node.out_shapes += shapes
return shapes
def shape(self, node):
fluid_shape = self.get_input_node(node, idx=0).out_shapes[0]
fluid_shape = [len(fluid_shape), ]
node.out_shapes.append(fluid_shape)
self.fluid_data[node.layer_name] = np.array(fluid_shape)
return fluid_shape
def transpose(self, node):
fluid_shape = self.get_input_node(node, idx=0).out_shapes[0]
perm = node.get_attr('perm')
fulid_shape = np.array(fluid_shape)[perm].tolist()
node.out_shapes.append(fluid_shape)
return fluid_shape
def reshape(self, node):
shape = self.get_input_node(node, idx=1)
shape_data = self.get_fluid_data(shape)
if shape_data is not None:
if -1 in shape_data:
fluid_shape = self.get_input_node(node, idx=0).out_shapes[0]
print(fluid_shape)
index = shape_data.index(-1)
total_elements = 1
for dim in fluid_shape:
total_elements *= dim
part_elements = 1
for dim in shape_data:
if dim != -1:
part_elements *= dim
shape_data[index] = total_elements // part_elements
node.out_shapes.append(shape_data)
else:
pass
return shape_data
def matmul(self, node):
x_shape = self.get_input_node(node, idx=0).out_shapes[0]
y_shape = self.get_input_node(node, idx=1).out_shapes[0]
x_rank = len(x_shape)
y_rank = len(y_shape)
if x_rank == 1 and y_rank == 1:
new_shape = []
elif x_rank == 1:
y_reduce_dim = -2
new_shape = x_shape[:y_reduce_dim] + [x_shape[-1]]
elif y_rank == 1:
x_reduce_dim = -1
new_shape = x_shape[:x_reduce_dim]
else:
x_reduce_dim = -1
y_reduce_dim = -2
new_shape = self._broadcast_shapes(
x_shape[:-2], y_shape[:-2]) + [x_shape[-2]] + [y_shape[-1]]
node.out_shapes.append(new_shape)
return new_shape
def squeeze(self, node):
self._pass_on_sympy_data(node)
def unsqueeze(self, node):
self._pass_on_sympy_data(node)
def concat(self, node):
if any([i in self.fluid_data for i in node.inputs]):
values = self._get_int_values(node)
if all([v is not None for v in values]):
assert 0 == get_attribute(node, 'axis')
self.fluid_data[node.layer_name] = []
for i in range(len(node.input)):
value = values[i]
if type(value) == list:
self.fluid_data[node.layer_name].extend(value)
else:
self.fluid_data[node.layer_name].append(value)
......@@ -13,10 +13,6 @@
# limitations under the License.
from .register import get_registered_layers
#custom layer import begins
from . import InstanceNormalization
#custom layer import ends
custom_layers = get_registered_layers()
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
import x2paddle
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
from onnx import helper, onnx_pb
from x2paddle.op_mapper.paddle2onnx.opset9.opset import OpSet9
class OpSet10(OpSet9):
def __init__(self):
super(OpSet10, self).__init__()
def slice(self, op, block):
axes = op.attr('axes')
starts = op.attr('starts')
ends = op.attr('ends')
axes_name = self.get_name(op.type, 'axes')
starts_name = self.get_name(op.type, 'starts')
ends_name = self.get_name(op.type, 'ends')
axes_node = self.make_constant_node(axes_name,
onnx_pb.TensorProto.INT64, axes)
starts_node = self.make_constant_node(starts_name,
onnx_pb.TensorProto.INT64, starts)
ends_node = self.make_constant_node(ends_name,
onnx_pb.TensorProto.INT64, ends)
node = helper.make_node(
"Slice",
inputs=[op.input('Input')[0], starts_name, ends_name, axes_name],
outputs=op.output('Out'), )
return [starts_node, ends_node, axes_node, node]
def im2sequence(self, op, block):
from .paddle_custom_layer.im2sequence import im2sequence
return im2sequence(op, block)
def yolo_box(self, op, block):
from .paddle_custom_layer.yolo_box import yolo_box
return yolo_box(op, block)
def multiclass_nms(self, op, block):
from .paddle_custom_layer.multiclass_nms import multiclass_nms
return multiclass_nms(op, block)
import onnx
import numpy as np
from onnx import onnx_pb, helper
from x2paddle.op_mapper.paddle2onnx.opset9.paddle_custom_layer.im2sequence import im2sequence as im2sequence9
def im2sequence(op, block):
return im2sequence9(op, block)
......@@ -12,45 +12,21 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .register import register
def InstanceNormalization_shape(input_shape):
return input_shape
def InstanceNormalization_layer(inputs, name=None):
# TODO(lvmengsi@baidu.com): Check the accuracy when using fluid.layers.layer_norm.
epsilon = 1e-5
input_ = inputs[0]
mean = fluid.layers.reduce_mean(input_, dim=[2, 3], keep_dim=True)
var = fluid.layers.reduce_mean(
fluid.layers.square(input_ - mean), dim=[2, 3], keep_dim=True)
if name is not None:
scale_name = name + "_scale"
offset_name = name + "_offset"
scale_param = inputs[1]
offset_param = inputs[2]
scale = fluid.layers.create_parameter(
name=scale_param.name, shape=input_.shape[1:2], dtype="float32")
offset = fluid.layers.create_parameter(
name=offset_param.name, shape=input_.shape[1:2], dtype="float32")
tmp = fluid.layers.elementwise_mul(x=(input_ - mean), y=scale, axis=1)
tmp = tmp / fluid.layers.sqrt(var + epsilon)
tmp = fluid.layers.elementwise_add(tmp, offset, axis=1)
return tmp
def InstanceNormalization_weights(name, data=None):
weights_name = [name + '_scale']
return weights_name
register(
kind='InstanceNormalization',
shape=InstanceNormalization_shape,
layer=InstanceNormalization_layer,
child_func=None,
weights=InstanceNormalization_weights)
import math
import sys
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
import warnings
from onnx import helper, onnx_pb
from x2paddle.op_mapper.paddle2onnx.opset9.paddle_custom_layer.multiclass_nms import multiclass_nms as multiclass_nms9
def multiclass_nms(op, block):
"""
Convert the paddle multiclass_nms to onnx op.
This op is get the select boxes from origin boxes.
"""
return multiclass_nms9(op, block)
import onnx
import numpy as np
from onnx import onnx_pb, helper
from x2paddle.op_mapper.paddle2onnx.opset9.paddle_custom_layer.yolo_box import yolo_box as yolo_box9
def yolo_box(op, block):
return yolo_box9(op, block)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
import x2paddle
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
from onnx import helper, onnx_pb
from x2paddle.op_mapper.paddle2onnx.opset10.opset import OpSet10
class OpSet11(OpSet10):
def __init__(self):
super(OpSet11, self).__init__()
def relu6(self, op, block):
min_name = self.get_name(op.type, 'min')
max_name = self.get_name(op.type, 'max')
min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
0)
max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
op.attr('threshold'))
node = helper.make_node(
'Clip',
inputs=[op.input('X')[0], min_name, max_name],
outputs=op.output('Out'), )
return [min_node, max_node, node]
def bilinear_interp(self, op, block):
input_names = op.input_names
coordinate_transformation_mode = ''
align_corners = op.attr('align_corners')
align_mode = op.attr('align_mode')
if align_corners:
coordinate_transformation_mode = 'align_corners'
elif align_mode == 1:
coordinate_transformation_mode = 'asymmetric'
else:
coordinate_transformation_mode = 'half_pixel'
if ('OutSize' in input_names and len(op.input('OutSize')) > 0) or (
'SizeTensor' in input_names and
len(op.input('SizeTensor')) > 0):
node_list = list()
roi_node = self.make_constant_node(
self.get_name(op.type, 'roi'), onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(
roi_name, onnx_pb.TensorProto.FLOAT, [1, 1, 1, 1, 1, 1, 1, 1])
empty_name = self.get_name(op.type, 'empty')
empty_tensor = helper.make_tensor(
empty_name,
onnx_pb.TensorProto.FLOAT, (0, ),
np.array([]).astype('float32'),
raw=False)
empty_node = helper.make_node(
'Constant', [], outputs=[empty_name], value=empty_tensor)
shape_name0 = self.get_name(op.type, 'shape')
shape_node0 = helper.make_node(
'Shape', inputs=op.input('X'), outputs=[shape_name0])
starts_name = self.get_name(op.type, 'slice.starts')
starts_node = self.make_constant_node(
starts_name, onnx_pb.TensorProto.INT64, [0])
ends_name = self.get_name(op.type, 'slice.ends')
ends_node = self.make_constant_node(ends_name,
onnx_pb.TensorProto.INT64, [2])
shape_name1 = self.get_name(op.type, 'shape')
shape_node1 = helper.make_node(
'Slice',
inputs=[shape_name0, starts_name, ends_name],
outputs=[shape_name1])
node_list.extend([
roi_node, empty_node, shape_node0, starts_node, ends_node,
shape_node1
])
if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
cast_shape_name = self.get_name(op.type, "shape.cast")
cast_shape_node = helper.make_node(
'Cast',
inputs=op.input('OutSize'),
outputs=[cast_shape_name],
to=onnx_pb.TensorProto.INT64)
node_list.append(cast_shape_node)
else:
concat_shape_name = self.get_name(op.type, "shape.concat")
concat_shape_node = helper.make_node(
"Concat",
inputs=op.input('SizeTensor'),
outputs=[concat_shape_name],
axis=0)
cast_shape_name = self.get_name(op.type, "shape.cast")
cast_shape_node = helper.make_node(
'Cast',
inputs=[concat_shape_name],
outputs=[cast_shape_name],
to=onnx_pb.TensorProto.INT64)
node_list.extend([concat_shape_node, cast_shape_node])
shape_name3 = self.get_name(op.type, "shape.concat")
shape_node3 = helper.make_node(
'Concat',
inputs=[shape_name1, cast_shape_name],
outputs=[shape_name3],
axis=0)
result_node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], roi_name, empty_name, shape_name3],
outputs=op.output('Out'),
mode='linear',
coordinate_transformation_mode=coordinate_transformation_mode)
node_list.extend([shape_node3, result_node])
return node_list
elif 'Scale' in input_names and len(op.input('Scale')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], op.input('Scale')[0]],
outputs=op.output('Out'),
mode='linear',
coordinate_transformation_mode=coordinate_transformation_mode)
else:
out_shape = [op.attr('out_h'), op.attr('out_w')]
scale = op.attr('scale')
if out_shape.count(-1) > 0:
scale_name = self.get_name(op.type, 'scale')
scale_node = self.make_constant_node(scale_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, scale, scale])
roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(roi_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], roi_name, scale_name],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode
)
return [scale_node, roi_node, node]
else:
raise Exception("Unexpected situation happend")
return node
def nearest_interp(self, op, block):
input_names = op.input_names
coordinate_transformation_mode = ''
align_corners = op.attr('align_corners')
if align_corners:
coordinate_transformation_mode = 'align_corners'
else:
coordinate_transformation_mode = 'asymmetric'
if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], '', op.input('OutSize')[0]],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode)
elif 'Scale' in input_names and len(op.input('Scale')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], op.input('Scale')[0]],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode)
else:
out_shape = [op.attr('out_h'), op.attr('out_w')]
scale = op.attr('scale')
if out_shape.count(-1) > 0:
scale_name = self.get_name(op.type, 'scale')
scale_node = self.make_constant_node(scale_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, scale, scale])
roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(roi_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], roi_name, scale_name],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode
)
return [scale_node, roi_node, node]
else:
raise Exception("Unexpected situation happend")
return node
def hard_swish(self, op, block):
min_name = self.get_name(op.type, 'min')
max_name = self.get_name(op.type, 'max')
scale_name = self.get_name(op.type, 'scale')
offset_name = self.get_name(op.type, 'offset')
min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
0)
max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
op.attr('threshold'))
scale_node = self.make_constant_node(scale_name,
onnx_pb.TensorProto.FLOAT,
op.attr('scale'))
offset_node = self.make_constant_node(offset_name,
onnx_pb.TensorProto.FLOAT,
op.attr('offset'))
name0 = self.get_name(op.type, 'add')
node0 = helper.make_node(
'Add', inputs=[op.input('X')[0], offset_name], outputs=[name0])
name1 = self.get_name(op.type, 'relu')
node1 = helper.make_node(
'Clip',
inputs=[name0, min_name, max_name],
outputs=[name1], )
name2 = self.get_name(op.type, 'mul')
node2 = helper.make_node(
'Mul', inputs=[op.input('X')[0], name1], outputs=[name2])
node3 = helper.make_node(
'Div', inputs=[name2, scale_name], outputs=op.output('Out'))
return [
min_node, max_node, scale_node, offset_node, node0, node1, node2,
node3
]
def im2sequence(self, op, block):
from .paddle_custom_layer.im2sequence import im2sequence
return im2sequence(op, block)
def yolo_box(self, op, block):
from .paddle_custom_layer.yolo_box import yolo_box
return yolo_box(op, block)
def multiclass_nms(self, op, block):
from .paddle_custom_layer.multiclass_nms import multiclass_nms
return multiclass_nms(op, block)
import onnx
import numpy as np
from onnx import onnx_pb, helper
from x2paddle.op_mapper.paddle2onnx.opset10.paddle_custom_layer.im2sequence import im2sequence as im2sequence10
def im2sequence(op, block):
return im2sequence10(op, block)
......@@ -125,7 +125,7 @@ def multiclass_nms(op, block):
vals=[value]))
node_list.append(node)
# Ine this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# In this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# and the same time, decode the select indices to 1 * D, gather the select_indices
outputs_gather_1 = [result_name + "@gather_1"]
node_gather_1 = onnx.helper.make_node(
......@@ -405,12 +405,36 @@ def multiclass_nms(op, block):
inputs_concat_final_results = outputs_cast_topk_class + outputs_unsqueeze_topk_scores +\
outputs_gather_select_boxes
outputs_concat_final_results = outputs['Out']
node_concat_final_results = onnx.helper.make_node(
outputs_sort_by_socre_results = [result_name + "@concat_topk_scores"]
node_sort_by_socre_results = onnx.helper.make_node(
'Concat',
inputs=inputs_concat_final_results,
outputs=outputs_concat_final_results,
outputs=outputs_sort_by_socre_results,
axis=2)
node_list.append(node_concat_final_results)
node_list.append(node_sort_by_socre_results)
# select topk classes indices
outputs_squeeze_cast_topk_class = [result_name + "@squeeze_cast_topk_class"]
node_squeeze_cast_topk_class = onnx.helper.make_node(
'Squeeze',
inputs=outputs_cast_topk_class,
outputs=outputs_squeeze_cast_topk_class,
axes=[0, 2])
node_list.append(node_squeeze_cast_topk_class)
outputs_topk_select_classes_indices = [result_name + "@topk_select_topk_classes_scores",\
result_name + "@topk_select_topk_classes_indices"]
node_topk_select_topk_indices = onnx.helper.make_node(
'TopK',
inputs=outputs_squeeze_cast_topk_class + outputs_cast_topk_indices,
outputs=outputs_topk_select_classes_indices,
largest=0)
node_list.append(node_topk_select_topk_indices)
outputs_concat_final_results = outputs['Out']
node_concat_final_results = onnx.helper.make_node(
'Gather',
inputs=outputs_sort_by_socre_results +
[outputs_topk_select_classes_indices[1]],
outputs=outputs_concat_final_results,
axis=1)
node_list.append(node_concat_final_results)
return node_list
......@@ -23,7 +23,7 @@ import onnx
from onnx import helper, onnx_pb
class PaddleOpMapper(object):
class OpSet9(object):
def __init__(self):
self.paddle_onnx_dtype_map = {
core.VarDesc.VarType.FP32: onnx_pb.TensorProto.FLOAT,
......@@ -34,62 +34,8 @@ class PaddleOpMapper(object):
core.VarDesc.VarType.INT64: onnx_pb.TensorProto.INT64,
core.VarDesc.VarType.BOOL: onnx_pb.TensorProto.BOOL
}
self.name_counter = dict()
def convert(self, program, save_dir):
weight_nodes = self.convert_weights(program)
op_nodes = list()
input_nodes = list()
output_nodes = list()
unsupported_ops = set()
print("Translating PaddlePaddle to ONNX...\n")
for block in program.blocks:
for i, op in enumerate(block.ops):
sys.stdout.write(
"\rTotal:{}, Current:{} : {} ".format(
len(block.ops), i + 1, op.type))
sys.stdout.flush()
if not hasattr(self, op.type):
unsupported_ops.add(op.type)
continue
if len(unsupported_ops) > 0:
continue
node = getattr(self, op.type)(op, block)
if op.type == 'feed':
input_nodes.append(node)
elif op.type == 'fetch':
output_nodes.append(node)
else:
if isinstance(node, list):
op_nodes = op_nodes + node
else:
op_nodes.append(node)
if len(unsupported_ops) > 0:
print("\nThere's {} ops are not supported yet".format(
len(unsupported_ops)))
for op in unsupported_ops:
print("=========== {} ===========".format(op))
return
graph = helper.make_graph(
nodes=weight_nodes + op_nodes,
name='onnx_model_from_paddle',
initializer=[],
inputs=input_nodes,
outputs=output_nodes)
model = helper.make_model(graph, producer_name='X2Paddle')
onnx.checker.check_model(model)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
with open(os.path.join(save_dir, 'x2paddle_model.onnx'), 'wb') as f:
f.write(model.SerializeToString())
print("\nTranslated model saved in {}".format(
os.path.join(save_dir, 'x2paddle_model.onnx')))
def get_name(self, op_name, var_name):
name = 'p2o.{}.{}'.format(op_name, var_name)
if name not in self.name_counter:
......@@ -98,6 +44,21 @@ class PaddleOpMapper(object):
self.name_counter[name] += 1
return name + '.{}'.format(self.name_counter[name])
def make_constant_node(self, name, dtype, value=None):
if isinstance(value, list):
dims = (len(value), )
elif value is None:
dims = ()
value = []
else:
dims = ()
value = [value]
tensor = helper.make_tensor(
name=name, data_type=dtype, dims=dims, vals=value)
node = helper.make_node(
'Constant', inputs=[], outputs=[name], value=tensor)
return node
def convert_weights(self, program):
var_names = program.global_block().vars
nodes = list()
......@@ -118,21 +79,6 @@ class PaddleOpMapper(object):
nodes.append(node)
return nodes
def make_constant_node(self, name, dtype, value=None):
if isinstance(value, list):
dims = (len(value), )
elif value is None:
dims = ()
value = []
else:
dims = ()
value = [value]
tensor = helper.make_tensor(
name=name, data_type=dtype, dims=dims, vals=value)
node = helper.make_node(
'Constant', inputs=[], outputs=[name], value=tensor)
return node
def conv2d(self, op, block):
kernel_shape = block.var(op.input('Filter')[0]).shape
node = helper.make_node(
......@@ -182,41 +128,6 @@ class PaddleOpMapper(object):
alpha=op.attr('alpha'))
return node
def swish(self, op, block):
"""
The activation swish, y = x / (1 + exp(-beta * x))
"""
beta = op.attr('beta')
beta_name = self.get_name(op.type, 'beta')
beta_node = onnx.helper.make_node(
'Constant',
name=beta_name,
inputs=[],
outputs=[beta_name],
value=onnx.helper.make_tensor(
name=beta_name,
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[beta]))
beta_x_name = self.get_name(op.type, 'beta_x')
beta_x_node = onnx.helper.make_node(
'Mul',
name=beta_x_name,
inputs=[op.input('X')[0], beta_name],
outputs=[beta_x_name])
sigmoid_name = self.get_name(op.type, 'sigmoid')
sigmoid_node = onnx.helper.make_node(
'Sigmoid',
name=sigmoid_name,
inputs=[beta_x_name],
outputs=[sigmoid_name])
swish_node = onnx.helper.make_node(
'Mul',
inputs=[op.input('X')[0], sigmoid_name],
outputs=op.output('Out'))
return [beta_node, beta_x_node, sigmoid_node, swish_node]
def elementwise_add(self, op, block):
axis = op.attr('axis')
x_shape = block.var(op.input('X')[0]).shape
......@@ -285,6 +196,8 @@ class PaddleOpMapper(object):
pool_type[op.attr('pooling_type')][1],
inputs=op.input('X'),
outputs=op.output('Out'), )
elif op.attr('adaptive'):
raise Excpetion("ONNX cannot support adaptive pool")
else:
input_shape = block.var(op.input('X')[0]).shape
k_size = op.attr('ksize')
......@@ -431,17 +344,14 @@ class PaddleOpMapper(object):
return self.conv2d(op, block)
def relu6(self, op, block):
min_name = self.get_name(op.type, 'min')
max_name = self.get_name(op.type, 'max')
min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
0)
max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
op.attr('threshold'))
threshold = op.attr('threshold')
node = helper.make_node(
'Clip',
inputs=[op.input('X')[0], min_name, max_name],
outputs=op.output('Out'), )
return [min_node, max_node, node]
inputs=[op.input('X')[0]],
outputs=op.output('Out'),
max=threshold,
min=0.0)
return [node]
def shape(self, op, block):
node = helper.make_node(
......@@ -469,21 +379,14 @@ class PaddleOpMapper(object):
axes = op.attr('axes')
starts = op.attr('starts')
ends = op.attr('ends')
axes_name = self.get_name(op.type, 'axes')
starts_name = self.get_name(op.type, 'starts')
ends_name = self.get_name(op.type, 'ends')
axes_node = self.make_constant_node(axes_name,
onnx_pb.TensorProto.INT64, axes)
starts_node = self.make_constant_node(starts_name,
onnx_pb.TensorProto.INT64, starts)
ends_node = self.make_constant_node(ends_name,
onnx_pb.TensorProto.INT64, ends)
node = helper.make_node(
"Slice",
inputs=[op.input('Input')[0], starts_name, ends_name, axes_name],
outputs=op.output('Out'), )
return [starts_node, ends_node, axes_node, node]
outputs=op.output('Out'),
axes=axes,
starts=starts,
ends=ends)
return [node]
def fill_constant(self, op, block):
value = op.attr('value')
......@@ -578,27 +481,15 @@ class PaddleOpMapper(object):
def bilinear_interp(self, op, block):
input_names = op.input_names
coordinate_transformation_mode = 'half_pixel'
if op.attr('align_corners'):
coordinate_transformation_mode = 'align_corners'
input_shape = block.vars[op.input('X')[0]].shape
if op.attr('align_corners') or op.attr('align_mode') == 0:
raise Exception(
"Resize in onnx(opset<=10) only support coordinate_transformation_mode: 'asymmetric'."
)
if ('OutSize' in input_names and len(op.input('OutSize')) > 0) or (
'SizeTensor' in input_names and
len(op.input('SizeTensor')) > 0):
node_list = list()
roi_node = self.make_constant_node(
self.get_name(op.type, 'roi'), onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(
roi_name, onnx_pb.TensorProto.FLOAT, [1, 1, 1, 1, 1, 1, 1, 1])
empty_name = self.get_name(op.type, 'empty')
empty_tensor = helper.make_tensor(
empty_name,
onnx_pb.TensorProto.FLOAT, (0, ),
np.array([]).astype('float32'),
raw=False)
empty_node = helper.make_node(
'Constant', [], outputs=[empty_name], value=empty_tensor)
shape_name0 = self.get_name(op.type, 'shape')
shape_node0 = helper.make_node(
'Shape', inputs=op.input('X'), outputs=[shape_name0])
......@@ -613,16 +504,7 @@ class PaddleOpMapper(object):
'Slice',
inputs=[shape_name0, starts_name, ends_name],
outputs=[shape_name1])
node_list.extend([
roi_node, empty_node, shape_node0, starts_node, ends_node,
shape_node1
])
# shape_name2 = self.get_name(op.type, "shape.cast")
# shape_node2 = helper.make_node(
# 'Cast',
# inputs=op.input('OutSize'),
# outputs=[shape_name2],
# to=onnx_pb.TensorProto.INT64)
node_list.extend([shape_node0, starts_node, ends_node, shape_node1])
if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
cast_shape_name = self.get_name(op.type, "shape.cast")
cast_shape_node = helper.make_node(
......@@ -632,7 +514,8 @@ class PaddleOpMapper(object):
to=onnx_pb.TensorProto.INT64)
node_list.append(cast_shape_node)
else:
concat_shape_name = self.get_name(op.type, "shape.concat")
concat_shape_name = self.get_name(
op.type, op.output('Out')[0] + "shape.concat")
concat_shape_node = helper.make_node(
"Concat",
inputs=op.input('SizeTensor'),
......@@ -645,27 +528,46 @@ class PaddleOpMapper(object):
outputs=[cast_shape_name],
to=onnx_pb.TensorProto.INT64)
node_list.extend([concat_shape_node, cast_shape_node])
shape_name3 = self.get_name(op.type, "shape.concat")
shape_node3 = helper.make_node(
shape_name2 = self.get_name(op.type, "shape.concat")
shape_node2 = helper.make_node(
'Concat',
inputs=[shape_name1, cast_shape_name],
outputs=[shape_name3],
outputs=[shape_name2],
axis=0)
node_list.append(shape_node2)
cast_shape_name2 = self.get_name(op.type, "shape.cast")
cast_shape_node2 = helper.make_node(
'Cast',
inputs=[shape_name2],
outputs=[cast_shape_name2],
to=onnx_pb.TensorProto.FLOAT)
node_list.append(cast_shape_node2)
cast_shape_name0 = self.get_name(op.type, "shape.cast")
cast_shape_node0 = helper.make_node(
'Cast',
inputs=[shape_name0],
outputs=[cast_shape_name0],
to=onnx_pb.TensorProto.FLOAT)
node_list.append(cast_shape_node0)
outputs_h_w_scales = op.output('Out')[0] + "@out_hw_scales"
node_h_w_scales = helper.make_node(
'Div',
inputs=[cast_shape_name2, cast_shape_name0],
outputs=[outputs_h_w_scales])
node_list.append(node_h_w_scales)
result_node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], roi_name, empty_name, shape_name3],
inputs=[op.input('X')[0], outputs_h_w_scales],
outputs=op.output('Out'),
mode='linear',
coordinate_transformation_mode=coordinate_transformation_mode)
node_list.extend([shape_node3, result_node])
mode='linear')
node_list.extend([result_node])
return node_list
elif 'Scale' in input_names and len(op.input('Scale')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], op.input('Scale')[0]],
outputs=op.output('Out'),
mode='linear',
coordinate_transformation_mode=coordinate_transformation_mode)
mode='linear')
else:
out_shape = [op.attr('out_h'), op.attr('out_w')]
scale = op.attr('scale')
......@@ -674,41 +576,34 @@ class PaddleOpMapper(object):
scale_node = self.make_constant_node(scale_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, scale, scale])
roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(roi_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], roi_name, scale_name],
inputs=[op.input('X')[0], scale_name],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode
)
return [scale_node, roi_node, node]
mode='linear')
return [scale_node, node]
else:
raise Exception("Unexpected situation happend")
return node
def nearest_interp(self, op, block):
input_names = op.input_names
coordinate_transformation_mode = 'half_pixel'
if op.attr('align_corners'):
coordinate_transformation_mode = 'align_corners'
raise Exception(
"Resize in onnx(opset<=10) only support coordinate_transformation_mode: 'asymmetric'."
)
if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], '', op.input('OutSize')[0]],
inputs=[op.input('X')[0], op.input('OutSize')[0]],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode)
mode='nearest')
elif 'Scale' in input_names and len(op.input('Scale')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], op.input('Scale')[0]],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode)
mode='nearest')
else:
out_shape = [op.attr('out_h'), op.attr('out_w')]
scale = op.attr('scale')
......@@ -717,18 +612,12 @@ class PaddleOpMapper(object):
scale_node = self.make_constant_node(scale_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, scale, scale])
roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(roi_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], roi_name, scale_name],
inputs=[op.input('X')[0], scale_name],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode
)
return [scale_node, roi_node, node]
mode='nearest')
return [scale_node, node]
else:
raise Exception("Unexpected situation happend")
return node
......@@ -745,14 +634,8 @@ class PaddleOpMapper(object):
return node
def hard_swish(self, op, block):
min_name = self.get_name(op.type, 'min')
max_name = self.get_name(op.type, 'max')
scale_name = self.get_name(op.type, 'scale')
offset_name = self.get_name(op.type, 'offset')
min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
0)
max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
op.attr('threshold'))
scale_node = self.make_constant_node(scale_name,
onnx_pb.TensorProto.FLOAT,
op.attr('scale'))
......@@ -764,19 +647,20 @@ class PaddleOpMapper(object):
node0 = helper.make_node(
'Add', inputs=[op.input('X')[0], offset_name], outputs=[name0])
name1 = self.get_name(op.type, 'relu')
min_value = op.attr('min')
max_value = op.attr('max')
node1 = helper.make_node(
'Clip',
inputs=[name0, min_name, max_name],
outputs=[name1], )
inputs=[name0],
outputs=[name1],
max=max_value,
min=min_value)
name2 = self.get_name(op.type, 'mul')
node2 = helper.make_node(
'Mul', inputs=[op.input('X')[0], name1], outputs=[name2])
node3 = helper.make_node(
'Div', inputs=[name2, scale_name], outputs=op.output('Out'))
return [
min_node, max_node, scale_node, offset_node, node0, node1, node2,
node3
]
return [scale_node, offset_node, node0, node1, node2, node3]
def elementwise_mul(self, op, block):
axis = op.attr('axis')
......@@ -852,3 +736,11 @@ class PaddleOpMapper(object):
def im2sequence(self, op, block):
from .paddle_custom_layer.im2sequence import im2sequence
return im2sequence(op, block)
def yolo_box(self, op, block):
from .paddle_custom_layer.yolo_box import yolo_box
return yolo_box(op, block)
def multiclass_nms(self, op, block):
from .paddle_custom_layer.multiclass_nms import multiclass_nms
return multiclass_nms(op, block)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
import warnings
from onnx import helper, onnx_pb
def multiclass_nms(op, block):
"""
Convert the paddle multiclass_nms to onnx op.
This op is get the select boxes from origin boxes.
"""
inputs = dict()
outputs = dict()
attrs = dict()
for name in op.input_names:
inputs[name] = op.input(name)
for name in op.output_names:
outputs[name] = op.output(name)
for name in op.attr_names:
attrs[name] = op.attr(name)
result_name = outputs['Out'][0]
background = attrs['background_label']
normalized = attrs['normalized']
if normalized == False:
warnings.warn(
'The parameter normalized of multiclass_nms OP of Paddle is False, which has diff with ONNX. \
Please set normalized=True in multiclass_nms of Paddle')
#convert the paddle attribute to onnx tensor
name_score_threshold = [outputs['Out'][0] + "@score_threshold"]
name_iou_threshold = [outputs['Out'][0] + "@iou_threshold"]
name_keep_top_k = [outputs['Out'][0] + '@keep_top_k']
name_keep_top_k_2D = [outputs['Out'][0] + '@keep_top_k_1D']
node_score_threshold = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_score_threshold,
value=onnx.helper.make_tensor(
name=name_score_threshold[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[float(attrs['score_threshold'])]))
node_iou_threshold = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_iou_threshold,
value=onnx.helper.make_tensor(
name=name_iou_threshold[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[float(attrs['nms_threshold'])]))
node_keep_top_k = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_keep_top_k,
value=onnx.helper.make_tensor(
name=name_keep_top_k[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=(),
vals=[np.int64(attrs['keep_top_k'])]))
node_keep_top_k_2D = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_keep_top_k_2D,
value=onnx.helper.make_tensor(
name=name_keep_top_k_2D[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[1, 1],
vals=[np.int64(attrs['keep_top_k'])]))
# the paddle data format is x1,y1,x2,y2
kwargs = {'center_point_box': 0}
name_select_nms = [outputs['Out'][0] + "@select_index"]
node_select_nms= onnx.helper.make_node(
'NonMaxSuppression',
inputs=inputs['BBoxes'] + inputs['Scores'] + name_keep_top_k +\
name_iou_threshold + name_score_threshold,
outputs=name_select_nms)
# step 1 nodes select the nms class
node_list = [
node_score_threshold, node_iou_threshold, node_keep_top_k,
node_keep_top_k_2D, node_select_nms
]
# create some const value to use
name_const_value = [result_name+"@const_0",
result_name+"@const_1",\
result_name+"@const_2",\
result_name+"@const_-1"]
value_const_value = [0, 1, 2, -1]
for name, value in zip(name_const_value, value_const_value):
node = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=[name],
value=onnx.helper.make_tensor(
name=name + "@const",
data_type=onnx.TensorProto.INT64,
dims=[1],
vals=[value]))
node_list.append(node)
# In this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# and the same time, decode the select indices to 1 * D, gather the select_indices
outputs_gather_1 = [result_name + "@gather_1"]
node_gather_1 = onnx.helper.make_node(
'Gather',
inputs=name_select_nms + [result_name + "@const_1"],
outputs=outputs_gather_1,
axis=1)
node_list.append(node_gather_1)
outputs_squeeze_gather_1 = [result_name + "@sequeeze_gather_1"]
node_squeeze_gather_1 = onnx.helper.make_node(
'Squeeze',
inputs=outputs_gather_1,
outputs=outputs_squeeze_gather_1,
axes=[1])
node_list.append(node_squeeze_gather_1)
outputs_gather_2 = [result_name + "@gather_2"]
node_gather_2 = onnx.helper.make_node(
'Gather',
inputs=name_select_nms + [result_name + "@const_2"],
outputs=outputs_gather_2,
axis=1)
node_list.append(node_gather_2)
#slice the class is not 0
if background == 0:
outputs_nonzero = [result_name + "@nonzero"]
node_nonzero = onnx.helper.make_node(
'NonZero', inputs=outputs_squeeze_gather_1, outputs=outputs_nonzero)
node_list.append(node_nonzero)
else:
name_thresh = [result_name + "@thresh"]
node_thresh = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_thresh,
value=onnx.helper.make_tensor(
name=name_thresh[0] + "@const",
data_type=onnx.TensorProto.INT32,
dims=[1],
vals=[-1]))
node_list.append(node_thresh)
outputs_cast = [result_name + "@cast"]
node_cast = onnx.helper.make_node(
'Cast', inputs=outputs_squeeze_gather_1, outputs=outputs_cast, to=6)
node_list.append(node_cast)
outputs_greater = [result_name + "@greater"]
node_greater = onnx.helper.make_node(
'Greater',
inputs=outputs_cast + name_thresh,
outputs=outputs_greater)
node_list.append(node_greater)
outputs_nonzero = [result_name + "@nonzero"]
node_nonzero = onnx.helper.make_node(
'NonZero', inputs=outputs_greater, outputs=outputs_nonzero)
node_list.append(node_nonzero)
outputs_gather_1_nonzero = [result_name + "@gather_1_nonzero"]
node_gather_1_nonzero = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_1 + outputs_nonzero,
outputs=outputs_gather_1_nonzero,
axis=0)
node_list.append(node_gather_1_nonzero)
outputs_gather_2_nonzero = [result_name + "@gather_2_nonzero"]
node_gather_2_nonzero = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_2 + outputs_nonzero,
outputs=outputs_gather_2_nonzero,
axis=0)
node_list.append(node_gather_2_nonzero)
# reshape scores N * C * M to (N*C*M) * 1
outputs_reshape_scores_rank1 = [result_name + "@reshape_scores_rank1"]
node_reshape_scores_rank1 = onnx.helper.make_node(
"Reshape",
inputs=inputs['Scores'] + [result_name + "@const_-1"],
outputs=outputs_reshape_scores_rank1)
node_list.append(node_reshape_scores_rank1)
# get the shape of scores
outputs_shape_scores = [result_name + "@shape_scores"]
node_shape_scores = onnx.helper.make_node(
'Shape', inputs=inputs['Scores'], outputs=outputs_shape_scores)
node_list.append(node_shape_scores)
# gather the index: 2 shape of scores
outputs_gather_scores_dim1 = [result_name + "@gather_scores_dim1"]
node_gather_scores_dim1 = onnx.helper.make_node(
'Gather',
inputs=outputs_shape_scores + [result_name + "@const_2"],
outputs=outputs_gather_scores_dim1,
axis=0)
node_list.append(node_gather_scores_dim1)
# mul class * M
outputs_mul_classnum_boxnum = [result_name + "@mul_classnum_boxnum"]
node_mul_classnum_boxnum = onnx.helper.make_node(
'Mul',
inputs=outputs_gather_1_nonzero + outputs_gather_scores_dim1,
outputs=outputs_mul_classnum_boxnum)
node_list.append(node_mul_classnum_boxnum)
# add class * M * index
outputs_add_class_M_index = [result_name + "@add_class_M_index"]
node_add_class_M_index = onnx.helper.make_node(
'Add',
inputs=outputs_mul_classnum_boxnum + outputs_gather_2_nonzero,
outputs=outputs_add_class_M_index)
node_list.append(node_add_class_M_index)
# Squeeze the indices to 1 dim
outputs_squeeze_select_index = [result_name + "@squeeze_select_index"]
node_squeeze_select_index = onnx.helper.make_node(
'Squeeze',
inputs=outputs_add_class_M_index,
outputs=outputs_squeeze_select_index,
axes=[0, 2])
node_list.append(node_squeeze_select_index)
# gather the data from flatten scores
outputs_gather_select_scores = [result_name + "@gather_select_scores"]
node_gather_select_scores = onnx.helper.make_node('Gather',
inputs=outputs_reshape_scores_rank1 + \
outputs_squeeze_select_index,
outputs=outputs_gather_select_scores,
axis=0)
node_list.append(node_gather_select_scores)
# get nums to input TopK
outputs_shape_select_num = [result_name + "@shape_select_num"]
node_shape_select_num = onnx.helper.make_node(
'Shape',
inputs=outputs_gather_select_scores,
outputs=outputs_shape_select_num)
node_list.append(node_shape_select_num)
outputs_gather_select_num = [result_name + "@gather_select_num"]
node_gather_select_num = onnx.helper.make_node(
'Gather',
inputs=outputs_shape_select_num + [result_name + "@const_0"],
outputs=outputs_gather_select_num,
axis=0)
node_list.append(node_gather_select_num)
outputs_unsqueeze_select_num = [result_name + "@unsqueeze_select_num"]
node_unsqueeze_select_num = onnx.helper.make_node(
'Unsqueeze',
inputs=outputs_gather_select_num,
outputs=outputs_unsqueeze_select_num,
axes=[0])
node_list.append(node_unsqueeze_select_num)
outputs_concat_topK_select_num = [result_name + "@conat_topK_select_num"]
node_conat_topK_select_num = onnx.helper.make_node(
'Concat',
inputs=outputs_unsqueeze_select_num + name_keep_top_k_2D,
outputs=outputs_concat_topK_select_num,
axis=0)
node_list.append(node_conat_topK_select_num)
outputs_cast_concat_topK_select_num = [
result_name + "@concat_topK_select_num"
]
node_outputs_cast_concat_topK_select_num = onnx.helper.make_node(
'Cast',
inputs=outputs_concat_topK_select_num,
outputs=outputs_cast_concat_topK_select_num,
to=6)
node_list.append(node_outputs_cast_concat_topK_select_num)
# get min(topK, num_select)
outputs_compare_topk_num_select = [result_name + "@compare_topk_num_select"]
node_compare_topk_num_select = onnx.helper.make_node(
'ReduceMin',
inputs=outputs_cast_concat_topK_select_num,
outputs=outputs_compare_topk_num_select,
keepdims=0)
node_list.append(node_compare_topk_num_select)
# unsqueeze the indices to 1D tensor
outputs_unsqueeze_topk_select_indices = [
result_name + "@unsqueeze_topk_select_indices"
]
node_unsqueeze_topk_select_indices = onnx.helper.make_node(
'Unsqueeze',
inputs=outputs_compare_topk_num_select,
outputs=outputs_unsqueeze_topk_select_indices,
axes=[0])
node_list.append(node_unsqueeze_topk_select_indices)
# cast the indices to INT64
outputs_cast_topk_indices = [result_name + "@cast_topk_indices"]
node_cast_topk_indices = onnx.helper.make_node(
'Cast',
inputs=outputs_unsqueeze_topk_select_indices,
outputs=outputs_cast_topk_indices,
to=7)
node_list.append(node_cast_topk_indices)
# select topk scores indices
outputs_topk_select_topk_indices = [result_name + "@topk_select_topk_values",\
result_name + "@topk_select_topk_indices"]
node_topk_select_topk_indices = onnx.helper.make_node(
'TopK',
inputs=outputs_gather_select_scores + outputs_cast_topk_indices,
outputs=outputs_topk_select_topk_indices)
node_list.append(node_topk_select_topk_indices)
# gather topk label, scores, boxes
outputs_gather_topk_scores = [result_name + "@gather_topk_scores"]
node_gather_topk_scores = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_select_scores +
[outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_scores,
axis=0)
node_list.append(node_gather_topk_scores)
outputs_gather_topk_class = [result_name + "@gather_topk_class"]
node_gather_topk_class = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_1_nonzero +
[outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_class,
axis=1)
node_list.append(node_gather_topk_class)
# gather the boxes need to gather the boxes id, then get boxes
outputs_gather_topk_boxes_id = [result_name + "@gather_topk_boxes_id"]
node_gather_topk_boxes_id = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_2_nonzero +
[outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_boxes_id,
axis=1)
node_list.append(node_gather_topk_boxes_id)
# squeeze the gather_topk_boxes_id to 1 dim
outputs_squeeze_topk_boxes_id = [result_name + "@squeeze_topk_boxes_id"]
node_squeeze_topk_boxes_id = onnx.helper.make_node(
'Squeeze',
inputs=outputs_gather_topk_boxes_id,
outputs=outputs_squeeze_topk_boxes_id,
axes=[0, 2])
node_list.append(node_squeeze_topk_boxes_id)
outputs_gather_select_boxes = [result_name + "@gather_select_boxes"]
node_gather_select_boxes = onnx.helper.make_node(
'Gather',
inputs=inputs['BBoxes'] + outputs_squeeze_topk_boxes_id,
outputs=outputs_gather_select_boxes,
axis=1)
node_list.append(node_gather_select_boxes)
# concat the final result
# before concat need to cast the class to float
outputs_cast_topk_class = [result_name + "@cast_topk_class"]
node_cast_topk_class = onnx.helper.make_node(
'Cast',
inputs=outputs_gather_topk_class,
outputs=outputs_cast_topk_class,
to=1)
node_list.append(node_cast_topk_class)
outputs_unsqueeze_topk_scores = [result_name + "@unsqueeze_topk_scores"]
node_unsqueeze_topk_scores = onnx.helper.make_node(
'Unsqueeze',
inputs=outputs_gather_topk_scores,
outputs=outputs_unsqueeze_topk_scores,
axes=[0, 2])
node_list.append(node_unsqueeze_topk_scores)
inputs_concat_final_results = outputs_cast_topk_class + outputs_unsqueeze_topk_scores +\
outputs_gather_select_boxes
outputs_sort_by_socre_results = [result_name + "@concat_topk_scores"]
node_sort_by_socre_results = onnx.helper.make_node(
'Concat',
inputs=inputs_concat_final_results,
outputs=outputs_sort_by_socre_results,
axis=2)
node_list.append(node_sort_by_socre_results)
# select topk classes indices
outputs_squeeze_cast_topk_class = [result_name + "@squeeze_cast_topk_class"]
node_squeeze_cast_topk_class = onnx.helper.make_node(
'Squeeze',
inputs=outputs_cast_topk_class,
outputs=outputs_squeeze_cast_topk_class,
axes=[0, 2])
node_list.append(node_squeeze_cast_topk_class)
outputs_neg_squeeze_cast_topk_class = [
result_name + "@neg_squeeze_cast_topk_class"
]
node_neg_squeeze_cast_topk_class = onnx.helper.make_node(
'Neg',
inputs=outputs_squeeze_cast_topk_class,
outputs=outputs_neg_squeeze_cast_topk_class)
node_list.append(node_neg_squeeze_cast_topk_class)
outputs_topk_select_classes_indices = [result_name + "@topk_select_topk_classes_scores",\
result_name + "@topk_select_topk_classes_indices"]
node_topk_select_topk_indices = onnx.helper.make_node(
'TopK',
inputs=outputs_neg_squeeze_cast_topk_class + outputs_cast_topk_indices,
outputs=outputs_topk_select_classes_indices)
node_list.append(node_topk_select_topk_indices)
outputs_concat_final_results = outputs['Out']
node_concat_final_results = onnx.helper.make_node(
'Gather',
inputs=outputs_sort_by_socre_results +
[outputs_topk_select_classes_indices[1]],
outputs=outputs_concat_final_results,
axis=1)
node_list.append(node_concat_final_results)
return node_list
import onnx
import numpy as np
from onnx import onnx_pb, helper
def get_old_name(arg, name_prefix=''):
prefix_index = arg.find(name_prefix)
if prefix_index != -1:
last_prefix = arg[len(name_prefix):]
else:
last_prefix = arg
idx = last_prefix.find('@')
if idx != -1:
last_prefix = last_prefix[:idx]
return name_prefix + last_prefix
def yolo_box(op, block):
inputs = dict()
outputs = dict()
attrs = dict()
for name in op.input_names:
inputs[name] = op.input(name)
for name in op.output_names:
outputs[name] = op.output(name)
for name in op.attr_names:
attrs[name] = op.attr(name)
model_name = outputs['Boxes'][0]
input_shape = block.vars[get_old_name(inputs['X'][0])].shape
image_size = inputs['ImgSize']
input_height = input_shape[2]
input_width = input_shape[3]
class_num = attrs['class_num']
anchors = attrs['anchors']
num_anchors = int(len(anchors)) // 2
downsample_ratio = attrs['downsample_ratio']
input_size = input_height * downsample_ratio
conf_thresh = attrs['conf_thresh']
conf_thresh_mat = np.ones([num_anchors * input_height *
input_width]) * conf_thresh
node_list = []
im_outputs = []
x_shape = [1, num_anchors, 5 + class_num, input_height, input_width]
name_x_shape = [model_name + "@x_shape"]
node_x_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_x_shape,
value=onnx.helper.make_tensor(
name=name_x_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[5],
vals=x_shape))
node_list.append(node_x_shape)
outputs_x_reshape = [model_name + "@reshape"]
node_x_reshape = onnx.helper.make_node(
'Reshape', inputs=inputs['X'] + name_x_shape, outputs=outputs_x_reshape)
node_list.append(node_x_reshape)
outputs_x_transpose = [model_name + "@x_transpose"]
node_x_transpose = onnx.helper.make_node(
'Transpose',
inputs=outputs_x_reshape,
outputs=outputs_x_transpose,
perm=[0, 1, 3, 4, 2])
node_list.append(node_x_transpose)
range_x = []
range_y = []
for i in range(0, input_width):
range_x.append(i)
for j in range(0, input_height):
range_y.append(j)
name_range_x = [model_name + "@range_x"]
node_range_x = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_range_x,
value=onnx.helper.make_tensor(
name=name_range_x[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=[input_width],
vals=range_x))
node_list.append(node_range_x)
name_range_y = [model_name + "@range_y"]
node_range_y = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_range_y,
value=onnx.helper.make_tensor(
name=name_range_y[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=[input_height],
vals=range_y))
node_list.append(node_range_y)
range_x_new_shape = [1, input_width]
range_y_new_shape = [input_height, 1]
name_range_x_new_shape = [model_name + "@range_x_new_shape"]
node_range_x_new_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_range_x_new_shape,
value=onnx.helper.make_tensor(
name=name_range_x_new_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(range_x_new_shape)],
vals=range_x_new_shape))
node_list.append(node_range_x_new_shape)
name_range_y_new_shape = [model_name + "@range_y_new_shape"]
node_range_y_new_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_range_y_new_shape,
value=onnx.helper.make_tensor(
name=name_range_y_new_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(range_y_new_shape)],
vals=range_y_new_shape))
node_list.append(node_range_y_new_shape)
outputs_range_x_reshape = [model_name + "@range_x_reshape"]
node_range_x_reshape = onnx.helper.make_node(
'Reshape',
inputs=name_range_x + name_range_x_new_shape,
outputs=outputs_range_x_reshape)
node_list.append(node_range_x_reshape)
outputs_range_y_reshape = [model_name + "@range_y_reshape"]
node_range_y_reshape = onnx.helper.make_node(
'Reshape',
inputs=name_range_y + name_range_y_new_shape,
outputs=outputs_range_y_reshape)
node_list.append(node_range_y_reshape)
outputs_grid_x = [model_name + "@grid_x"]
node_grid_x = onnx.helper.make_node(
"Tile",
inputs=outputs_range_x_reshape + name_range_y_new_shape,
outputs=outputs_grid_x)
node_list.append(node_grid_x)
outputs_grid_y = [model_name + "@grid_y"]
node_grid_y = onnx.helper.make_node(
"Tile",
inputs=outputs_range_y_reshape + name_range_x_new_shape,
outputs=outputs_grid_y)
node_list.append(node_grid_y)
outputs_box_x = [model_name + "@box_x"]
outputs_box_y = [model_name + "@box_y"]
outputs_box_w = [model_name + "@box_w"]
outputs_box_h = [model_name + "@box_h"]
outputs_conf = [model_name + "@conf"]
outputs_prob = [model_name + "@prob"]
node_split_input = onnx.helper.make_node(
"Split",
inputs=outputs_x_transpose,
outputs=outputs_box_x + outputs_box_y + outputs_box_w\
+ outputs_box_h + outputs_conf + outputs_prob,
axis=-1,
split=[1, 1, 1, 1, 1, class_num])
node_list.append(node_split_input)
outputs_box_x_sigmoid = [model_name + "@box_x_sigmoid"]
outputs_box_y_sigmoid = [model_name + "@box_y_sigmoid"]
node_box_x_sigmoid = onnx.helper.make_node(
"Sigmoid", inputs=outputs_box_x, outputs=outputs_box_x_sigmoid)
node_list.append(node_box_x_sigmoid)
node_box_y_sigmoid = onnx.helper.make_node(
"Sigmoid", inputs=outputs_box_y, outputs=outputs_box_y_sigmoid)
node_list.append(node_box_y_sigmoid)
outputs_box_x_squeeze = [model_name + "@box_x_squeeze"]
outputs_box_y_squeeze = [model_name + "@box_y_squeeze"]
node_box_x_squeeze = onnx.helper.make_node(
'Squeeze',
inputs=outputs_box_x_sigmoid,
outputs=outputs_box_x_squeeze,
axes=[4])
node_list.append(node_box_x_squeeze)
node_box_y_squeeze = onnx.helper.make_node(
'Squeeze',
inputs=outputs_box_y_sigmoid,
outputs=outputs_box_y_squeeze,
axes=[4])
node_list.append(node_box_y_squeeze)
outputs_box_x_add_grid = [model_name + "@box_x_add_grid"]
outputs_box_y_add_grid = [model_name + "@box_y_add_grid"]
node_box_x_add_grid = onnx.helper.make_node(
"Add",
inputs=outputs_grid_x + outputs_box_x_squeeze,
outputs=outputs_box_x_add_grid)
node_list.append(node_box_x_add_grid)
node_box_y_add_grid = onnx.helper.make_node(
"Add",
inputs=outputs_grid_y + outputs_box_y_squeeze,
outputs=outputs_box_y_add_grid)
node_list.append(node_box_y_add_grid)
name_input_h = [model_name + "@input_h"]
name_input_w = [model_name + "@input_w"]
node_input_h = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_input_h,
value=onnx.helper.make_tensor(
name=name_input_w[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[input_height]))
node_list.append(node_input_h)
node_input_w = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_input_w,
value=onnx.helper.make_tensor(
name=name_input_w[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[input_width]))
node_list.append(node_input_w)
outputs_box_x_encode = [model_name + "@box_x_encode"]
outputs_box_y_encode = [model_name + "@box_y_encode"]
node_box_x_encode = onnx.helper.make_node(
'Div',
inputs=outputs_box_x_add_grid + name_input_w,
outputs=outputs_box_x_encode)
node_list.append(node_box_x_encode)
node_box_y_encode = onnx.helper.make_node(
'Div',
inputs=outputs_box_y_add_grid + name_input_h,
outputs=outputs_box_y_encode)
node_list.append(node_box_y_encode)
name_anchor_tensor = [model_name + "@anchor_tensor"]
node_anchor_tensor = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_anchor_tensor,
value=onnx.helper.make_tensor(
name=name_anchor_tensor[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=[len(anchors)],
vals=anchors))
node_list.append(node_anchor_tensor)
anchor_shape = [int(num_anchors), 2]
name_anchor_shape = [model_name + "@anchor_shape"]
node_anchor_shape = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_anchor_shape,
value=onnx.helper.make_tensor(
name=name_anchor_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[2],
vals=anchor_shape))
node_list.append(node_anchor_shape)
outputs_anchor_tensor_reshape = [model_name + "@anchor_tensor_reshape"]
node_anchor_tensor_reshape = onnx.helper.make_node(
"Reshape",
inputs=name_anchor_tensor + name_anchor_shape,
outputs=outputs_anchor_tensor_reshape)
node_list.append(node_anchor_tensor_reshape)
name_input_size = [model_name + "@input_size"]
node_input_size = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_input_size,
value=onnx.helper.make_tensor(
name=name_input_size[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[input_size]))
node_list.append(node_input_size)
outputs_anchors_div_input_size = [model_name + "@anchors_div_input_size"]
node_anchors_div_input_size = onnx.helper.make_node(
"Div",
inputs=outputs_anchor_tensor_reshape + name_input_size,
outputs=outputs_anchors_div_input_size)
node_list.append(node_anchors_div_input_size)
outputs_anchor_w = [model_name + "@anchor_w"]
outputs_anchor_h = [model_name + "@anchor_h"]
node_anchor_split = onnx.helper.make_node(
'Split',
inputs=outputs_anchors_div_input_size,
outputs=outputs_anchor_w + outputs_anchor_h,
axis=1,
split=[1, 1])
node_list.append(node_anchor_split)
new_anchor_shape = [1, int(num_anchors), 1, 1]
name_new_anchor_shape = [model_name + "@new_anchor_shape"]
node_new_anchor_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_new_anchor_shape,
value=onnx.helper.make_tensor(
name=name_new_anchor_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(new_anchor_shape)],
vals=new_anchor_shape))
node_list.append(node_new_anchor_shape)
outputs_anchor_w_reshape = [model_name + "@anchor_w_reshape"]
outputs_anchor_h_reshape = [model_name + "@anchor_h_reshape"]
node_anchor_w_reshape = onnx.helper.make_node(
'Reshape',
inputs=outputs_anchor_w + name_new_anchor_shape,
outputs=outputs_anchor_w_reshape)
node_list.append(node_anchor_w_reshape)
node_anchor_h_reshape = onnx.helper.make_node(
'Reshape',
inputs=outputs_anchor_h + name_new_anchor_shape,
outputs=outputs_anchor_h_reshape)
node_list.append(node_anchor_h_reshape)
outputs_box_w_squeeze = [model_name + "@box_w_squeeze"]
node_box_w_squeeze = onnx.helper.make_node(
'Squeeze',
inputs=outputs_box_w,
outputs=outputs_box_w_squeeze,
axes=[4])
node_list.append(node_box_w_squeeze)
outputs_box_h_squeeze = [model_name + "@box_h_squeeze"]
node_box_h_squeeze = onnx.helper.make_node(
'Squeeze',
inputs=outputs_box_h,
outputs=outputs_box_h_squeeze,
axes=[4])
node_list.append(node_box_h_squeeze)
outputs_box_w_exp = [model_name + "@box_w_exp"]
node_box_w_exp = onnx.helper.make_node(
"Exp", inputs=outputs_box_w_squeeze, outputs=outputs_box_w_exp)
node_list.append(node_box_w_exp)
outputs_box_h_exp = [model_name + "@box_h_exp"]
node_box_h_exp = onnx.helper.make_node(
"Exp", inputs=outputs_box_h_squeeze, outputs=outputs_box_h_exp)
node_list.append(node_box_h_exp)
outputs_box_w_encode = [model_name + "box_w_encode"]
outputs_box_h_encode = [model_name + "box_h_encode"]
node_box_w_encode = onnx.helper.make_node(
'Mul',
inputs=outputs_box_w_exp + outputs_anchor_w_reshape,
outputs=outputs_box_w_encode)
node_list.append(node_box_w_encode)
node_box_h_encode = onnx.helper.make_node(
'Mul',
inputs=outputs_box_h_exp + outputs_anchor_h_reshape,
outputs=outputs_box_h_encode)
node_list.append(node_box_h_encode)
outputs_conf_sigmoid = [model_name + "@conf_sigmoid"]
node_conf_sigmoid = onnx.helper.make_node(
'Sigmoid', inputs=outputs_conf, outputs=outputs_conf_sigmoid)
node_list.append(node_conf_sigmoid)
name_conf_thresh = [model_name + "@conf_thresh"]
node_conf_thresh = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_conf_thresh,
value=onnx.helper.make_tensor(
name=name_conf_thresh[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=[num_anchors * input_height * input_width],
vals=conf_thresh_mat))
node_list.append(node_conf_thresh)
conf_shape = [1, int(num_anchors), input_height, input_width, 1]
name_conf_shape = [model_name + "@conf_shape"]
node_conf_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_conf_shape,
value=onnx.helper.make_tensor(
name=name_conf_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(conf_shape)],
vals=conf_shape))
node_list.append(node_conf_shape)
outputs_conf_thresh_reshape = [model_name + "@conf_thresh_reshape"]
node_conf_thresh_reshape = onnx.helper.make_node(
'Reshape',
inputs=name_conf_thresh + name_conf_shape,
outputs=outputs_conf_thresh_reshape)
node_list.append(node_conf_thresh_reshape)
outputs_conf_sub = [model_name + "@conf_sub"]
node_conf_sub = onnx.helper.make_node(
'Sub',
inputs=outputs_conf_sigmoid + outputs_conf_thresh_reshape,
outputs=outputs_conf_sub)
node_list.append(node_conf_sub)
outputs_conf_clip = [model_name + "@conf_clip"]
node_conf_clip = onnx.helper.make_node(
'Clip', inputs=outputs_conf_sub, outputs=outputs_conf_clip)
node_list.append(node_conf_clip)
zeros = [0]
name_zeros = [model_name + "@zeros"]
node_zeros = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_zeros,
value=onnx.helper.make_tensor(
name=name_zeros[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=zeros))
node_list.append(node_zeros)
outputs_conf_clip_bool = [model_name + "@conf_clip_bool"]
node_conf_clip_bool = onnx.helper.make_node(
'Greater',
inputs=outputs_conf_clip + name_zeros,
outputs=outputs_conf_clip_bool)
node_list.append(node_conf_clip_bool)
outputs_conf_clip_cast = [model_name + "@conf_clip_cast"]
node_conf_clip_cast = onnx.helper.make_node(
'Cast',
inputs=outputs_conf_clip_bool,
outputs=outputs_conf_clip_cast,
to=1)
node_list.append(node_conf_clip_cast)
outputs_conf_set_zero = [model_name + "@conf_set_zero"]
node_conf_set_zero = onnx.helper.make_node(
'Mul',
inputs=outputs_conf_sigmoid + outputs_conf_clip_cast,
outputs=outputs_conf_set_zero)
node_list.append(node_conf_set_zero)
outputs_prob_sigmoid = [model_name + "@prob_sigmoid"]
node_prob_sigmoid = onnx.helper.make_node(
'Sigmoid', inputs=outputs_prob, outputs=outputs_prob_sigmoid)
node_list.append(node_prob_sigmoid)
new_shape = [1, int(num_anchors), input_height, input_width, 1]
name_new_shape = [model_name + "@new_shape"]
node_new_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_new_shape,
value=onnx.helper.make_tensor(
name=name_new_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(new_shape)],
vals=new_shape))
node_list.append(node_new_shape)
outputs_conf_new_shape = [model_name + "@_conf_new_shape"]
node_conf_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_conf_set_zero + name_new_shape,
outputs=outputs_conf_new_shape)
node_list.append(node_conf_new_shape)
outputs_score = [model_name + "@score"]
node_score = onnx.helper.make_node(
'Mul',
inputs=outputs_prob_sigmoid + outputs_conf_new_shape,
outputs=outputs_score)
node_list.append(node_score)
outputs_conf_bool = [model_name + "@conf_bool"]
node_conf_bool = onnx.helper.make_node(
'Greater',
inputs=outputs_conf_new_shape + name_zeros,
outputs=outputs_conf_bool)
node_list.append(node_conf_bool)
outputs_box_x_new_shape = [model_name + "@box_x_new_shape"]
node_box_x_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_box_x_encode + name_new_shape,
outputs=outputs_box_x_new_shape)
node_list.append(node_box_x_new_shape)
outputs_box_y_new_shape = [model_name + "@box_y_new_shape"]
node_box_y_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_box_y_encode + name_new_shape,
outputs=outputs_box_y_new_shape)
node_list.append(node_box_y_new_shape)
outputs_box_w_new_shape = [model_name + "@box_w_new_shape"]
node_box_w_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_box_w_encode + name_new_shape,
outputs=outputs_box_w_new_shape)
node_list.append(node_box_w_new_shape)
outputs_box_h_new_shape = [model_name + "@box_h_new_shape"]
node_box_h_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_box_h_encode + name_new_shape,
outputs=outputs_box_h_new_shape)
node_list.append(node_box_h_new_shape)
outputs_pred_box = [model_name + "@pred_box"]
node_pred_box = onnx.helper.make_node(
'Concat',
inputs=outputs_box_x_new_shape + outputs_box_y_new_shape + \
outputs_box_w_new_shape + outputs_box_h_new_shape,
outputs=outputs_pred_box,
axis=4)
node_list.append(node_pred_box)
outputs_conf_cast = [model_name + "conf_cast"]
node_conf_cast = onnx.helper.make_node(
'Cast', inputs=outputs_conf_bool, outputs=outputs_conf_cast, to=1)
node_list.append(node_conf_cast)
outputs_pred_box_mul_conf = [model_name + "@pred_box_mul_conf"]
node_pred_box_mul_conf = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box + outputs_conf_cast,
outputs=outputs_pred_box_mul_conf)
node_list.append(node_pred_box_mul_conf)
box_shape = [1, int(num_anchors) * input_height * input_width, 4]
name_box_shape = [model_name + "@box_shape"]
node_box_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_box_shape,
value=onnx.helper.make_tensor(
name=name_box_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(box_shape)],
vals=box_shape))
node_list.append(node_box_shape)
outputs_pred_box_new_shape = [model_name + "@pred_box_new_shape"]
node_pred_box_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_pred_box_mul_conf + name_box_shape,
outputs=outputs_pred_box_new_shape)
node_list.append(node_pred_box_new_shape)
outputs_pred_box_x = [model_name + "@_pred_box_x"]
outputs_pred_box_y = [model_name + "@_pred_box_y"]
outputs_pred_box_w = [model_name + "@_pred_box_w"]
outputs_pred_box_h = [model_name + "@_pred_box_h"]
node_pred_box_split = onnx.helper.make_node(
'Split',
inputs=outputs_pred_box_new_shape,
outputs=outputs_pred_box_x + outputs_pred_box_y + outputs_pred_box_w +
outputs_pred_box_h,
axis=2)
node_list.append(node_pred_box_split)
name_number_two = [model_name + "@number_two"]
node_number_two = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_number_two,
value=onnx.helper.make_tensor(
name=name_number_two[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[2]))
node_list.append(node_number_two)
outputs_half_w = [model_name + "@half_w"]
node_half_w = onnx.helper.make_node(
"Div",
inputs=outputs_pred_box_w + name_number_two,
outputs=outputs_half_w)
node_list.append(node_half_w)
outputs_half_h = [model_name + "@half_h"]
node_half_h = onnx.helper.make_node(
"Div",
inputs=outputs_pred_box_h + name_number_two,
outputs=outputs_half_h)
node_list.append(node_half_h)
outputs_pred_box_x1 = [model_name + "@pred_box_x1"]
node_pred_box_x1 = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_x + outputs_half_w,
outputs=outputs_pred_box_x1)
node_list.append(node_pred_box_x1)
outputs_pred_box_y1 = [model_name + "@pred_box_y1"]
node_pred_box_y1 = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_y + outputs_half_h,
outputs=outputs_pred_box_y1)
node_list.append(node_pred_box_y1)
outputs_pred_box_x2 = [model_name + "@pred_box_x2"]
node_pred_box_x2 = onnx.helper.make_node(
'Add',
inputs=outputs_pred_box_x + outputs_half_w,
outputs=outputs_pred_box_x2)
node_list.append(node_pred_box_x2)
outputs_pred_box_y2 = [model_name + "@pred_box_y2"]
node_pred_box_y2 = onnx.helper.make_node(
'Add',
inputs=outputs_pred_box_y + outputs_half_h,
outputs=outputs_pred_box_y2)
node_list.append(node_pred_box_y2)
outputs_sqeeze_image_size = [model_name + "@sqeeze_image_size"]
node_sqeeze_image_size = onnx.helper.make_node(
"Squeeze",
axes=[0],
inputs=image_size,
outputs=outputs_sqeeze_image_size)
node_list.append(node_sqeeze_image_size)
output_img_height = [model_name + "@img_height"]
output_img_width = [model_name + "@img_width"]
node_image_size_split = onnx.helper.make_node(
"Split",
inputs=outputs_sqeeze_image_size,
outputs=output_img_height + output_img_width,
axis=-1,
split=[1, 1])
node_list.append(node_image_size_split)
output_img_width_cast = [model_name + "@img_width_cast"]
node_img_width_cast = onnx.helper.make_node(
'Cast', inputs=output_img_width, outputs=output_img_width_cast, to=1)
node_list.append(node_img_width_cast)
output_img_height_cast = [model_name + "@img_height_cast"]
node_img_height_cast = onnx.helper.make_node(
'Cast', inputs=output_img_height, outputs=output_img_height_cast, to=1)
node_list.append(node_img_height_cast)
outputs_pred_box_x1_decode = [model_name + "@pred_box_x1_decode"]
outputs_pred_box_y1_decode = [model_name + "@pred_box_y1_decode"]
outputs_pred_box_x2_decode = [model_name + "@pred_box_x2_decode"]
outputs_pred_box_y2_decode = [model_name + "@pred_box_y2_decode"]
node_pred_box_x1_decode = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box_x1 + output_img_width_cast,
outputs=outputs_pred_box_x1_decode)
node_list.append(node_pred_box_x1_decode)
node_pred_box_y1_decode = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box_y1 + output_img_height_cast,
outputs=outputs_pred_box_y1_decode)
node_list.append(node_pred_box_y1_decode)
node_pred_box_x2_decode = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box_x2 + output_img_width_cast,
outputs=outputs_pred_box_x2_decode)
node_list.append(node_pred_box_x2_decode)
node_pred_box_y2_decode = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box_y2 + output_img_height_cast,
outputs=outputs_pred_box_y2_decode)
node_list.append(node_pred_box_y2_decode)
name_number_one = [model_name + "@one"]
node_number_one = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_number_one,
value=onnx.helper.make_tensor(
name=name_number_one[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[1]))
node_list.append(node_number_one)
output_new_img_height = [model_name + "@new_img_height"]
node_new_img_height = onnx.helper.make_node(
'Sub',
inputs=output_img_height_cast + name_number_one,
outputs=output_new_img_height)
node_list.append(node_new_img_height)
output_new_img_width = [model_name + "@new_img_width"]
node_new_img_width = onnx.helper.make_node(
'Sub',
inputs=output_img_width_cast + name_number_one,
outputs=output_new_img_width)
node_list.append(node_new_img_width)
outputs_pred_box_x2_sub_w = [model_name + "@pred_box_x2_sub_w"]
node_pred_box_x2_sub_w = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_x2_decode + output_new_img_width,
outputs=outputs_pred_box_x2_sub_w)
node_list.append(node_pred_box_x2_sub_w)
outputs_pred_box_y2_sub_h = [model_name + "@pred_box_y2_sub_h"]
node_pred_box_y2_sub_h = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_y2_decode + output_new_img_height,
outputs=outputs_pred_box_y2_sub_h)
node_list.append(node_pred_box_y2_sub_h)
outputs_pred_box_x1_clip = [model_name + "@pred_box_x1_clip"]
outputs_pred_box_y1_clip = [model_name + "@pred_box_y1_clip"]
outputs_pred_box_x2_clip = [model_name + "@pred_box_x2_clip"]
outputs_pred_box_y2_clip = [model_name + "@pred_box_y2_clip"]
node_pred_box_x1_clip = onnx.helper.make_node(
'Clip',
inputs=outputs_pred_box_x1_decode,
outputs=outputs_pred_box_x1_clip,
min=0.0,
max=float(np.inf))
node_list.append(node_pred_box_x1_clip)
node_pred_box_y1_clip = onnx.helper.make_node(
'Clip',
inputs=outputs_pred_box_y1_decode,
outputs=outputs_pred_box_y1_clip,
min=0.0,
max=float(np.inf))
node_list.append(node_pred_box_y1_clip)
node_pred_box_x2_clip = onnx.helper.make_node(
'Clip',
inputs=outputs_pred_box_x2_sub_w,
outputs=outputs_pred_box_x2_clip,
min=0.0,
max=float(np.inf))
node_list.append(node_pred_box_x2_clip)
node_pred_box_y2_clip = onnx.helper.make_node(
'Clip',
inputs=outputs_pred_box_y2_sub_h,
outputs=outputs_pred_box_y2_clip,
min=0.0,
max=float(np.inf))
node_list.append(node_pred_box_y2_clip)
outputs_pred_box_x2_res = [model_name + "@box_x2_res"]
node_pred_box_x2_res = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_x2_decode + outputs_pred_box_x2_clip,
outputs=outputs_pred_box_x2_res)
node_list.append(node_pred_box_x2_res)
outputs_pred_box_y2_res = [model_name + "@box_y2_res"]
node_pred_box_y2_res = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_y2_decode + outputs_pred_box_y2_clip,
outputs=outputs_pred_box_y2_res)
node_list.append(node_pred_box_y2_res)
node_pred_box_result = onnx.helper.make_node(
'Concat',
inputs=outputs_pred_box_x1_clip + outputs_pred_box_y1_clip +
outputs_pred_box_x2_res + outputs_pred_box_y2_res,
outputs=outputs['Boxes'],
axis=-1)
node_list.append(node_pred_box_result)
score_shape = [1, input_height * input_width * int(num_anchors), class_num]
name_score_shape = [model_name + "@score_shape"]
node_score_shape = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_score_shape,
value=onnx.helper.make_tensor(
name=name_score_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(score_shape)],
vals=score_shape))
node_list.append(node_score_shape)
node_score_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_score + name_score_shape,
outputs=outputs['Scores'])
node_list.append(node_score_new_shape)
return node_list
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
import x2paddle
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
from onnx import helper, onnx_pb
from x2paddle.op_mapper.paddle2onnx.opset9.opset import OpSet9
from x2paddle.op_mapper.paddle2onnx.opset10.opset import OpSet10
from x2paddle.op_mapper.paddle2onnx.opset11.opset import OpSet11
class PaddleOpMapper(object):
def __init__(self):
self.support_opsets = [9, 10, 11]
self.default_opset = 10
self.name_counter = dict()
self.op_set = None
def convert(self, program, save_dir, opset_number=10):
self.op_set = self.create_opset(opset_number)
weight_nodes = self.op_set.convert_weights(program)
op_nodes = list()
input_nodes = list()
output_nodes = list()
unsupported_ops = set()
print("Translating PaddlePaddle to ONNX...\n")
for block in program.blocks:
for i, op in enumerate(block.ops):
sys.stdout.write("\rTotal:{}, Current:{} : {} ".format(
len(block.ops), i + 1, op.type))
sys.stdout.flush()
if not hasattr(self.op_set, op.type):
unsupported_ops.add(op.type)
continue
if len(unsupported_ops) > 0:
continue
node = getattr(self.op_set, op.type)(op, block)
if op.type == 'feed':
print(node.name)
input_nodes.append(node)
elif op.type == 'fetch':
output_nodes.append(node)
else:
if isinstance(node, list):
op_nodes = op_nodes + node
else:
op_nodes.append(node)
if len(unsupported_ops) > 0:
print("\nThere's {} ops are not supported yet".format(
len(unsupported_ops)))
for op in unsupported_ops:
print("=========== {} ===========".format(op))
return
graph = helper.make_graph(
nodes=weight_nodes + op_nodes,
name='onnx_model_from_paddle',
initializer=[],
inputs=input_nodes,
outputs=output_nodes)
opset_imports = [helper.make_opsetid("", opset_number)]
model = helper.make_model(
graph, producer_name='X2Paddle', opset_imports=opset_imports)
onnx.checker.check_model(model)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
with open(os.path.join(save_dir, 'x2paddle_model.onnx'), 'wb') as f:
f.write(model.SerializeToString())
print("\nTranslated model saved in {}".format(
os.path.join(save_dir, 'x2paddle_model.onnx')))
def create_opset(self, opset_number):
run_opset = self.default_opset
opset = ''
if opset_number in self.support_opsets:
run_opset = opset_number
else:
for support_opset_number in self.support_opsets:
if support_opset_number < opset_number:
run_opset = support_opset_number
else:
break
print(
'Now, onnx2paddle support convert onnx model opset_verison {},'
'opset_verison of your onnx model is {}, automatically treated as op_set: {}.'
.format(self.support_opsets, opset_number, run_opset))
opset = 'OpSet' + str(run_opset)
return eval(opset)()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册