Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
20eef555
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
20eef555
编写于
10月 09, 2022
作者:
W
wjj19950828
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rm SymbolicShapeInference
上级
d740acce
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
4 addition
and
1620 deletion
+4
-1620
x2paddle/decoder/onnx_decoder.py
x2paddle/decoder/onnx_decoder.py
+4
-9
x2paddle/decoder/onnx_shape_inference.py
x2paddle/decoder/onnx_shape_inference.py
+0
-1611
未找到文件。
x2paddle/decoder/onnx_decoder.py
浏览文件 @
20eef555
...
...
@@ -13,7 +13,6 @@
# limitations under the License.
from
x2paddle.core.graph
import
GraphNode
,
Graph
from
x2paddle.decoder.onnx_shape_inference
import
SymbolicShapeInference
from
onnx.checker
import
ValidationError
from
onnx.checker
import
check_model
from
onnx
import
helper
,
shape_inference
...
...
@@ -184,14 +183,10 @@ class ONNXGraph(Graph):
self
.
value_infos
=
{}
self
.
graph
=
onnx_model
.
graph
self
.
get_place_holder_nodes
()
print
(
"shape inferencing ..."
)
self
.
graph
=
SymbolicShapeInference
.
infer_shapes
(
onnx_model
,
fixed_input_shape
=
self
.
fixed_input_shape
)
if
self
.
graph
is
None
:
print
(
'[WARNING] Shape inference by ONNX offical interface.'
)
onnx_model
=
shape_inference
.
infer_shapes
(
onnx_model
)
self
.
graph
=
onnx_model
.
graph
print
(
"shape inferenced."
)
print
(
"Shape inferencing ..."
)
onnx_model
=
shape_inference
.
infer_shapes
(
onnx_model
)
self
.
graph
=
onnx_model
.
graph
print
(
"Shape inferenced."
)
self
.
build
()
self
.
collect_value_infos
()
self
.
allocate_shapes
()
...
...
x2paddle/decoder/onnx_shape_inference.py
已删除
100644 → 0
浏览文件 @
d740acce
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Reference Code from https://github.com/microsoft/onnxruntime, Licensed under the MIT License.
import
argparse
import
numpy
as
np
import
onnx
import
sys
from
onnx
import
helper
,
numpy_helper
,
shape_inference
import
sympy
from
packaging
import
version
def
get_attribute
(
node
,
attr_name
,
default_value
=
None
):
found
=
[
attr
for
attr
in
node
.
attribute
if
attr
.
name
==
attr_name
]
if
found
:
return
helper
.
get_attribute_value
(
found
[
0
])
return
default_value
def
get_dim_from_type_proto
(
dim
):
return
getattr
(
dim
,
dim
.
WhichOneof
(
'value'
))
if
type
(
dim
.
WhichOneof
(
'value'
))
==
str
else
None
def
get_shape_from_type_proto
(
type_proto
):
return
[
get_dim_from_type_proto
(
d
)
for
d
in
type_proto
.
tensor_type
.
shape
.
dim
]
def
get_shape_from_sympy_shape
(
sympy_shape
):
return
[
None
if
i
is
None
else
(
int
(
i
)
if
is_literal
(
i
)
else
str
(
i
))
for
i
in
sympy_shape
]
def
is_literal
(
dim
):
return
type
(
dim
)
in
[
int
,
np
.
int64
,
np
.
int32
,
sympy
.
Integer
]
or
(
hasattr
(
dim
,
'is_number'
)
and
dim
.
is_number
)
def
handle_negative_axis
(
axis
,
rank
):
assert
axis
<
rank
and
axis
>=
-
rank
return
axis
if
axis
>=
0
else
rank
+
axis
def
get_opset
(
mp
,
domain
=
[
''
,
'onnx'
,
'ai.onnx'
]):
if
type
(
domain
)
!=
list
:
domain
=
[
domain
]
for
opset
in
mp
.
opset_import
:
if
opset
.
domain
in
domain
:
return
opset
.
version
return
None
def
as_scalar
(
x
):
if
type
(
x
)
==
list
:
assert
len
(
x
)
==
1
return
x
[
0
]
elif
type
(
x
)
==
np
.
ndarray
:
return
np
.
asscalar
(
x
)
else
:
return
x
def
as_list
(
x
,
keep_none
):
if
type
(
x
)
==
list
:
return
x
elif
type
(
x
)
==
np
.
ndarray
:
return
list
(
x
)
elif
keep_none
and
x
is
None
:
return
None
else
:
return
[
x
]
def
sympy_reduce_product
(
x
):
if
type
(
x
)
==
list
:
value
=
sympy
.
Integer
(
1
)
for
v
in
x
:
value
=
value
*
v
else
:
value
=
x
return
value
class
SymbolicShapeInference
:
def
__init__
(
self
,
int_max
,
auto_merge
,
guess_output_rank
,
verbose
):
self
.
dispatcher_
=
{
'Add'
:
self
.
_infer_symbolic_compute_ops
,
'ArrayFeatureExtractor'
:
self
.
_infer_ArrayFeatureExtractor
,
'AveragePool'
:
self
.
_infer_Pool
,
'Cast'
:
self
.
_infer_Cast
,
'CategoryMapper'
:
self
.
_infer_CategoryMapper
,
'Compress'
:
self
.
_infer_Compress
,
'Concat'
:
self
.
_infer_Concat
,
'ConstantOfShape'
:
self
.
_infer_ConstantOfShape
,
'Conv'
:
self
.
_infer_Conv
,
'CumSum'
:
self
.
_pass_on_shape_and_type
,
'Div'
:
self
.
_infer_symbolic_compute_ops
,
'Expand'
:
self
.
_infer_Expand
,
'Equal'
:
self
.
_infer_symbolic_compute_ops
,
'Floor'
:
self
.
_infer_symbolic_compute_ops
,
'Gather'
:
self
.
_infer_Gather
,
'GatherElements'
:
self
.
_infer_GatherElements
,
'GatherND'
:
self
.
_infer_GatherND
,
'If'
:
self
.
_infer_If
,
'Loop'
:
self
.
_infer_Loop
,
'MatMul'
:
self
.
_infer_MatMul
,
'MatMulInteger16'
:
self
.
_infer_MatMulInteger
,
'MaxPool'
:
self
.
_infer_Pool
,
'Max'
:
self
.
_infer_symbolic_compute_ops
,
'Min'
:
self
.
_infer_symbolic_compute_ops
,
'Mul'
:
self
.
_infer_symbolic_compute_ops
,
'NonMaxSuppression'
:
self
.
_infer_NonMaxSuppression
,
'NonZero'
:
self
.
_infer_NonZero
,
'OneHot'
:
self
.
_infer_OneHot
,
'Pad'
:
self
.
_infer_Pad
,
'Range'
:
self
.
_infer_Range
,
'ReduceProd'
:
self
.
_infer_ReduceProd
,
'Reshape'
:
self
.
_infer_Reshape
,
'Resize'
:
self
.
_infer_Resize
,
'Round'
:
self
.
_pass_on_shape_and_type
,
'Scan'
:
self
.
_infer_Scan
,
'ScatterElements'
:
self
.
_infer_ScatterElements
,
'Shape'
:
self
.
_infer_Shape
,
'Size'
:
self
.
_infer_Size
,
'Slice'
:
self
.
_infer_Slice
,
'Split'
:
self
.
_infer_Split
,
'SplitToSequence'
:
self
.
_infer_SplitToSequence
,
'Squeeze'
:
self
.
_infer_Squeeze
,
'Sub'
:
self
.
_infer_symbolic_compute_ops
,
'Tile'
:
self
.
_infer_Tile
,
'TopK'
:
self
.
_infer_TopK
,
'Unsqueeze'
:
self
.
_infer_Unsqueeze
,
'Where'
:
self
.
_infer_symbolic_compute_ops
,
'ZipMap'
:
self
.
_infer_ZipMap
}
self
.
run_
=
True
self
.
suggested_merge_
=
{}
self
.
symbolic_dims_
=
{}
self
.
input_symbols_
=
{}
self
.
auto_merge_
=
auto_merge
self
.
guess_output_rank_
=
guess_output_rank
self
.
verbose_
=
verbose
self
.
int_max_
=
int_max
def
_add_suggested_merge
(
self
,
symbols
,
apply
=
False
):
assert
all
([(
type
(
s
)
==
str
and
s
in
self
.
symbolic_dims_
)
or
is_literal
(
s
)
for
s
in
symbols
])
symbols
=
set
(
symbols
)
for
k
,
v
in
self
.
suggested_merge_
.
items
():
if
k
in
symbols
:
symbols
.
remove
(
k
)
symbols
.
add
(
v
)
map_to
=
None
# if there is literal, map to it first
for
s
in
symbols
:
if
is_literal
(
s
):
map_to
=
s
break
# when no literals, map to input symbolic dims, then existing symbolic dims
if
map_to
is
None
:
for
s
in
symbols
:
if
s
in
self
.
input_symbols_
:
map_to
=
s
break
if
map_to
is
None
:
for
s
in
symbols
:
if
type
(
self
.
symbolic_dims_
[
s
])
==
sympy
.
Symbol
:
map_to
=
s
break
# when nothing to map to, use the shorter one
if
map_to
is
None
:
if
self
.
verbose_
>
0
:
print
(
'Potential unsafe merge between symbolic expressions: ({})'
.
format
(
','
.
join
(
symbols
)))
symbols_list
=
list
(
symbols
)
lens
=
[
len
(
s
)
for
s
in
symbols_list
]
map_to
=
symbols_list
[
lens
.
index
(
min
(
lens
))]
symbols
.
remove
(
map_to
)
for
s
in
symbols
:
if
s
==
map_to
:
continue
if
is_literal
(
map_to
)
and
is_literal
(
s
):
assert
int
(
map_to
)
==
int
(
s
)
self
.
suggested_merge_
[
s
]
=
int
(
map_to
)
if
is_literal
(
map_to
)
else
map_to
for
k
,
v
in
self
.
suggested_merge_
.
items
():
if
v
==
s
:
self
.
suggested_merge_
[
k
]
=
map_to
if
apply
and
self
.
auto_merge_
:
self
.
_apply_suggested_merge
()
def
_apply_suggested_merge
(
self
,
graph_input_only
=
False
):
if
not
self
.
suggested_merge_
:
return
for
i
in
list
(
self
.
out_mp_
.
graph
.
input
)
+
(
[]
if
graph_input_only
else
list
(
self
.
out_mp_
.
graph
.
value_info
)):
for
d
in
i
.
type
.
tensor_type
.
shape
.
dim
:
if
d
.
dim_param
in
self
.
suggested_merge_
:
v
=
self
.
suggested_merge_
[
d
.
dim_param
]
if
is_literal
(
v
):
d
.
dim_value
=
int
(
v
)
else
:
d
.
dim_param
=
v
def
_preprocess
(
self
,
in_mp
,
input_shapes
=
None
):
out_mp
=
onnx
.
ModelProto
()
out_mp
.
CopyFrom
(
in_mp
)
out_mp
.
graph
.
ClearField
(
'node'
)
self
.
out_mp_
=
out_mp
defined
=
set
([
i
.
name
for
i
in
list
(
in_mp
.
graph
.
input
)
+
list
(
in_mp
.
graph
.
initializer
)
])
pending_nodes
=
[]
# returns True if no more ready nodes
def
_insert_ready_nodes
():
ready_nodes
=
[
pn
for
pn
in
pending_nodes
if
all
([
i
in
defined
for
i
in
pn
.
input
if
i
])
]
for
rn
in
ready_nodes
:
self
.
out_mp_
.
graph
.
node
.
add
().
CopyFrom
(
rn
)
for
o
in
rn
.
output
:
defined
.
add
(
o
)
pending_nodes
.
remove
(
rn
)
return
not
ready_nodes
# constant op -> initializer, topological sort
for
in_n
in
in_mp
.
graph
.
node
:
if
in_n
.
op_type
==
'Constant'
:
t
=
get_attribute
(
in_n
,
'value'
)
t
.
name
=
in_n
.
output
[
0
]
self
.
out_mp_
.
graph
.
initializer
.
add
().
CopyFrom
(
t
)
defined
.
add
(
t
.
name
)
else
:
pending_nodes
.
append
(
in_n
)
_insert_ready_nodes
()
while
pending_nodes
:
if
_insert_ready_nodes
():
break
if
pending_nodes
and
self
.
verbose_
>
0
:
print
(
'SymbolicShapeInference: orphaned nodes discarded: '
)
print
(
*
[
n
.
op_type
+
': '
+
n
.
output
[
0
]
for
n
in
pending_nodes
],
sep
=
'
\n
'
)
if
input_shapes
is
not
None
:
for
input_name
,
shape
in
input_shapes
.
items
():
for
idx
in
range
(
len
(
self
.
out_mp_
.
graph
.
input
)):
if
self
.
out_mp_
.
graph
.
input
[
idx
].
name
==
input_name
:
value_info
=
self
.
out_mp_
.
graph
.
input
[
idx
]
del
self
.
out_mp_
.
graph
.
input
[
idx
]
self
.
out_mp_
.
graph
.
input
.
append
(
helper
.
make_tensor_value_info
(
value_info
.
name
,
value_info
.
type
.
tensor_type
.
elem_type
,
shape
))
self
.
initializers_
=
dict
(
[(
i
.
name
,
i
)
for
i
in
self
.
out_mp_
.
graph
.
initializer
])
self
.
known_vi_
=
dict
(
[(
i
.
name
,
i
)
for
i
in
list
(
self
.
out_mp_
.
graph
.
input
)])
self
.
known_vi_
.
update
(
dict
([(
i
.
name
,
helper
.
make_tensor_value_info
(
i
.
name
,
i
.
data_type
,
list
(
i
.
dims
)))
for
i
in
self
.
out_mp_
.
graph
.
initializer
]))
def
_merge_symbols
(
self
,
dims
):
if
not
all
([
type
(
d
)
==
str
for
d
in
dims
]):
if
self
.
auto_merge_
:
assert
len
(
dims
)
==
2
# only allow symbol->int merge in binary ops for now
is_int
=
[
is_literal
(
d
)
for
d
in
dims
]
if
sum
(
is_int
)
==
1
:
int_dim
=
is_int
.
index
(
1
)
if
self
.
verbose_
>
0
:
print
(
'dim {} has been merged with value {}'
.
format
(
dims
[
1
-
int_dim
],
dims
[
int_dim
]))
self
.
_check_merged_dims
(
dims
,
allow_broadcast
=
False
)
return
dims
[
int_dim
]
else
:
if
self
.
verbose_
>
0
:
print
(
'dim {} has been mergd with dim {}'
.
format
(
dims
[
0
],
dims
[
1
]))
return
dims
[
0
]
else
:
return
None
if
all
([
d
==
dims
[
0
]
for
d
in
dims
]):
return
dims
[
0
]
merged
=
[
self
.
suggested_merge_
[
d
]
if
d
in
self
.
suggested_merge_
else
d
for
d
in
dims
]
if
all
([
d
==
merged
[
0
]
for
d
in
merged
]):
assert
merged
[
0
]
in
self
.
symbolic_dims_
return
merged
[
0
]
else
:
return
None
# broadcast from right to left, and merge symbolic dims if needed
def
_broadcast_shapes
(
self
,
shape1
,
shape2
):
new_shape
=
[]
rank1
=
len
(
shape1
)
rank2
=
len
(
shape2
)
new_rank
=
max
(
rank1
,
rank2
)
for
i
in
range
(
new_rank
):
dim1
=
shape1
[
rank1
-
1
-
i
]
if
i
<
rank1
else
1
dim2
=
shape2
[
rank2
-
1
-
i
]
if
i
<
rank2
else
1
if
dim1
==
1
or
dim1
==
dim2
:
new_dim
=
dim2
elif
dim2
==
1
:
new_dim
=
dim1
else
:
new_dim
=
self
.
_merge_symbols
([
dim1
,
dim2
])
if
not
new_dim
:
# warning about unsupported broadcast when not auto merge
# note that auto merge has the risk of incorrectly merge symbols while one of them being 1
# for example, 'a' = 1, 'b' = 5 at runtime is valid broadcasting, but with auto merge 'a' == 'b'
if
self
.
auto_merge_
:
self
.
_add_suggested_merge
([
dim1
,
dim2
],
apply
=
True
)
else
:
print
(
'unsupported broadcast between '
+
str
(
dim1
)
+
' '
+
str
(
dim2
))
new_shape
=
[
new_dim
]
+
new_shape
return
new_shape
def
_get_shape
(
self
,
node
,
idx
):
name
=
node
.
input
[
idx
]
if
name
in
self
.
known_vi_
:
return
get_shape_from_type_proto
(
self
.
known_vi_
[
name
].
type
)
else
:
assert
name
in
self
.
initializers_
return
list
(
self
.
initializers_
[
name
].
dims
)
def
_get_shape_rank
(
self
,
node
,
idx
):
return
len
(
self
.
_get_shape
(
node
,
idx
))
def
_get_sympy_shape
(
self
,
node
,
idx
):
sympy_shape
=
[]
for
d
in
self
.
_get_shape
(
node
,
idx
):
if
type
(
d
)
==
str
:
sympy_shape
.
append
(
self
.
symbolic_dims_
[
d
]
if
d
in
self
.
symbolic_dims_
else
sympy
.
Symbol
(
d
,
integer
=
True
))
else
:
assert
None
!=
d
sympy_shape
.
append
(
d
)
return
sympy_shape
def
_get_value
(
self
,
node
,
idx
):
name
=
node
.
input
[
idx
]
assert
name
in
self
.
sympy_data_
or
name
in
self
.
initializers_
return
self
.
sympy_data_
[
name
]
if
name
in
self
.
sympy_data_
else
numpy_helper
.
to_array
(
self
.
initializers_
[
name
])
def
_try_get_value
(
self
,
node
,
idx
):
if
idx
>=
len
(
node
.
input
):
return
None
name
=
node
.
input
[
idx
]
if
name
in
self
.
sympy_data_
or
name
in
self
.
initializers_
:
return
self
.
_get_value
(
node
,
idx
)
return
None
def
_update_computed_dims
(
self
,
new_sympy_shape
):
for
i
,
new_dim
in
enumerate
(
new_sympy_shape
):
if
not
is_literal
(
new_dim
)
and
not
type
(
new_dim
)
==
str
:
str_dim
=
str
(
new_dim
)
if
str_dim
in
self
.
suggested_merge_
:
new_sympy_shape
[
i
]
=
self
.
symbolic_dims_
[
self
.
suggested_merge_
[
str_dim
]]
else
:
# add new_dim if it's a computational expression
if
not
str
(
new_dim
)
in
self
.
symbolic_dims_
:
self
.
symbolic_dims_
[
str
(
new_dim
)]
=
new_dim
def
_onnx_infer_single_node
(
self
,
node
):
# skip onnx shape inference for Scan/Loop
skip_infer
=
node
.
op_type
in
[
'Scan'
,
'Loop'
]
if
not
skip_infer
:
# run single node inference with self.known_vi_ shapes
# note that inference rely on initializer values is not handled
# as we don't copy initializer weights to tmp_graph for inference speed purpose
if
node
.
op_type
==
'SplitToSequence'
:
make_value_info_func
=
helper
.
make_sequence_value_info
else
:
make_value_info_func
=
helper
.
make_tensor_value_info
tmp_graph
=
helper
.
make_graph
(
[
node
],
'tmp'
,
[
self
.
known_vi_
[
i
]
for
i
in
node
.
input
if
i
],
[
make_value_info_func
(
i
,
onnx
.
TensorProto
.
UNDEFINED
,
None
)
for
i
in
node
.
output
])
self
.
tmp_mp_
.
graph
.
CopyFrom
(
tmp_graph
)
self
.
tmp_mp_
=
shape_inference
.
infer_shapes
(
self
.
tmp_mp_
)
for
i_o
in
range
(
len
(
node
.
output
)):
o
=
node
.
output
[
i_o
]
vi
=
self
.
out_mp_
.
graph
.
value_info
.
add
()
if
not
skip_infer
:
vi
.
CopyFrom
(
self
.
tmp_mp_
.
graph
.
output
[
i_o
])
self
.
known_vi_
[
o
]
=
vi
def
_onnx_infer_subgraph
(
self
,
node
,
subgraph
,
use_node_input
=
True
):
if
self
.
verbose_
>
2
:
print
(
'Inferencing subgraph of node {} with output({}...): {}'
.
format
(
node
.
name
,
node
.
output
[
0
],
node
.
op_type
))
# node inputs are not passed directly to the subgraph
# it's up to the node dispatcher to prepare subgraph input
# for example, with Scan/Loop, subgraph input shape would be trimmed from node input shape
# besides, inputs in subgraph could shadow implicit inputs
subgraph_inputs
=
set
([
i
.
name
for
i
in
list
(
subgraph
.
initializer
)
+
list
(
subgraph
.
input
)
])
subgraph_implicit_input
=
set
([
name
for
name
in
self
.
known_vi_
.
keys
()
if
not
name
in
subgraph_inputs
])
tmp_graph
=
helper
.
make_graph
(
list
(
subgraph
.
node
),
'tmp'
,
list
(
subgraph
.
input
)
+
[
self
.
known_vi_
[
i
]
for
i
in
subgraph_implicit_input
],
[
helper
.
make_tensor_value_info
(
i
.
name
,
onnx
.
TensorProto
.
UNDEFINED
,
None
)
for
i
in
subgraph
.
output
])
tmp_graph
.
initializer
.
extend
([
i
for
i
in
self
.
out_mp_
.
graph
.
initializer
if
i
.
name
in
subgraph_implicit_input
])
tmp_graph
.
initializer
.
extend
(
subgraph
.
initializer
)
self
.
tmp_mp_
.
graph
.
CopyFrom
(
tmp_graph
)
symbolic_shape_inference
=
SymbolicShapeInference
(
self
.
int_max_
,
self
.
auto_merge_
,
self
.
guess_output_rank_
,
self
.
verbose_
)
all_shapes_inferred
=
False
symbolic_shape_inference
.
_preprocess
(
self
.
tmp_mp_
)
# note that after _preprocess, Constant node will be converted to initializer and should be appended to subgraph.initializer
subgraph
.
initializer
.
extend
([
i
for
i
in
symbolic_shape_inference
.
out_mp_
.
graph
.
initializer
if
i
.
name
not
in
subgraph_implicit_input
and
i
.
name
not
in
subgraph_inputs
])
symbolic_shape_inference
.
suggested_merge_
=
self
.
suggested_merge_
.
copy
()
while
symbolic_shape_inference
.
run_
:
all_shapes_inferred
=
symbolic_shape_inference
.
_infer_impl
(
self
.
tmp_mp_
,
self
.
sympy_data_
.
copy
())
symbolic_shape_inference
.
_update_output_from_vi
()
if
use_node_input
:
# if subgraph uses node input, it needs to update to merged dims
subgraph
.
ClearField
(
'input'
)
subgraph
.
input
.
extend
(
symbolic_shape_inference
.
out_mp_
.
graph
.
input
[:
len
(
node
.
input
)])
subgraph
.
ClearField
(
'output'
)
subgraph
.
output
.
extend
(
symbolic_shape_inference
.
out_mp_
.
graph
.
output
)
subgraph
.
ClearField
(
'value_info'
)
subgraph
.
value_info
.
extend
(
symbolic_shape_inference
.
out_mp_
.
graph
.
value_info
)
subgraph
.
ClearField
(
'node'
)
subgraph
.
node
.
extend
(
symbolic_shape_inference
.
out_mp_
.
graph
.
node
)
# for new symbolic dims from subgraph output, add to main graph symbolic dims
subgraph_shapes
=
[
get_shape_from_type_proto
(
o
.
type
)
for
o
in
symbolic_shape_inference
.
out_mp_
.
graph
.
output
]
subgraph_new_symbolic_dims
=
set
([
d
for
s
in
subgraph_shapes
if
s
for
d
in
s
if
type
(
d
)
==
str
and
not
d
in
self
.
symbolic_dims_
])
new_dims
=
{}
for
d
in
subgraph_new_symbolic_dims
:
assert
d
in
symbolic_shape_inference
.
symbolic_dims_
new_dims
[
d
]
=
symbolic_shape_inference
.
symbolic_dims_
[
d
]
self
.
symbolic_dims_
.
update
(
new_dims
)
return
symbolic_shape_inference
def
_get_int_values
(
self
,
node
,
broadcast
=
False
):
values
=
[
self
.
_try_get_value
(
node
,
i
)
for
i
in
range
(
len
(
node
.
input
))]
if
all
([
v
is
not
None
for
v
in
values
]):
# some shape compute is in floating point, cast to int for sympy
for
i
,
v
in
enumerate
(
values
):
if
type
(
v
)
!=
np
.
ndarray
:
continue
if
len
(
v
.
shape
)
>
1
:
new_v
=
None
# ignore value for rank > 1
elif
len
(
v
.
shape
)
==
0
:
new_v
=
int
(
np
.
asscalar
(
v
))
else
:
assert
len
(
v
.
shape
)
==
1
new_v
=
[
int
(
vv
)
for
vv
in
v
]
values
[
i
]
=
new_v
values_len
=
[
len
(
v
)
if
type
(
v
)
==
list
else
0
for
v
in
values
]
max_len
=
max
(
values_len
)
if
max_len
>=
1
and
broadcast
:
# broadcast
for
i
,
v
in
enumerate
(
values
):
if
v
is
None
:
continue
# don't broadcast if value is unknown
if
type
(
v
)
==
list
:
if
len
(
v
)
<
max_len
:
values
[
i
]
=
v
*
max_len
else
:
assert
len
(
v
)
==
max_len
else
:
values
[
i
]
=
[
v
]
*
max_len
return
values
def
_compute_on_sympy_data
(
self
,
node
,
op_func
):
assert
len
(
node
.
output
)
==
1
values
=
self
.
_get_int_values
(
node
,
broadcast
=
True
)
if
all
([
v
is
not
None
for
v
in
values
]):
is_list
=
[
type
(
v
)
==
list
for
v
in
values
]
as_list
=
any
(
is_list
)
if
as_list
:
self
.
sympy_data_
[
node
.
output
[
0
]]
=
[
op_func
(
vs
)
for
vs
in
zip
(
*
values
)]
else
:
self
.
sympy_data_
[
node
.
output
[
0
]]
=
op_func
(
values
)
def
_pass_on_sympy_data
(
self
,
node
):
assert
len
(
node
.
input
)
==
1
or
node
.
op_type
==
'Reshape'
self
.
_compute_on_sympy_data
(
node
,
lambda
x
:
x
[
0
])
def
_pass_on_shape_and_type
(
self
,
node
):
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
self
.
_get_shape
(
node
,
0
)))
def
_new_symbolic_dim
(
self
,
prefix
,
dim
):
new_dim
=
'{}_d{}'
.
format
(
prefix
,
dim
)
if
new_dim
in
self
.
suggested_merge_
:
v
=
self
.
suggested_merge_
[
new_dim
]
new_dim
=
sympy
.
Integer
(
int
(
v
))
if
is_literal
(
v
)
else
v
else
:
self
.
symbolic_dims_
[
new_dim
]
=
sympy
.
Symbol
(
new_dim
,
integer
=
True
)
return
new_dim
def
_new_symbolic_dim_from_output
(
self
,
node
,
out_idx
=
0
,
dim
=
0
):
return
self
.
_new_symbolic_dim
(
'{}{}_o{}_'
.
format
(
node
.
op_type
,
list
(
self
.
out_mp_
.
graph
.
node
).
index
(
node
),
out_idx
),
dim
)
def
_new_symbolic_shape
(
self
,
rank
,
node
,
out_idx
=
0
):
return
[
self
.
_new_symbolic_dim_from_output
(
node
,
out_idx
,
i
)
for
i
in
range
(
rank
)
]
def
_compute_conv_pool_shape
(
self
,
node
):
sympy_shape
=
self
.
_get_sympy_shape
(
node
,
0
)
if
len
(
node
.
input
)
>
1
:
W_shape
=
self
.
_get_sympy_shape
(
node
,
1
)
rank
=
len
(
W_shape
)
-
2
# number of spatial axes
kernel_shape
=
W_shape
[
-
rank
:]
sympy_shape
[
1
]
=
W_shape
[
0
]
else
:
W_shape
=
None
kernel_shape
=
get_attribute
(
node
,
'kernel_shape'
)
rank
=
len
(
kernel_shape
)
assert
len
(
sympy_shape
)
==
rank
+
2
# only need to symbolic shape inference if input has symbolic dims in spatial axes
is_symbolic_dims
=
[
not
is_literal
(
i
)
for
i
in
sympy_shape
[
-
rank
:]]
if
not
any
(
is_symbolic_dims
):
shape
=
get_shape_from_type_proto
(
self
.
known_vi_
[
node
.
output
[
0
]]
.
type
)
if
len
(
shape
)
>
0
:
assert
len
(
sympy_shape
)
==
len
(
shape
)
sympy_shape
[
-
rank
:]
=
[
sympy
.
Integer
(
d
)
for
d
in
shape
[
-
rank
:]]
return
sympy_shape
dilations
=
get_attribute
(
node
,
'dilations'
,
[
1
]
*
rank
)
strides
=
get_attribute
(
node
,
'strides'
,
[
1
]
*
rank
)
effective_kernel_shape
=
[(
k
-
1
)
*
d
+
1
for
k
,
d
in
zip
(
kernel_shape
,
dilations
)]
pads
=
get_attribute
(
node
,
'pads'
)
if
pads
is
None
:
pads
=
[
0
]
*
(
2
*
rank
)
auto_pad
=
get_attribute
(
node
,
'auto_pad'
,
b
'NOTSET'
).
decode
(
'utf-8'
)
if
auto_pad
!=
'VALID'
and
auto_pad
!=
'NOTSET'
:
try
:
residual
=
[
sympy
.
Mod
(
d
,
s
)
for
d
,
s
in
zip
(
sympy_shape
[
-
rank
:],
strides
)
]
total_pads
=
[
max
(
0
,
(
k
-
s
)
if
r
==
0
else
(
k
-
r
))
for
k
,
s
,
r
in
zip
(
effective_kernel_shape
,
strides
,
residual
)
]
except
TypeError
:
# sympy may throw TypeError: cannot determine truth value of Relational
total_pads
=
[
max
(
0
,
(
k
-
s
))
for
k
,
s
in
zip
(
effective_kernel_shape
,
strides
)
]
# assuming no residual if sympy throws error
elif
auto_pad
==
'VALID'
:
total_pads
=
[]
else
:
total_pads
=
[
0
]
*
rank
else
:
assert
len
(
pads
)
==
2
*
rank
total_pads
=
[
p1
+
p2
for
p1
,
p2
in
zip
(
pads
[:
rank
],
pads
[
rank
:])]
ceil_mode
=
get_attribute
(
node
,
'ceil_mode'
,
0
)
for
i
in
range
(
rank
):
effective_input_size
=
sympy_shape
[
-
rank
+
i
]
if
len
(
total_pads
)
>
0
:
effective_input_size
=
effective_input_size
+
total_pads
[
i
]
if
ceil_mode
:
strided_kernel_positions
=
sympy
.
ceiling
(
(
effective_input_size
-
effective_kernel_shape
[
i
])
/
strides
[
i
])
else
:
strided_kernel_positions
=
(
effective_input_size
-
effective_kernel_shape
[
i
]
)
//
strides
[
i
]
sympy_shape
[
-
rank
+
i
]
=
strided_kernel_positions
+
1
return
sympy_shape
def
_check_merged_dims
(
self
,
dims
,
allow_broadcast
=
True
):
if
allow_broadcast
:
dims
=
[
d
for
d
in
dims
if
not
(
is_literal
(
d
)
and
int
(
d
)
<=
1
)]
if
not
all
([
d
==
dims
[
0
]
for
d
in
dims
]):
self
.
_add_suggested_merge
(
dims
,
apply
=
True
)
def
_compute_matmul_shape
(
self
,
node
,
output_dtype
=
None
):
lhs_shape
=
self
.
_get_shape
(
node
,
0
)
rhs_shape
=
self
.
_get_shape
(
node
,
1
)
lhs_rank
=
len
(
lhs_shape
)
rhs_rank
=
len
(
rhs_shape
)
lhs_reduce_dim
=
0
rhs_reduce_dim
=
0
assert
lhs_rank
>
0
and
rhs_rank
>
0
if
lhs_rank
==
1
and
rhs_rank
==
1
:
new_shape
=
[]
elif
lhs_rank
==
1
:
rhs_reduce_dim
=
-
2
new_shape
=
rhs_shape
[:
rhs_reduce_dim
]
+
[
rhs_shape
[
-
1
]]
elif
rhs_rank
==
1
:
lhs_reduce_dim
=
-
1
new_shape
=
lhs_shape
[:
lhs_reduce_dim
]
else
:
lhs_reduce_dim
=
-
1
rhs_reduce_dim
=
-
2
new_shape
=
self
.
_broadcast_shapes
(
lhs_shape
[:
-
2
],
rhs_shape
[:
-
2
])
+
[
lhs_shape
[
-
2
]]
+
[
rhs_shape
[
-
1
]]
# merge reduce dim
self
.
_check_merged_dims
(
[
lhs_shape
[
lhs_reduce_dim
],
rhs_shape
[
rhs_reduce_dim
]],
allow_broadcast
=
False
)
if
output_dtype
is
None
:
# infer output_dtype from input type when not specified
output_dtype
=
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
output_dtype
,
new_shape
))
def
_infer_ArrayFeatureExtractor
(
self
,
node
):
data_shape
=
self
.
_get_shape
(
node
,
0
)
indices_shape
=
self
.
_get_shape
(
node
,
1
)
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
data_shape
[:
-
1
]
+
indices_shape
))
def
_infer_symbolic_compute_ops
(
self
,
node
):
funcs
=
{
'Add'
:
lambda
l
:
l
[
0
]
+
l
[
1
],
'Div'
:
lambda
l
:
l
[
0
]
//
l
[
1
],
# integer div in sympy
'Equal'
:
lambda
l
:
l
[
0
]
==
l
[
1
],
'Floor'
:
lambda
l
:
sympy
.
floor
(
l
[
0
]),
'Max'
:
lambda
l
:
l
[
1
]
if
is_literal
(
l
[
0
])
and
int
(
l
[
0
])
<
-
self
.
int_max_
else
(
l
[
0
]
if
is_literal
(
l
[
1
])
and
int
(
l
[
1
])
<
-
self
.
int_max_
else
sympy
.
Max
(
l
[
0
],
l
[
1
])),
'Min'
:
lambda
l
:
l
[
1
]
if
is_literal
(
l
[
0
])
and
int
(
l
[
0
])
>
self
.
int_max_
else
(
l
[
0
]
if
is_literal
(
l
[
1
])
and
int
(
l
[
1
])
>
self
.
int_max_
else
sympy
.
Min
(
l
[
0
],
l
[
1
])),
'Mul'
:
lambda
l
:
l
[
0
]
*
l
[
1
],
'Sub'
:
lambda
l
:
l
[
0
]
-
l
[
1
],
'Where'
:
lambda
l
:
l
[
1
]
if
l
[
0
]
else
l
[
2
]
}
assert
node
.
op_type
in
funcs
self
.
_compute_on_sympy_data
(
node
,
funcs
[
node
.
op_type
])
def
_infer_Cast
(
self
,
node
):
self
.
_pass_on_sympy_data
(
node
)
def
_infer_CategoryMapper
(
self
,
node
):
input_type
=
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
if
input_type
==
onnx
.
TensorProto
.
STRING
:
output_type
=
onnx
.
TensorProto
.
INT64
else
:
output_type
=
onnx
.
TensorProto
.
STRING
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
output_type
,
self
.
_get_shape
(
node
,
0
)))
def
_infer_Compress
(
self
,
node
):
input_shape
=
self
.
_get_shape
(
node
,
0
)
# create a new symbolic dimension for Compress output
compress_len
=
self
.
_new_symbolic_dim_from_output
(
node
)
axis
=
get_attribute
(
node
,
'axis'
)
if
axis
==
None
:
# when axis is not specified, input is flattened before compress so output is 1D
output_shape
=
[
compress_len
]
else
:
output_shape
=
input_shape
output_shape
[
handle_negative_axis
(
axis
,
len
(
input_shape
))]
=
compress_len
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
output_shape
))
def
_infer_Concat
(
self
,
node
):
if
any
([
i
in
self
.
sympy_data_
for
i
in
node
.
input
]):
values
=
self
.
_get_int_values
(
node
)
if
all
([
v
is
not
None
for
v
in
values
]):
assert
0
==
get_attribute
(
node
,
'axis'
)
self
.
sympy_data_
[
node
.
output
[
0
]]
=
[]
for
i
in
range
(
len
(
node
.
input
)):
value
=
values
[
i
]
if
type
(
value
)
==
list
:
self
.
sympy_data_
[
node
.
output
[
0
]].
extend
(
value
)
else
:
self
.
sympy_data_
[
node
.
output
[
0
]].
append
(
value
)
sympy_shape
=
self
.
_get_sympy_shape
(
node
,
0
)
axis
=
handle_negative_axis
(
get_attribute
(
node
,
'axis'
),
len
(
sympy_shape
))
for
i_idx
in
range
(
1
,
len
(
node
.
input
)):
input_shape
=
self
.
_get_sympy_shape
(
node
,
i_idx
)
if
input_shape
:
sympy_shape
[
axis
]
=
sympy_shape
[
axis
]
+
input_shape
[
axis
]
self
.
_update_computed_dims
(
sympy_shape
)
# merge symbolic dims for non-concat axes
for
d
in
range
(
len
(
sympy_shape
)):
if
d
==
axis
:
continue
dims
=
[
self
.
_get_shape
(
node
,
i_idx
)[
d
]
for
i_idx
in
range
(
len
(
node
.
input
))
if
self
.
_get_shape
(
node
,
i_idx
)
]
if
all
([
d
==
dims
[
0
]
for
d
in
dims
]):
continue
merged
=
self
.
_merge_symbols
(
dims
)
if
type
(
merged
)
==
str
:
sympy_shape
[
d
]
=
self
.
symbolic_dims_
[
merged
]
if
merged
else
None
else
:
sympy_shape
[
d
]
=
merged
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
get_shape_from_sympy_shape
(
sympy_shape
)))
def
_infer_Conv
(
self
,
node
):
sympy_shape
=
self
.
_compute_conv_pool_shape
(
node
)
self
.
_update_computed_dims
(
sympy_shape
)
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
vi
.
type
.
tensor_type
.
elem_type
,
get_shape_from_sympy_shape
(
sympy_shape
)))
def
_infer_ConstantOfShape
(
self
,
node
):
sympy_shape
=
self
.
_get_int_values
(
node
)[
0
]
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
if
sympy_shape
is
not
None
:
if
type
(
sympy_shape
)
!=
list
:
sympy_shape
=
[
sympy_shape
]
self
.
_update_computed_dims
(
sympy_shape
)
# update sympy data if output type is int, and shape is known
if
vi
.
type
.
tensor_type
.
elem_type
==
onnx
.
TensorProto
.
INT64
and
all
(
[
is_literal
(
x
)
for
x
in
sympy_shape
]):
self
.
sympy_data_
[
node
.
output
[
0
]]
=
np
.
ones
(
[
int
(
x
)
for
x
in
sympy_shape
],
dtype
=
np
.
int64
)
*
numpy_helper
.
to_array
(
get_attribute
(
node
,
'value'
,
0
))
else
:
# create new dynamic shape
sympy_shape
=
self
.
_new_symbolic_shape
(
self
.
_get_shape_rank
(
node
,
0
),
node
)
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
vi
.
type
.
tensor_type
.
elem_type
,
get_shape_from_sympy_shape
(
sympy_shape
)))
def
_infer_Expand
(
self
,
node
):
expand_to_shape
=
self
.
_try_get_value
(
node
,
1
)
if
expand_to_shape
is
not
None
:
# new_shape's dim can come from shape value
self
.
_update_computed_dims
(
expand_to_shape
)
shape
=
self
.
_get_shape
(
node
,
0
)
new_shape
=
self
.
_broadcast_shapes
(
shape
,
get_shape_from_sympy_shape
(
expand_to_shape
))
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
new_shape
))
def
_infer_Gather
(
self
,
node
):
data_shape
=
self
.
_get_shape
(
node
,
0
)
axis
=
handle_negative_axis
(
get_attribute
(
node
,
'axis'
,
0
),
len
(
data_shape
))
indices_shape
=
self
.
_get_shape
(
node
,
1
)
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
vi
.
type
.
tensor_type
.
elem_type
,
data_shape
[:
axis
]
+
indices_shape
+
data_shape
[
axis
+
1
:]))
if
node
.
input
[
0
]
in
self
.
sympy_data_
:
assert
0
==
get_attribute
(
node
,
'axis'
,
0
)
# only handle 1D sympy compute
idx
=
self
.
_get_value
(
node
,
1
)
data
=
self
.
sympy_data_
[
node
.
input
[
0
]]
if
type
(
data
)
==
list
:
if
type
(
idx
)
==
np
.
ndarray
and
len
(
idx
.
shape
)
==
1
:
self
.
sympy_data_
[
node
.
output
[
0
]]
=
[
data
[
int
(
i
)]
for
i
in
idx
]
else
:
self
.
sympy_data_
[
node
.
output
[
0
]]
=
data
[
int
(
idx
)]
else
:
assert
idx
==
0
self
.
sympy_data_
[
node
.
output
[
0
]]
=
data
def
_infer_GatherElements
(
self
,
node
):
indices_shape
=
self
.
_get_shape
(
node
,
1
)
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
indices_shape
))
def
_infer_GatherND
(
self
,
node
):
data_shape
=
self
.
_get_shape
(
node
,
0
)
data_rank
=
len
(
data_shape
)
indices_shape
=
self
.
_get_shape
(
node
,
1
)
indices_rank
=
len
(
indices_shape
)
last_index_dimension
=
indices_shape
[
-
1
]
assert
is_literal
(
last_index_dimension
)
and
last_index_dimension
<=
data_rank
new_shape
=
indices_shape
[:
-
1
]
+
data_shape
[
last_index_dimension
:]
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
new_shape
))
def
_infer_If
(
self
,
node
):
# special case for constant condition, in case there are mismatching shape from the non-executed branch
subgraphs
=
[
get_attribute
(
node
,
'then_branch'
),
get_attribute
(
node
,
'else_branch'
)
]
cond
=
self
.
_try_get_value
(
node
,
0
)
if
cond
is
not
None
:
if
cond
>
0
:
subgraphs
[
1
].
CopyFrom
(
subgraphs
[
0
])
else
:
subgraphs
[
0
].
CopyFrom
(
subgraphs
[
1
])
for
i_sub
,
subgraph
in
enumerate
(
subgraphs
):
subgraph_infer
=
self
.
_onnx_infer_subgraph
(
node
,
subgraph
,
use_node_input
=
False
)
for
i_out
in
range
(
len
(
node
.
output
)):
vi
=
self
.
known_vi_
[
node
.
output
[
i_out
]]
if
i_sub
==
0
:
vi
.
CopyFrom
(
subgraph
.
output
[
i_out
])
vi
.
name
=
node
.
output
[
i_out
]
else
:
assert
all
([
d1
==
d2
for
d1
,
d2
in
zip
(
vi
.
type
.
tensor_type
.
shape
.
dim
,
subgraph
.
output
[
i_out
].
type
.
tensor_type
.
shape
.
dim
)
])
# pass on sympy data from subgraph, if cond is constant
if
cond
is
not
None
and
i_sub
==
(
0
if
cond
>
0
else
1
):
if
subgraph
.
output
[
i_out
].
name
in
subgraph_infer
.
sympy_data_
:
self
.
sympy_data_
[
vi
.
name
]
=
subgraph_infer
.
sympy_data_
[
subgraph
.
output
[
i_out
].
name
]
def
_infer_Loop
(
self
,
node
):
subgraph
=
get_attribute
(
node
,
'body'
)
assert
len
(
subgraph
.
input
)
==
len
(
node
.
input
)
for
i
,
si
in
enumerate
(
subgraph
.
input
):
subgraph_name
=
si
.
name
si
.
CopyFrom
(
self
.
known_vi_
[
node
.
input
[
i
]])
si
.
name
=
subgraph_name
self
.
_onnx_infer_subgraph
(
node
,
subgraph
)
# create a new symbolic dimension for iteration dependent dimension
loop_iter_dim
=
self
.
_new_symbolic_dim_from_output
(
node
)
num_loop_carried
=
len
(
node
.
input
)
-
2
for
i
in
range
(
len
(
node
.
output
)):
vi
=
self
.
known_vi_
[
node
.
output
[
i
]]
vi
.
CopyFrom
(
subgraph
.
output
[
i
+
1
]
)
# first subgraph output is condition, not in node output
if
i
>=
num_loop_carried
:
subgraph_vi_dim
=
subgraph
.
output
[
i
+
1
].
type
.
tensor_type
.
shape
.
dim
vi
.
type
.
tensor_type
.
shape
.
ClearField
(
'dim'
)
vi_dim
=
vi
.
type
.
tensor_type
.
shape
.
dim
vi_dim
.
add
().
dim_param
=
loop_iter_dim
vi_dim
.
extend
(
list
(
subgraph_vi_dim
))
vi
.
name
=
node
.
output
[
i
]
def
_infer_MatMul
(
self
,
node
):
self
.
_compute_matmul_shape
(
node
)
def
_infer_MatMulInteger
(
self
,
node
):
self
.
_compute_matmul_shape
(
node
,
onnx
.
TensorProto
.
INT32
)
def
_infer_NonMaxSuppression
(
self
,
node
):
selected
=
self
.
_new_symbolic_dim_from_output
(
node
)
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
onnx
.
TensorProto
.
INT64
,
[
selected
,
3
]))
def
_infer_NonZero
(
self
,
node
):
input_rank
=
self
.
_get_shape_rank
(
node
,
0
)
# create a new symbolic dimension for NonZero output
nz_len
=
self
.
_new_symbolic_dim_from_output
(
node
,
0
,
1
)
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
vi
.
type
.
tensor_type
.
elem_type
,
[
input_rank
,
nz_len
]))
def
_infer_OneHot
(
self
,
node
):
sympy_shape
=
self
.
_get_sympy_shape
(
node
,
0
)
depth
=
self
.
_try_get_value
(
node
,
1
)
axis
=
get_attribute
(
node
,
'axis'
,
-
1
)
axis
=
handle_negative_axis
(
axis
,
len
(
sympy_shape
)
+
1
)
new_shape
=
get_shape_from_sympy_shape
(
sympy_shape
[:
axis
]
+
[
self
.
_new_symbolic_dim_from_output
(
node
)
if
not
is_literal
(
depth
)
else
depth
]
+
sympy_shape
[
axis
:])
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
self
.
known_vi_
[
node
.
input
[
2
]].
type
.
tensor_type
.
elem_type
,
new_shape
))
def
_infer_Pad
(
self
,
node
):
if
get_opset
(
self
.
out_mp_
)
<=
10
:
pads
=
get_attribute
(
node
,
'pads'
)
else
:
pads
=
self
.
_try_get_value
(
node
,
1
)
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
output_shape
=
get_shape_from_type_proto
(
vi
.
type
)
if
len
(
output_shape
)
==
0
or
None
in
output_shape
:
sympy_shape
=
self
.
_get_sympy_shape
(
node
,
0
)
rank
=
len
(
sympy_shape
)
if
pads
is
not
None
:
assert
len
(
pads
)
==
2
*
rank
new_sympy_shape
=
[
d
+
pad_up
+
pad_down
for
d
,
pad_up
,
pad_down
in
zip
(
sympy_shape
,
pads
[:
rank
],
pads
[
rank
:])
]
self
.
_update_computed_dims
(
new_sympy_shape
)
else
:
# dynamic pads, create new symbolic dimensions
new_sympy_shape
=
self
.
_new_symbolic_shape
(
rank
,
node
)
output_tp
=
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
output_tp
,
get_shape_from_sympy_shape
(
new_sympy_shape
)))
def
_infer_Pool
(
self
,
node
):
sympy_shape
=
self
.
_compute_conv_pool_shape
(
node
)
self
.
_update_computed_dims
(
sympy_shape
)
for
o
in
node
.
output
:
if
not
o
:
continue
vi
=
self
.
known_vi_
[
o
]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
o
,
vi
.
type
.
tensor_type
.
elem_type
,
get_shape_from_sympy_shape
(
sympy_shape
)))
def
_infer_Range
(
self
,
node
):
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
input_data
=
self
.
_get_int_values
(
node
)
if
all
([
i
is
not
None
for
i
in
input_data
]):
start
=
as_scalar
(
input_data
[
0
])
limit
=
as_scalar
(
input_data
[
1
])
delta
=
as_scalar
(
input_data
[
2
])
new_sympy_shape
=
[
sympy
.
Max
(
sympy
.
ceiling
((
limit
-
start
)
/
delta
),
0
)
]
else
:
new_dim
=
self
.
_new_symbolic_dim_from_output
(
node
)
new_sympy_shape
=
[
self
.
symbolic_dims_
[
new_dim
]]
self
.
_update_computed_dims
(
new_sympy_shape
)
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
get_shape_from_sympy_shape
(
new_sympy_shape
)))
def
_infer_ReduceProd
(
self
,
node
):
axes
=
get_attribute
(
node
,
'axes'
)
keep_dims
=
get_attribute
(
node
,
'keepdims'
)
if
keep_dims
==
0
and
axes
==
[
0
]:
data
=
self
.
_get_int_values
(
node
)[
0
]
if
data
is
not
None
:
self
.
sympy_data_
[
node
.
output
[
0
]]
=
sympy_reduce_product
(
data
)
def
_infer_Reshape
(
self
,
node
):
shape_value
=
self
.
_try_get_value
(
node
,
1
)
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
if
shape_value
is
None
:
shape_shape
=
self
.
_get_shape
(
node
,
1
)
assert
len
(
shape_shape
)
==
1
shape_rank
=
shape_shape
[
0
]
assert
is_literal
(
shape_rank
)
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
vi
.
type
.
tensor_type
.
elem_type
,
get_shape_from_sympy_shape
(
self
.
_new_symbolic_shape
(
shape_rank
,
node
))))
else
:
input_shape
=
self
.
_get_shape
(
node
,
0
)
input_sympy_shape
=
self
.
_get_sympy_shape
(
node
,
0
)
total
=
int
(
1
)
for
d
in
input_sympy_shape
:
total
=
total
*
d
new_sympy_shape
=
[]
deferred_dim_idx
=
-
1
non_deferred_size
=
int
(
1
)
for
i
,
d
in
enumerate
(
shape_value
):
if
type
(
d
)
==
sympy
.
Symbol
:
new_sympy_shape
.
append
(
d
)
elif
d
==
0
:
new_sympy_shape
.
append
(
input_sympy_shape
[
i
])
non_deferred_size
=
non_deferred_size
*
input_sympy_shape
[
i
]
else
:
new_sympy_shape
.
append
(
d
)
if
d
==
-
1
:
deferred_dim_idx
=
i
elif
d
!=
0
:
non_deferred_size
=
non_deferred_size
*
d
assert
new_sympy_shape
.
count
(
-
1
)
<
2
if
-
1
in
new_sympy_shape
:
new_dim
=
total
//
non_deferred_size
new_sympy_shape
[
deferred_dim_idx
]
=
new_dim
self
.
_update_computed_dims
(
new_sympy_shape
)
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
vi
.
type
.
tensor_type
.
elem_type
,
get_shape_from_sympy_shape
(
new_sympy_shape
)))
self
.
_pass_on_sympy_data
(
node
)
def
_infer_Resize
(
self
,
node
):
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
input_sympy_shape
=
self
.
_get_sympy_shape
(
node
,
0
)
if
get_opset
(
self
.
out_mp_
)
<=
10
:
scales
=
self
.
_try_get_value
(
node
,
1
)
if
scales
is
not
None
:
new_sympy_shape
=
[
sympy
.
simplify
(
sympy
.
floor
(
d
*
s
))
for
d
,
s
in
zip
(
input_sympy_shape
,
scales
)
]
self
.
_update_computed_dims
(
new_sympy_shape
)
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
get_shape_from_sympy_shape
(
new_sympy_shape
)))
else
:
roi
=
self
.
_try_get_value
(
node
,
1
)
scales
=
self
.
_try_get_value
(
node
,
2
)
sizes
=
self
.
_try_get_value
(
node
,
3
)
if
sizes
is
not
None
:
new_sympy_shape
=
[
sympy
.
simplify
(
sympy
.
floor
(
s
))
for
s
in
sizes
]
self
.
_update_computed_dims
(
new_sympy_shape
)
elif
scales
is
not
None
:
rank
=
len
(
scales
)
if
get_attribute
(
node
,
'coordinate_transformation_mode'
)
==
'tf_crop_and_resize'
:
assert
len
(
roi
)
==
2
*
rank
roi_start
=
list
(
roi
)[:
rank
]
roi_end
=
list
(
roi
)[
rank
:]
else
:
roi_start
=
[
0
]
*
rank
roi_end
=
[
1
]
*
rank
scales
=
list
(
scales
)
new_sympy_shape
=
[
sympy
.
simplify
(
sympy
.
floor
(
d
*
(
end
-
start
)
*
scale
))
for
d
,
start
,
end
,
scale
in
zip
(
input_sympy_shape
,
roi_start
,
roi_end
,
scales
)
]
self
.
_update_computed_dims
(
new_sympy_shape
)
else
:
new_sympy_shape
=
self
.
_new_symbolic_shape
(
self
.
_get_shape_rank
(
node
,
0
),
node
)
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
get_shape_from_sympy_shape
(
new_sympy_shape
)))
def
_infer_Scan
(
self
,
node
):
subgraph
=
get_attribute
(
node
,
'body'
)
num_scan_inputs
=
get_attribute
(
node
,
'num_scan_inputs'
)
scan_input_axes
=
get_attribute
(
node
,
'scan_input_axes'
,
[
0
]
*
num_scan_inputs
)
num_scan_states
=
len
(
node
.
input
)
-
num_scan_inputs
scan_input_axes
=
[
handle_negative_axis
(
ax
,
self
.
_get_shape_rank
(
node
,
i
+
num_scan_states
))
for
i
,
ax
in
enumerate
(
scan_input_axes
)
]
# We may have cases where the subgraph has optionial inputs that appear in both subgraph's input and initializer,
# but not in the node's input. In such cases, the input model might be invalid, but let's skip those optional inputs.
assert
len
(
subgraph
.
input
)
>=
len
(
node
.
input
)
subgraph_inputs
=
subgraph
.
input
[:
len
(
node
.
input
)]
for
i
,
si
in
enumerate
(
subgraph_inputs
):
subgraph_name
=
si
.
name
si
.
CopyFrom
(
self
.
known_vi_
[
node
.
input
[
i
]])
if
i
>=
num_scan_states
:
scan_input_dim
=
si
.
type
.
tensor_type
.
shape
.
dim
scan_input_dim
.
remove
(
scan_input_dim
[
scan_input_axes
[
i
-
num_scan_states
]])
si
.
name
=
subgraph_name
self
.
_onnx_infer_subgraph
(
node
,
subgraph
)
num_scan_outputs
=
len
(
node
.
output
)
-
num_scan_states
scan_output_axes
=
get_attribute
(
node
,
'scan_output_axes'
,
[
0
]
*
num_scan_outputs
)
scan_input_dim
=
get_shape_from_type_proto
(
self
.
known_vi_
[
node
.
input
[
-
1
]].
type
)[
scan_input_axes
[
-
1
]]
for
i
,
o
in
enumerate
(
node
.
output
):
vi
=
self
.
known_vi_
[
o
]
if
i
>=
num_scan_states
:
shape
=
get_shape_from_type_proto
(
subgraph
.
output
[
i
].
type
)
new_dim
=
handle_negative_axis
(
scan_output_axes
[
i
-
num_scan_states
],
len
(
shape
)
+
1
)
shape
=
shape
[:
new_dim
]
+
[
scan_input_dim
]
+
shape
[
new_dim
:]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
o
,
subgraph
.
output
[
i
].
type
.
tensor_type
.
elem_type
,
shape
))
else
:
vi
.
CopyFrom
(
subgraph
.
output
[
i
])
vi
.
name
=
o
def
_infer_ScatterElements
(
self
,
node
):
data_shape
=
self
.
_get_shape
(
node
,
0
)
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
data_shape
))
def
_infer_Shape
(
self
,
node
):
self
.
sympy_data_
[
node
.
output
[
0
]]
=
self
.
_get_sympy_shape
(
node
,
0
)
def
_infer_Size
(
self
,
node
):
sympy_shape
=
self
.
_get_sympy_shape
(
node
,
0
)
self
.
sympy_data_
[
node
.
output
[
0
]]
=
sympy_reduce_product
(
sympy_shape
)
self
.
known_vi_
[
node
.
output
[
0
]].
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
onnx
.
TensorProto
.
INT64
,
[]))
def
_infer_Slice
(
self
,
node
):
if
get_opset
(
self
.
out_mp_
)
<=
9
:
axes
=
get_attribute
(
node
,
'axes'
)
starts
=
get_attribute
(
node
,
'starts'
)
ends
=
get_attribute
(
node
,
'ends'
)
steps
=
[
1
]
*
len
(
axes
)
else
:
starts
=
as_list
(
self
.
_try_get_value
(
node
,
1
),
keep_none
=
True
)
ends
=
as_list
(
self
.
_try_get_value
(
node
,
2
),
keep_none
=
True
)
axes
=
self
.
_try_get_value
(
node
,
3
)
steps
=
self
.
_try_get_value
(
node
,
4
)
if
axes
is
None
and
not
(
starts
is
None
and
ends
is
None
):
axes
=
list
(
range
(
0
,
len
(
starts
if
starts
is
not
None
else
ends
)))
if
steps
is
None
and
not
(
starts
is
None
and
ends
is
None
):
steps
=
[
1
]
*
len
(
starts
if
starts
is
not
None
else
ends
)
axes
=
as_list
(
axes
,
keep_none
=
True
)
steps
=
as_list
(
steps
,
keep_none
=
True
)
new_sympy_shape
=
self
.
_get_sympy_shape
(
node
,
0
)
if
starts
is
None
or
ends
is
None
:
if
axes
is
None
:
for
i
in
range
(
len
(
new_sympy_shape
)):
new_sympy_shape
[
i
]
=
self
.
_new_symbolic_dim_from_output
(
node
,
0
,
i
)
else
:
new_sympy_shape
=
get_shape_from_sympy_shape
(
new_sympy_shape
)
for
i
in
axes
:
new_sympy_shape
[
i
]
=
self
.
_new_symbolic_dim_from_output
(
node
,
0
,
i
)
else
:
for
i
,
s
,
e
,
t
in
zip
(
axes
,
starts
,
ends
,
steps
):
idx
=
handle_negative_axis
(
i
,
len
(
new_sympy_shape
))
if
is_literal
(
e
):
if
e
>=
self
.
int_max_
:
e
=
new_sympy_shape
[
i
]
elif
e
<=
-
self
.
int_max_
:
e
=
0
if
s
>
0
else
-
1
elif
is_literal
(
new_sympy_shape
[
i
]):
if
e
<
0
:
e
=
e
+
new_sympy_shape
[
i
]
e
=
min
(
e
,
new_sympy_shape
[
i
])
else
:
if
e
>
0
:
e
=
sympy
.
Min
(
e
,
new_sympy_shape
[
i
]
)
if
e
>
1
else
e
#special case for slicing first to make computation easier
else
:
e
=
new_sympy_shape
[
i
]
+
e
else
:
if
is_literal
(
new_sympy_shape
[
i
]):
e
=
sympy
.
Min
(
e
,
new_sympy_shape
[
i
])
else
:
try
:
if
e
>=
new_sympy_shape
[
i
]:
e
=
new_sympy_shape
[
i
]
except
Exception
:
print
(
'Unable to determine if {} <= {}, treat as equal'
.
format
(
e
,
new_sympy_shape
[
i
]))
e
=
new_sympy_shape
[
i
]
if
is_literal
(
s
)
and
int
(
s
)
<
0
:
s
=
new_sympy_shape
[
i
]
+
s
new_sympy_shape
[
idx
]
=
(
e
-
s
+
t
+
(
-
1
if
t
>
0
else
1
))
//
t
self
.
_update_computed_dims
(
new_sympy_shape
)
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
vi
.
type
.
tensor_type
.
elem_type
,
get_shape_from_sympy_shape
(
new_sympy_shape
)))
# handle sympy_data if needed, for slice in shape computation
if
node
.
input
[
0
]
in
self
.
sympy_data_
:
assert
[
0
]
==
axes
assert
len
(
starts
)
==
1
assert
len
(
ends
)
==
1
self
.
sympy_data_
[
node
.
output
[
0
]]
=
self
.
sympy_data_
[
node
.
input
[
0
]][
starts
[
0
]:
ends
[
0
]]
def
_infer_Split_Common
(
self
,
node
,
make_value_info_func
):
input_sympy_shape
=
self
.
_get_sympy_shape
(
node
,
0
)
axis
=
handle_negative_axis
(
get_attribute
(
node
,
'axis'
,
0
),
len
(
input_sympy_shape
))
split
=
get_attribute
(
node
,
'split'
)
if
not
split
:
num_outputs
=
len
(
node
.
output
)
split
=
[
input_sympy_shape
[
axis
]
/
sympy
.
Integer
(
num_outputs
)]
*
num_outputs
self
.
_update_computed_dims
(
split
)
else
:
split
=
[
sympy
.
Integer
(
s
)
for
s
in
split
]
for
i_o
in
range
(
len
(
split
)):
vi
=
self
.
known_vi_
[
node
.
output
[
i_o
]]
vi
.
CopyFrom
(
make_value_info_func
(
node
.
output
[
i_o
],
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
get_shape_from_sympy_shape
(
input_sympy_shape
[:
axis
]
+
[
split
[
i_o
]
]
+
input_sympy_shape
[
axis
+
1
:])))
self
.
known_vi_
[
vi
.
name
]
=
vi
def
_infer_Split
(
self
,
node
):
self
.
_infer_Split_Common
(
node
,
helper
.
make_tensor_value_info
)
def
_infer_SplitToSequence
(
self
,
node
):
self
.
_infer_Split_Common
(
node
,
helper
.
make_sequence_value_info
)
def
_infer_Squeeze
(
self
,
node
):
self
.
_pass_on_sympy_data
(
node
)
def
_infer_Tile
(
self
,
node
):
repeats_value
=
self
.
_get_value
(
node
,
1
)
input_sympy_shape
=
self
.
_get_sympy_shape
(
node
,
0
)
new_sympy_shape
=
[]
for
i
,
d
in
enumerate
(
input_sympy_shape
):
new_dim
=
d
*
repeats_value
[
i
]
new_sympy_shape
.
append
(
new_dim
)
self
.
_update_computed_dims
(
new_sympy_shape
)
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
0
],
vi
.
type
.
tensor_type
.
elem_type
,
get_shape_from_sympy_shape
(
new_sympy_shape
)))
def
_infer_TopK
(
self
,
node
):
rank
=
self
.
_get_shape_rank
(
node
,
0
)
axis
=
handle_negative_axis
(
get_attribute
(
node
,
'axis'
,
-
1
),
rank
)
new_shape
=
self
.
_get_shape
(
node
,
0
)
if
get_opset
(
self
.
out_mp_
)
<=
9
:
k
=
get_attribute
(
node
,
'k'
)
else
:
k
=
self
.
_get_int_values
(
node
)[
1
]
if
k
==
None
:
k
=
self
.
_new_symbolic_dim_from_output
(
node
)
else
:
k
=
as_scalar
(
k
)
if
type
(
k
)
in
[
int
,
str
]:
new_shape
[
axis
]
=
k
else
:
new_sympy_shape
=
self
.
_get_sympy_shape
(
node
,
0
)
new_sympy_shape
[
axis
]
=
k
self
.
_update_computed_dims
(
new_sympy_shape
)
# note that TopK dim could be computed in sympy_data, so need to update computed_dims when it enters shape
new_shape
=
get_shape_from_sympy_shape
(
new_sympy_shape
)
for
i_o
in
range
(
len
(
node
.
output
)):
vi
=
self
.
known_vi_
[
node
.
output
[
i_o
]]
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
node
.
output
[
i_o
],
vi
.
type
.
tensor_type
.
elem_type
,
new_shape
))
def
_infer_Unsqueeze
(
self
,
node
):
self
.
_pass_on_sympy_data
(
node
)
def
_infer_ZipMap
(
self
,
node
):
map_key_type
=
None
if
get_attribute
(
node
,
'classlabels_int64s'
)
is
not
None
:
map_key_type
=
onnx
.
TensorProto
.
INT64
elif
get_attribute
(
node
,
'classlabels_strings'
)
is
not
None
:
map_key_type
=
onnx
.
TensorProto
.
STRING
assert
map_key_type
is
not
None
new_vi
=
onnx
.
ValueInfoProto
()
new_vi
.
name
=
node
.
output
[
0
]
new_vi
.
type
.
sequence_type
.
elem_type
.
map_type
.
value_type
.
tensor_type
.
elem_type
=
onnx
.
TensorProto
.
FLOAT
new_vi
.
type
.
sequence_type
.
elem_type
.
map_type
.
key_type
=
map_key_type
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
vi
.
CopyFrom
(
new_vi
)
def
_infer_impl
(
self
,
in_mp
,
start_sympy_data
=
{}):
self
.
sympy_data_
=
start_sympy_data
self
.
out_mp_
.
graph
.
ClearField
(
'value_info'
)
self
.
_apply_suggested_merge
(
graph_input_only
=
True
)
self
.
input_symbols_
=
set
()
for
i
in
self
.
out_mp_
.
graph
.
input
:
input_dims
=
i
.
type
.
tensor_type
.
shape
.
dim
for
i_dim
in
range
(
len
(
input_dims
)):
if
get_dim_from_type_proto
(
input_dims
[
i_dim
])
is
None
:
# some models use None for symbolic dim in input, replace it with a string
input_dims
[
i_dim
].
dim_param
=
self
.
_new_symbolic_dim
(
i
.
name
,
i_dim
)
self
.
input_symbols_
.
update
([
d
for
d
in
get_shape_from_type_proto
(
i
.
type
)
if
type
(
d
)
==
str
])
for
s
in
self
.
input_symbols_
:
if
s
in
self
.
suggested_merge_
:
s_merge
=
self
.
suggested_merge_
[
s
]
assert
s_merge
in
self
.
symbolic_dims_
self
.
symbolic_dims_
[
s
]
=
self
.
symbolic_dims_
[
s_merge
]
else
:
self
.
symbolic_dims_
[
s
]
=
sympy
.
Symbol
(
s
,
integer
=
True
)
# create a temporary ModelProto for single node inference
# note that we remove initializer to have faster inference
# for tensor ops like Reshape/Tile/Expand that read initializer, we need to do sympy computation based inference anyways
self
.
tmp_mp_
=
onnx
.
ModelProto
()
self
.
tmp_mp_
.
CopyFrom
(
self
.
out_mp_
)
self
.
tmp_mp_
.
graph
.
ClearField
(
'initializer'
)
for
node
in
self
.
out_mp_
.
graph
.
node
:
assert
all
([
i
in
self
.
known_vi_
for
i
in
node
.
input
if
i
])
self
.
_onnx_infer_single_node
(
node
)
if
node
.
op_type
in
self
.
dispatcher_
:
self
.
dispatcher_
[
node
.
op_type
](
node
)
elif
node
.
op_type
in
[
'ConvTranspose'
]:
# onnx shape inference ops like ConvTranspose may have empty shape for symbolic input
# before adding symbolic compute for them
# mark the output type as UNDEFINED to allow guessing of rank
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
if
len
(
vi
.
type
.
tensor_type
.
shape
.
dim
)
==
0
:
vi
.
type
.
tensor_type
.
elem_type
=
onnx
.
TensorProto
.
UNDEFINED
if
self
.
verbose_
>
2
:
print
(
node
.
op_type
+
': '
+
node
.
name
)
for
i
,
name
in
enumerate
(
node
.
input
):
print
(
' Input {}: {} {}'
.
format
(
i
,
name
,
'initializer'
if
name
in
self
.
initializers_
else
''
))
# onnx automatically merge dims with value, i.e. Mul(['aaa', 'bbb'], [1000, 1]) -> [1000, 'bbb']
# symbolic shape inference needs to apply merge of 'aaa' -> 1000 in this case
if
node
.
op_type
in
[
'Add'
,
'Sub'
,
'Mul'
,
'Div'
,
'MatMul'
,
'MatMulInteger'
,
'MatMulInteger16'
,
'Where'
,
'Sum'
]:
vi
=
self
.
known_vi_
[
node
.
output
[
0
]]
out_rank
=
len
(
get_shape_from_type_proto
(
vi
.
type
))
in_shapes
=
[
self
.
_get_shape
(
node
,
i
)
for
i
in
range
(
len
(
node
.
input
))
]
for
d
in
range
(
out_rank
-
(
2
if
node
.
op_type
in
[
'MatMul'
,
'MatMulInteger'
,
'MatMulInteger16'
]
else
0
)):
in_dims
=
[
s
[
len
(
s
)
-
out_rank
+
d
]
for
s
in
in_shapes
if
len
(
s
)
+
d
>=
out_rank
]
if
len
(
in_dims
)
>
1
:
self
.
_check_merged_dims
(
in_dims
,
allow_broadcast
=
True
)
for
i_o
in
range
(
len
(
node
.
output
)):
vi
=
self
.
known_vi_
[
node
.
output
[
i_o
]]
out_type
=
vi
.
type
out_type_kind
=
out_type
.
WhichOneof
(
'value'
)
# only TensorProto and SparseTensorProto have shape
if
out_type_kind
!=
'tensor_type'
and
out_type_kind
!=
'sparse_tensor_type'
:
continue
out_shape
=
get_shape_from_type_proto
(
vi
.
type
)
out_type_undefined
=
out_type
.
tensor_type
.
elem_type
==
onnx
.
TensorProto
.
UNDEFINED
if
self
.
verbose_
>
2
:
print
(
' {}: {} {}'
.
format
(
node
.
output
[
i_o
],
str
(
out_shape
),
vi
.
type
.
tensor_type
.
elem_type
))
if
node
.
output
[
i_o
]
in
self
.
sympy_data_
:
print
(
' Sympy Data: '
+
str
(
self
.
sympy_data_
[
node
.
output
[
i_o
]]))
if
None
in
out_shape
or
out_type_undefined
:
if
self
.
auto_merge_
:
if
node
.
op_type
in
[
'Add'
,
'Sub'
,
'Mul'
,
'Div'
,
'MatMul'
,
'MatMulInteger'
,
'MatMulInteger16'
,
'Concat'
,
'Where'
,
'Sum'
]:
shapes
=
[
self
.
_get_shape
(
node
,
i
)
for
i
in
range
(
len
(
node
.
input
))
]
if
node
.
op_type
in
[
'MatMul'
,
'MatMulInteger'
,
'MatMulInteger16'
]:
if
None
in
out_shape
:
idx
=
out_shape
.
index
(
None
)
dim_idx
=
[
len
(
s
)
-
len
(
out_shape
)
+
idx
for
s
in
shapes
]
# only support auto merge for MatMul for dim < rank-2 when rank > 2
assert
len
(
shapes
[
0
])
>
2
and
dim_idx
[
0
]
<
len
(
shapes
[
0
])
-
2
assert
len
(
shapes
[
1
])
>
2
and
dim_idx
[
1
]
<
len
(
shapes
[
1
])
-
2
elif
node
.
op_type
==
'Expand'
:
# auto merge for cases like Expand([min(batch, 1), min(seq, 512)], [batch, seq])
shapes
=
[
self
.
_get_shape
(
node
,
0
),
self
.
_get_value
(
node
,
1
)
]
else
:
shapes
=
[]
if
shapes
:
for
idx
in
range
(
len
(
out_shape
)):
if
out_shape
[
idx
]
is
not
None
:
continue
dim_idx
=
[
len
(
s
)
-
len
(
out_shape
)
+
idx
for
s
in
shapes
]
assert
all
([
d
>=
0
for
d
in
dim_idx
])
self
.
_add_suggested_merge
([
s
[
i
]
if
is_literal
(
s
[
i
])
else
str
(
s
[
i
])
for
s
,
i
in
zip
(
shapes
,
dim_idx
)
])
self
.
run_
=
True
else
:
self
.
run_
=
False
else
:
self
.
run_
=
False
# create new dynamic dims for ops not handled by symbolic shape inference
if
self
.
run_
==
False
and
not
node
.
op_type
in
self
.
dispatcher_
:
is_unknown_op
=
(
out_type_undefined
and
len
(
out_shape
)
==
0
)
if
is_unknown_op
:
# unknown op to ONNX, maybe from higher opset or other domain
# only guess the output rank from input 0 when using guess_output_rank option
out_rank
=
self
.
_get_shape_rank
(
node
,
0
)
if
self
.
guess_output_rank_
else
-
1
else
:
# valid ONNX op, but not handled by symbolic shape inference, just assign dynamic shape
out_rank
=
len
(
out_shape
)
if
out_rank
>=
0
:
new_shape
=
self
.
_new_symbolic_shape
(
out_rank
,
node
,
i_o
)
vi
.
CopyFrom
(
helper
.
make_tensor_value_info
(
vi
.
name
,
self
.
known_vi_
[
node
.
input
[
0
]].
type
.
tensor_type
.
elem_type
,
get_shape_from_sympy_shape
(
new_shape
)))
if
self
.
verbose_
>
0
:
if
is_unknown_op
:
print
(
"Possible unknown op: {} node: {}, guessing {} shape"
.
format
(
node
.
op_type
,
node
.
name
,
vi
.
name
))
if
self
.
verbose_
>
2
:
print
(
' {}: {} {}'
.
format
(
node
.
output
[
i_o
],
str
(
new_shape
),
vi
.
type
.
tensor_type
.
elem_type
))
self
.
run_
=
True
continue
# continue the inference after guess, no need to stop as no merge is needed
if
self
.
verbose_
>
0
or
not
self
.
auto_merge_
or
out_type_undefined
:
print
(
'Stopping at incomplete shape inference at '
+
node
.
op_type
+
': '
+
node
.
name
)
print
(
'node inputs:'
)
for
i
in
node
.
input
:
print
(
self
.
known_vi_
[
i
])
print
(
'node outputs:'
)
for
o
in
node
.
output
:
print
(
self
.
known_vi_
[
o
])
if
self
.
auto_merge_
and
not
out_type_undefined
:
print
(
'Merging: '
+
str
(
self
.
suggested_merge_
))
return
False
self
.
run_
=
False
return
True
def
_update_output_from_vi
(
self
):
for
output
in
self
.
out_mp_
.
graph
.
output
:
if
output
.
name
in
self
.
known_vi_
:
output
.
CopyFrom
(
self
.
known_vi_
[
output
.
name
])
@
staticmethod
def
infer_shapes
(
in_mp
,
fixed_input_shape
=
None
,
int_max
=
2
**
31
-
1
,
auto_merge
=
False
,
guess_output_rank
=
False
,
verbose
=
0
):
assert
version
.
parse
(
onnx
.
__version__
)
>=
version
.
parse
(
"1.5.0"
)
onnx_opset
=
get_opset
(
in_mp
)
if
not
onnx_opset
or
onnx_opset
<
7
:
print
(
'[WARNING] Symbolic shape inference only support models of onnx opset 7 and above.'
)
return
symbolic_shape_inference
=
SymbolicShapeInference
(
int_max
,
auto_merge
,
guess_output_rank
,
verbose
)
all_shapes_inferred
=
False
symbolic_shape_inference
.
_preprocess
(
in_mp
,
input_shapes
=
fixed_input_shape
)
try
:
while
symbolic_shape_inference
.
run_
:
all_shapes_inferred
=
symbolic_shape_inference
.
_infer_impl
(
in_mp
)
symbolic_shape_inference
.
_update_output_from_vi
()
if
not
all_shapes_inferred
:
print
(
'!'
*
10
)
symbolic_shape_inference
.
out_mp_
=
shape_inference
.
infer_shapes
(
symbolic_shape_inference
.
out_mp_
)
except
:
print
(
'[WARNING] Incomplete symbolic shape inference'
)
symbolic_shape_inference
.
out_mp_
=
shape_inference
.
infer_shapes
(
symbolic_shape_inference
.
out_mp_
)
return
symbolic_shape_inference
.
out_mp_
.
graph
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录