Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
07c16e50
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
07c16e50
编写于
11月 18, 2020
作者:
S
SunAhong1993
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'paddle-2.0' of
https://github.com/PaddlePaddle/X2Paddle
into paddle-2.0
上级
ea0259a1
d275d9ef
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
1818 addition
and
25 deletion
+1818
-25
x2paddle/convert.py
x2paddle/convert.py
+16
-12
x2paddle/core/fluid_code.py
x2paddle/core/fluid_code.py
+2
-0
x2paddle/core/op_mapper.py
x2paddle/core/op_mapper.py
+2
-0
x2paddle/core/program.py
x2paddle/core/program.py
+3
-2
x2paddle/decoder/onnx_decoder.py
x2paddle/decoder/onnx_decoder.py
+1
-0
x2paddle/op_mapper/dygraph/caffe2paddle/caffe_op_mapper.py
x2paddle/op_mapper/dygraph/caffe2paddle/caffe_op_mapper.py
+29
-9
x2paddle/op_mapper/dygraph/onnx2paddle/__init__.py
x2paddle/op_mapper/dygraph/onnx2paddle/__init__.py
+0
-0
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_op_mapper.py
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_op_mapper.py
+93
-0
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/__init__.py
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/__init__.py
+1
-0
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py
+1669
-0
x2paddle/op_mapper/static/onnx2paddle/onnx_op_mapper.py
x2paddle/op_mapper/static/onnx2paddle/onnx_op_mapper.py
+1
-1
x2paddle/op_mapper/static/onnx2paddle/opset9/opset.py
x2paddle/op_mapper/static/onnx2paddle/opset9/opset.py
+1
-1
未找到文件。
x2paddle/convert.py
浏览文件 @
07c16e50
...
...
@@ -177,7 +177,7 @@ def caffe2paddle(proto, weight, save_dir, caffe_proto,
mapper
.
paddle_graph
.
gen_model
(
save_dir
)
def
onnx2paddle
(
model_path
,
save_dir
,
params_merge
=
False
):
def
onnx2paddle
(
model_path
,
save_dir
,
pa
ddle_type
,
pa
rams_merge
=
False
):
# check onnx installation and version
try
:
import
onnx
...
...
@@ -190,19 +190,23 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
return
print
(
"Now translating model from onnx to paddle."
)
from
x2paddle.op_mapper.onnx2paddle.onnx_op_mapper
import
ONNXOpMapper
from
x2paddle.decoder.onnx_decoder
import
ONNXDecoder
from
x2paddle.optimizer.onnx_optimizer
import
ONNXOptimizer
if
paddle_type
==
"dygraph"
:
from
x2paddle.op_mapper.dygraph.onnx2paddle.onnx_op_mapper
import
ONNXOpMapper
else
:
from
x2paddle.op_mapper.static.onnx2paddle.onnx_op_mapper
import
ONNXOpMapper
model
=
ONNXDecoder
(
model_path
)
mapper
=
ONNXOpMapper
(
model
)
if
paddle_type
==
"dygraph"
:
mapper
.
paddle_graph
.
build
()
mapper
.
paddle_graph
.
gen_model
(
save_dir
)
else
:
from
x2paddle.optimizer.onnx_optimizer
import
ONNXOptimizer
print
(
"Model optimizing ..."
)
optimizer
=
ONNXOptimizer
(
mapper
)
optimizer
.
delete_redundance_code
()
print
(
"Model optimized."
)
print
(
"Paddle model and code generating ..."
)
mapper
.
save_inference_model
(
save_dir
,
params_merge
)
print
(
"Paddle model and code generated."
)
def
pytorch2paddle
(
model_path
,
save_dir
,
jit_type
,
input_files
):
...
...
@@ -318,7 +322,7 @@ def main():
if
args
.
params_merge
:
params_merge
=
True
onnx2paddle
(
args
.
model
,
args
.
save_dir
,
params_merge
)
onnx2paddle
(
args
.
model
,
args
.
save_dir
,
args
.
paddle_type
,
params_merge
)
elif
args
.
framework
==
"pytorch"
:
assert
args
.
model
is
not
None
,
"--model should be defined while translating pytorch model"
pytorch2paddle
(
args
.
model
,
args
.
save_dir
,
args
.
jit_type
,
args
.
input_files
)
...
...
x2paddle/core/fluid_code.py
浏览文件 @
07c16e50
...
...
@@ -41,6 +41,8 @@ class Layer(object):
layer_code
=
layer_code
elif
self
.
use_fluid
:
layer_code
=
layer_code
+
"fluid."
+
self
.
op
+
"("
elif
self
.
op
==
"full_like"
:
layer_code
=
layer_code
+
"paddle."
+
self
.
op
+
"("
else
:
layer_code
=
layer_code
+
"fluid.layers."
+
self
.
op
+
"("
...
...
x2paddle/core/op_mapper.py
浏览文件 @
07c16e50
...
...
@@ -128,6 +128,7 @@ class OpMapper(object):
self
.
add_codes
(
"from paddle.fluid.initializer import Constant"
)
self
.
add_codes
(
"from paddle.fluid.param_attr import ParamAttr"
)
self
.
add_codes
(
"import paddle.fluid as fluid"
)
self
.
add_codes
(
"import paddle"
)
self
.
add_codes
(
""
)
def
save_inference_model
(
self
,
save_dir
,
params_merge
):
...
...
@@ -214,6 +215,7 @@ class OpMapper(object):
self
.
add_codes
(
""
,
0
)
self
.
add_codes
(
"
\n
def x2paddle_net():"
,
0
)
self
.
add_codes
(
"paddle.enable_static()"
,
1
)
for
i
in
range
(
len
(
self
.
graph
.
topo_sort
)):
node_name
=
self
.
graph
.
topo_sort
[
i
]
node
=
self
.
graph
.
get_node
(
node_name
)
...
...
x2paddle/core/program.py
浏览文件 @
07c16e50
...
...
@@ -488,11 +488,12 @@ class PaddleGraph(object):
gen_codes
(
comment_list
,
indent
=
1
))
use_structured_name
=
False
if
self
.
source_type
in
[
"tf"
,
"onnx"
]
else
True
self
.
run_func
.
extend
(
gen_codes
([
"paddle.disable_static()"
,
"params, _ = fluid.load_dygraph('{}/model')"
.
format
(
code_dir
),
"model = {}()"
.
format
(
self
.
name
),
"model.set_dict(params
)"
,
"model.set_dict(params
, use_structured_name={})"
.
format
(
use_structured_name
)
,
"model.eval()"
,
"out = model({})"
.
format
(
input_data_name
),
"return out"
],
indent
=
1
))
...
...
@@ -624,7 +625,7 @@ class PaddleGraph(object):
paddle
.
disable_static
()
restore
,
_
=
fluid
.
load_dygraph
(
osp
.
join
(
save_dir
,
"model"
))
model
=
getattr
(
x2paddle_code
,
self
.
name
)()
if
self
.
source_type
==
"tf"
:
if
self
.
source_type
in
[
"tf"
,
"onnx"
]
:
model
.
set_dict
(
restore
,
use_structured_name
=
False
)
else
:
model
.
set_dict
(
restore
)
...
...
x2paddle/decoder/onnx_decoder.py
浏览文件 @
07c16e50
...
...
@@ -145,6 +145,7 @@ class ONNXGraph(Graph):
self
.
build
()
self
.
collect_value_infos
()
self
.
allocate_shapes
()
self
.
graph_name
=
"ONNXModel"
def
get_inner_nodes
(
self
):
"""
...
...
x2paddle/op_mapper/dygraph/caffe2paddle/caffe_op_mapper.py
浏览文件 @
07c16e50
...
...
@@ -578,9 +578,11 @@ class CaffeOpMapper(OpMapper):
mode_bool
=
params
.
channel_shared
output_shape
=
node
.
output_shape
[
0
]
if
mode_bool
:
num_parameters
=
1
mode
=
'all'
channel
=
None
else
:
num_parameters
=
output_shape
[
1
]
mode
=
'channel'
channel
=
output_shape
[
1
]
data
=
node
.
data
self
.
params
[
prelu_name
+
'._weight'
]
=
np
.
squeeze
(
data
[
0
])
assert
data
is
not
None
,
"The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value."
.
format
(
...
...
@@ -589,7 +591,8 @@ class CaffeOpMapper(OpMapper):
"paddle.nn.PReLU"
,
inputs
=
{
"input"
:
self
.
get_input_name
(
input
)},
outputs
=
layer_outputs
,
num_parameters
=
num_parameters
)
channel
=
channel
,
mode
=
string
(
mode
))
def
Eltwise
(
self
,
node
):
assert
len
(
...
...
@@ -745,11 +748,28 @@ class CaffeOpMapper(OpMapper):
inputs_dict
=
{}
inputs_dict
[
'x'
]
=
node
.
layer_name
+
"_mul"
inputs_dict
[
'y'
]
=
node
.
layer_name
+
"_cparam2"
output_shape
=
node
.
output_shape
[
0
]
if
axis
==
-
1
:
self
.
paddle_graph
.
add_layer
(
"fluid.layers.elementwise_
add"
,
"paddle.
add"
,
inputs
=
inputs_dict
,
outputs
=
[
node
.
layer_name
],
axis
=
axis
)
outputs
=
[
node
.
layer_name
])
else
:
if
axis
<
0
:
axis
=
axis
+
len
(
output_shape
)
param2_shape
=
self
.
params
[
node
.
layer_name
+
"_cparam2"
].
shape
param2_shape_len
=
len
(
param2_shape
)
diff_len
=
len
(
output_shape
)
-
axis
-
param2_shape_len
new_shape
=
param2_shape
+
[
1
]
*
diff_len
self
.
paddle_graph
.
add_layer
(
"paddle.reshape"
,
inputs
=
{
"x"
:
node
.
layer_name
+
"_cparam2"
},
outputs
=
[
node
.
layer_name
+
"_cparam2"
],
shape
=
new_shape
)
self
.
paddle_graph
.
add_layer
(
"paddle.add"
,
inputs
=
inputs_dict
,
outputs
=
[
node
.
layer_name
])
def
Reshape
(
self
,
node
):
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
...
...
x2paddle/op_mapper/dygraph/onnx2paddle/__init__.py
0 → 100644
浏览文件 @
07c16e50
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_op_mapper.py
0 → 100644
浏览文件 @
07c16e50
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
x2paddle.op_mapper.dygraph.onnx2paddle.opset9
import
OpSet9
from
x2paddle.core.op_mapper
import
OpMapper
from
x2paddle.decoder.onnx_decoder
import
ONNXGraphNode
from
x2paddle.core.program
import
PaddleGraph
class
ONNXOpMapper
(
OpMapper
):
def
__init__
(
self
,
decoder
):
super
(
ONNXOpMapper
,
self
).
__init__
()
self
.
support_op_sets
=
[
9
,
]
self
.
default_op_set
=
9
self
.
graph
=
decoder
.
graph
self
.
paddle_graph
=
PaddleGraph
(
parent_layer
=
None
,
graph_type
=
"dygraph"
,
source_type
=
"onnx"
)
self
.
opset
=
self
.
create_opset
(
decoder
)
if
not
self
.
op_checker
():
raise
Exception
(
"Model are not supported yet."
)
#mapping op
print
(
"Total nodes: {}"
.
format
(
sum
([
isinstance
(
node
,
ONNXGraphNode
)
for
name
,
node
in
self
.
graph
.
node_map
.
items
()
])))
print
(
"Nodes converting ..."
)
for
node_name
in
self
.
graph
.
topo_sort
:
node
=
self
.
graph
.
get_node
(
node_name
)
op
=
node
.
layer_type
if
hasattr
(
self
.
opset
,
op
):
func
=
getattr
(
self
.
opset
,
op
)
func
(
node
)
elif
op
in
self
.
opset
.
default_op_mapping
:
self
.
opset
.
directly_map
(
node
)
elif
op
in
self
.
opset
.
elementwise_ops
:
self
.
opset
.
elementwise_map
(
node
)
print
(
"Nodes converted."
)
self
.
weights
=
self
.
opset
.
weights
self
.
inputs_info
=
self
.
opset
.
inputs_info
self
.
paddle_graph
.
set_name
(
self
.
graph
.
graph_name
)
self
.
paddle_graph
.
set_parameters
(
self
.
weights
)
self
.
paddle_graph
.
set_inputs_info
(
self
.
inputs_info
)
self
.
paddle_graph
.
outputs
=
self
.
graph
.
output_nodes
def
op_checker
(
self
):
unsupported_ops
=
set
()
for
node_name
in
self
.
graph
.
topo_sort
:
node
=
self
.
graph
.
get_node
(
node_name
)
op
=
node
.
layer_type
if
not
hasattr
(
self
.
opset
,
op
)
and
\
op
not
in
self
.
opset
.
default_op_mapping
and
\
op
not
in
self
.
opset
.
elementwise_ops
:
unsupported_ops
.
add
(
op
)
if
len
(
unsupported_ops
)
==
0
:
return
True
else
:
print
(
"There are {} ops not supported yet, list as below"
.
format
(
len
(
unsupported_ops
)))
for
op
in
unsupported_ops
:
print
(
op
)
return
False
def
create_opset
(
self
,
decoder
):
run_op_set
=
self
.
default_op_set
opset
=
''
if
decoder
.
op_set
in
self
.
support_op_sets
:
opset
=
'OpSet'
+
str
(
decoder
.
op_set
)
elif
decoder
.
op_set
<
self
.
default_op_set
:
opset
=
'OpSet'
+
str
(
self
.
default_op_set
)
else
:
for
op_set
in
self
.
support_op_sets
:
if
decoder
.
op_set
>
op_set
:
run_op_set
=
op_set
else
:
break
opset
=
'OpSet'
+
str
(
run_op_set
)
print
(
'Now, onnx2paddle support convert onnx model opset_verison {},'
'opset_verison of your onnx model is {}, automatically treated as op_set: {}.'
.
format
(
self
.
support_op_sets
,
decoder
.
op_set
,
run_op_set
))
return
eval
(
opset
)(
decoder
,
self
.
paddle_graph
)
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/__init__.py
0 → 100644
浏览文件 @
07c16e50
from
.opset
import
OpSet9
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py
0 → 100644
浏览文件 @
07c16e50
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
x2paddle.decoder.onnx_decoder
import
ONNXGraph
,
ONNXGraphNode
,
ONNXGraphDataNode
from
x2paddle.core.graph
import
GraphNode
from
x2paddle.core.fluid_code
import
Layer
from
x2paddle.core.fluid_code
import
FluidCode
from
x2paddle.core.util
import
*
from
functools
import
reduce
import
numpy
as
np
import
onnx
import
onnx.numpy_helper
as
numpy_helper
from
onnx.mapping
import
TENSOR_TYPE_TO_NP_TYPE
import
logging
as
_logging
from
collections
import
OrderedDict
import
math
import
os
import
copy
import
sys
import
shutil
_logger
=
_logging
.
getLogger
(
__name__
)
def
_const_weight_or_none
(
node
,
necessary
=
False
):
if
'Constant'
in
node
.
layer_type
:
return
node
.
value
if
isinstance
(
node
,
ONNXGraphDataNode
):
return
node
.
weight
if
necessary
:
assert
'{} should be an initializer or Constant operator.'
.
format
(
node
.
layer_name
)
return
None
def
_is_static_shape
(
shape
):
negtive_dims
=
0
error_dims
=
0
for
dim
in
shape
:
if
dim
<
0
:
negtive_dims
+=
1
if
dim
<
-
1
:
error_dims
+=
1
if
negtive_dims
>
1
:
return
False
if
error_dims
>
0
:
return
False
return
True
def
_get_same_padding
(
in_size
,
kernel_size
,
stride
):
new_size
=
int
(
math
.
ceil
(
in_size
*
1.0
/
stride
))
pad_size
=
(
new_size
-
1
)
*
stride
+
kernel_size
-
in_size
pad0
=
int
(
pad_size
/
2
)
pad1
=
pad_size
-
pad0
return
[
pad0
,
pad1
]
def
print_mapping_info
(
func
):
def
run_mapping
(
*
args
,
**
kwargs
):
node
=
args
[
1
]
try
:
res
=
func
(
*
args
,
**
kwargs
)
except
:
print
(
"convert failed node:{}, op_type is {}"
.
format
(
node
.
layer_name
[
9
:],
node
.
layer_type
))
raise
else
:
return
res
return
run_mapping
class
OpSet9
():
elementwise_ops
=
{
'Add'
:
'paddle.add'
,
'Div'
:
'paddle.divide'
,
'Sub'
:
'fluid.layers.elementwise_sub'
,
'Mul'
:
'paddle.multiply'
,
'Pow'
:
'paddle.pow'
,
}
default_op_mapping_field_values
=
OrderedDict
()
default_op_mapping_field_values
[
'PADDLE_OP'
]
=
''
default_op_mapping_field_values
[
'PADDLE_INPUT_ARGS'
]
=
None
default_op_mapping_field_values
[
'ATTR_MAPPING'
]
=
dict
()
default_op_mapping_field_values
[
'DEFAULTS'
]
=
dict
()
default_op_mapping
=
{
'Shape'
:
[
'paddle.shape'
,
[
'input'
]],
'Ceil'
:
[
'paddle.ceil'
,
[
'x'
]],
'ReduceMean'
:
[
'paddle.mean'
,
[
'x'
],
dict
(
axes
=
'axis'
,
keepdims
=
'keepdim'
),
dict
(
keepdim
=
1
)
],
'ReduceSum'
:
[
'paddle.sum'
,
[
'x'
],
dict
(
axes
=
'axis'
,
keepdims
=
'keepdim'
),
dict
(
keepdim
=
1
)
],
'ReduceMin'
:
[
'paddle.min'
,
[
'x'
],
dict
(
axes
=
'axis'
,
keepdims
=
'keepdim'
),
dict
(
keepdim
=
1
)
],
'ReduceMax'
:
[
'paddle.max'
,
[
'x'
],
dict
(
axes
=
'axis'
,
keepdims
=
'keepdim'
),
dict
(
keepdim
=
1
)
],
#active function
'Relu'
:
[
'paddle.nn.ReLU'
,
[
'x'
]],
'LeakyRelu'
:
[
'paddle.nn.LeakyReLU'
,
[
'x'
],
dict
(
alpha
=
'negative_slope'
),
dict
(
negative_slope
=
.
01
)],
'Elu'
:
[
'paddle.nn.functional.elu'
,
[
'x'
],
dict
(),
dict
(
alpha
=
1.
)],
'ThresholdedRelu'
:
[
'paddle.nn.functional.thresholded_relu'
,
[
'x'
],
dict
(
alpha
=
'threshold'
),
dict
(
alpha
=
1.
)
],
'Tanh'
:
[
'paddle.nn.Tanh'
,
[
'x'
]],
'Sigmoid'
:
[
'paddle.nn.Sigmoid'
,
[
'x'
]],
'Softsign'
:
[
'paddle.nn.Softsign'
,
[
'x'
]],
'Softplus'
:
[
'paddle.nn.Softplus'
,
[
'x'
],
dict
(),
dict
(
threshold
=
float
(
sys
.
maxsize
))],
'Exp'
:
[
'paddle.exp'
,
[
'x'
]],
'Softmax'
:
[
'paddle.nn.Softmax'
,
[
'x'
],
dict
(),
dict
(
axis
=
1
)],
'Sqrt'
:
[
'paddle.sqrt'
,
[
'x'
]],
'Floor'
:
[
'paddle.floor'
,
[
'x'
]],
'Abs'
:
[
'paddle.abs'
,
[
'x'
]],
'Erf'
:
[
'paddle.erf'
,
[
'x'
]],
}
def
__init__
(
self
,
decoder
,
paddle_graph
):
super
(
OpSet9
,
self
).
__init__
()
self
.
graph
=
decoder
.
graph
self
.
paddle_graph
=
paddle_graph
self
.
input_index
=
0
self
.
inputs_info
=
dict
()
self
.
weights
=
dict
()
self
.
nn_name2id
=
dict
()
def
get_node_name
(
self
,
node
):
if
hasattr
(
node
,
"index"
):
return
"{}_{}"
.
format
(
node
.
layer_name
,
node
.
index
)
else
:
return
node
.
layer_name
@
print_mapping_info
def
directly_map
(
self
,
node
,
*
args
,
**
kwargs
):
inputs
=
node
.
layer
.
input
op_type
=
node
.
layer_type
attrs
=
node
.
attr_map
info
=
self
.
default_op_mapping
[
op_type
]
info
.
extend
(
list
(
self
.
default_op_mapping_field_values
.
values
())[
len
(
info
):])
(
paddle_op
,
paddle_input_args
,
attr_mapping
,
default_attrs
)
=
info
mapped_attrs
=
{
attr_mapping
.
get
(
key
,
key
):
value
for
key
,
value
in
attrs
.
items
()
}
if
''
in
mapped_attrs
:
mapped_attrs
.
pop
(
''
)
if
'_'
in
mapped_attrs
:
mapped_attrs
.
pop
(
'_'
)
layer_attrs
=
default_attrs
.
copy
()
layer_attrs
.
update
(
mapped_attrs
)
assert
len
(
inputs
)
==
1
,
'directly_map error with multi inputs'
input
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
if
paddle_op
.
startswith
(
"paddle.nn"
):
op_name
=
paddle_op
[
10
:].
lower
()
op_name
=
name_generator
(
op_name
,
self
.
nn_name2id
)
output_name
=
node
.
layer_name
layer_outputs
=
[
op_name
,
output_name
]
self
.
paddle_graph
.
add_layer
(
kernel
=
paddle_op
,
inputs
=
{
paddle_input_args
[
0
]:
self
.
get_node_name
(
input
)},
outputs
=
layer_outputs
,
**
layer_attrs
)
else
:
self
.
paddle_graph
.
add_layer
(
kernel
=
paddle_op
,
inputs
=
{
paddle_input_args
[
0
]:
self
.
get_node_name
(
input
)},
outputs
=
[
node
.
layer_name
],
**
layer_attrs
)
if
paddle_op
==
'paddle.shape'
:
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
"x"
:
node
.
layer_name
},
outputs
=
[
node
.
layer_name
],
dtype
=
string
(
'int64'
))
@
print_mapping_info
def
elementwise_map
(
self
,
node
):
assert
node
.
layer_type
in
self
.
elementwise_ops
op_type
=
self
.
elementwise_ops
[
node
.
layer_type
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
inputs_dict
=
{
'x'
:
self
.
get_node_name
(
val_x
),
'y'
:
self
.
get_node_name
(
val_y
)}
self
.
paddle_graph
.
add_layer
(
op_type
,
inputs
=
inputs_dict
,
outputs
=
[
node
.
layer_name
])
@
print_mapping_info
def
place_holder
(
self
,
node
):
shape
=
node
.
out_shapes
[
0
]
for
i
,
dim_shape
in
enumerate
(
shape
):
if
dim_shape
==
0
and
i
==
0
:
shape
[
i
]
=
1
if
dim_shape
==
0
and
i
!=
0
:
assert
'shape of input is not assigned'
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.to_tensor"
,
inputs
=
{},
outputs
=
[
node
.
layer_name
],
data
=
"x{}"
.
format
(
self
.
input_index
))
self
.
inputs_info
[
"x{}"
.
format
(
self
.
input_index
)]
=
[
shape
,
node
.
dtype
]
self
.
input_index
+=
1
@
print_mapping_info
def
create_parameter
(
self
,
node
,
parameter
=
None
):
if
parameter
is
not
None
:
node
=
parameter
dtype
=
node
.
dtype
shape
=
node
.
out_shapes
[
0
]
if
len
(
node
.
weight
.
shape
)
==
0
:
self
.
paddle_graph
.
add_layer
(
"paddle.full"
,
inputs
=
{},
outputs
=
[
node
.
layer_name
],
dtype
=
string
(
dtype
),
shape
=
[
1
],
fill_value
=
node
.
weight
)
else
:
self
.
weights
[
node
.
layer_name
]
=
node
.
weight
self
.
paddle_graph
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
node
.
layer_name
],
shape
=
shape
,
attr
=
string
(
node
.
layer_name
),
dtype
=
string
(
dtype
),
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
def
_pad_if_asymmetric
(
self
,
node
,
pads
,
val_name
):
# pads: SSEE
assert
len
(
pads
)
&
1
==
0
symmetric
=
True
ndims
=
len
(
pads
)
//
2
for
idx_dim
in
range
(
ndims
):
if
pads
[
idx_dim
]
!=
pads
[
ndims
+
idx_dim
]:
symmetric
=
False
break
if
symmetric
:
return
pads
[:
ndims
],
val_name
val_padded
=
self
.
Pad
(
node
,
op_independent
=
False
)
return
[
0
]
*
ndims
,
val_padded
def
_interpolate
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
)}
if
node
.
layer_type
==
'Resize'
:
if
len
(
node
.
layer
.
input
)
==
2
:
# opset 10
val_scales
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
inputs
[
'scale_factor'
]
=
self
.
get_node_name
(
val_scales
)
elif
len
(
node
.
layer
.
input
)
==
3
:
# opset 11
val_scales
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
inputs
[
'scale_factor'
]
=
self
.
get_node_name
(
val_scales
)
elif
len
(
node
.
layer
.
input
)
==
4
:
# opset 11
val_sizes
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
var_nc
,
var_hw
=
val_sizes
.
layer_name
+
'_nc'
,
val_sizes
.
layer_name
+
'_hw'
self
.
paddle_graph
.
add_layer
(
'paddle.split'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_sizes
)},
outputs
=
[
var_nc
,
var_hw
],
num_or_sections
=
[
2
,
2
],
axis
=
0
)
self
.
paddle_graph
.
add_layer
(
"paddle.cast"
,
inputs
=
{
"x"
:
var_hw
},
outputs
=
[
var_hw
],
dtype
=
string
(
'int32'
))
# inputs['size'] = var_hw
# TODO(syf): all use
inputs
[
'out_shape'
]
=
var_hw
ipt
=
inputs
.
pop
(
"x"
)
inputs
[
"input"
]
=
ipt
mode
=
node
.
get_attr
(
'mode'
,
'nearest'
)
attrs
=
{
"align_corners"
:
False
}
self
.
paddle_graph
.
add_layer
(
kernel
=
"fluid.layers.resize_nearest"
,
inputs
=
inputs
,
outputs
=
[
node
.
layer_name
],
**
attrs
)
return
elif
node
.
layer_type
==
'Upsample'
:
val_scales
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
inputs
[
'scale'
]
=
val_scales
mode
=
node
.
get_attr
(
'mode'
,
'nearest'
)
attrs
=
{
"align_corners"
:
False
,
"mode"
:
string
(
mode
),
"align_mode"
:
1
}
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.functional.interpolate"
,
inputs
=
inputs
,
outputs
=
[
node
.
layer_name
],
**
attrs
)
@
print_mapping_info
def
HardSigmoid
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
alpha
=
node
.
get_attr
(
'alpha'
,
0.2
)
beta
=
node
.
get_attr
(
'beta'
,
0.5
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.scale"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
+
"_val"
],
scale
=
alpha
,
bias
=
beta
)
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.clip"
,
inputs
=
{
"x"
:
node
.
layer_name
+
"_val"
},
outputs
=
[
node
.
layer_name
],
min
=
0.0
,
max
=
1.0
)
@
print_mapping_info
def
RoiAlign
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_rois
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
pooled_height
=
node
.
get_attr
(
'output_height'
)
pooled_width
=
node
.
get_attr
(
'output_width'
)
spatial_scale
=
node
.
get_attr
(
'spatial_scale'
)
sampling_ratio
=
node
.
get_attr
(
'sampling_ratio'
)
layer_attrs
=
{
'pooled_height'
:
pooled_height
,
'pooled_width'
:
pooled_width
,
'spatial_scale'
:
spatial_scale
,
'sampling_ratio'
:
sampling_ratio
,
}
self
.
paddle_graph
.
add_layer
(
'fluid.layers.roi_align'
,
inputs
=
{
'input'
:
self
.
get_node_name
(
val_x
),
'rois'
:
self
.
get_node_name
(
val_rois
)},
outputs
=
[
node
.
layer_name
],
**
layer_attrs
)
@
print_mapping_info
def
MaxRoiPool
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_rois
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
spatial_scale
=
node
.
get_attr
(
'spatial_scale'
)
pooled_height
,
pooled_width
=
node
.
get_attr
(
'pooled_shape'
)
layer_attrs
=
{
'pooled_height'
:
pooled_height
,
'pooled_width'
:
pooled_width
,
'spatial_scale'
:
spatial_scale
,
}
self
.
paddle_graph
.
add_layer
(
'fluid.layers.roi_pool'
,
inputs
=
{
'input'
:
self
.
get_node_name
(
val_x
),
'rois'
:
self
.
get_node_name
(
val_rois
)},
outputs
=
[
node
.
layer_name
],
**
layer_attrs
)
@
print_mapping_info
def
Pad
(
self
,
node
,
op_independent
=
True
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
pads
=
node
.
get_attr
(
'pads'
)
mode
=
node
.
get_attr
(
'mode'
,
'constant'
)
value
=
node
.
get_attr
(
'value'
,
0.
)
data_shape
=
val_x
.
out_shapes
[
0
]
output_shape
=
node
.
out_shapes
[
0
]
assume_pad2d
=
False
layer_attrs
=
{}
layer_attrs
[
'mode'
]
=
string
(
mode
)
paddings
=
[]
if
len
(
pads
)
==
4
:
assume_pad2d
|=
mode
!=
'constant'
if
data_shape
:
assume_pad2d
|=
data_shape
and
len
(
data_shape
)
==
4
# NCHW
if
output_shape
:
assume_pad2d
|=
output_shape
and
len
(
output_shape
)
==
4
# NCHW
if
assume_pad2d
:
paddle_op
=
'paddle.nn.Pad2D'
layer_attrs
[
'data_format'
]
=
string
(
'NCHW'
)
layer_attrs
[
'value'
]
=
value
else
:
paddle_op
=
'fluid.layers.pad'
layer_attrs
[
"pad_value"
]
=
value
if
len
(
pads
)
==
4
:
paddings
=
np
.
array
(
pads
).
reshape
(
(
-
1
,
2
)).
transpose
().
flatten
().
tolist
()
# SSEE -> SESE
elif
len
(
pads
)
==
8
:
paddings
=
np
.
array
(
pads
).
reshape
(
(
-
1
,
4
)).
transpose
().
flatten
().
tolist
()
# SSEE -> SESE
if
sum
(
paddings
[:
4
])
==
0
:
paddle_op
=
'paddle.nn.Pad2D'
paddings
=
paddings
[
4
:]
layer_attrs
[
'value'
]
=
value
if
'pad_value'
in
layer_attrs
:
layer_attrs
.
pop
(
'pad_value'
)
tmp_paddings
=
copy
.
deepcopy
(
paddings
)
paddings
[
0
]
=
tmp_paddings
[
2
]
paddings
[
1
]
=
tmp_paddings
[
3
]
paddings
[
2
]
=
tmp_paddings
[
0
]
paddings
[
3
]
=
tmp_paddings
[
1
]
if
paddle_op
==
'paddle.nn.Pad2D'
:
layer_attrs
[
'padding'
]
=
paddings
nn_op_name
=
name_generator
(
"pad2d"
,
self
.
nn_name2id
)
else
:
layer_attrs
[
'paddings'
]
=
paddings
if
op_independent
:
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
nn_op_name
,
node
.
layer_name
]
if
paddle_op
==
'paddle.nn.Pad2D'
else
[
node
.
layer_name
],
**
layer_attrs
)
else
:
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
nn_op_name
,
node
.
layer_name
+
'_paded'
]
if
paddle_op
==
'paddle.nn.Pad2D'
\
else
[
node
.
layer_name
+
'_paded'
],
**
layer_attrs
)
return
node
.
layer_name
+
'_paded'
@
print_mapping_info
def
Unsqueeze
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
axes
=
node
.
get_attr
(
'axes'
)
layer_attrs
=
{
'axis'
:
axes
}
if
len
(
val_x
.
out_shapes
[
0
])
==
0
:
if
node
.
layer_name
:
self
.
paddle_graph
.
add_layer
(
'paddle.reshape'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
shape
=
[
1
])
else
:
self
.
paddle_graph
.
add_layer
(
'paddle.unsqueeze'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
**
layer_attrs
)
@
print_mapping_info
def
Shrink
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
bias
=
node
.
get_attr
(
'bias'
)
lambd
=
node
.
get_attr
(
'lambd'
)
assert
bias
==
0.0
,
'not support bias!=0'
self
.
paddle_graph
.
add_layer
(
'paddle.nn.functional.hardshrink'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
threshold
=
lambd
)
@
print_mapping_info
def
Constant
(
self
,
node
):
val_output
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
value
=
node
.
get_attr
(
'value'
)
dtype
=
np
.
dtype
(
value
.
dtype
)
output_dtype
=
val_output
.
dtype
if
output_dtype
:
assert
dtype
==
output_dtype
,
'tensor dtype unmatches storage dtype'
shape
=
node
.
get_attr
(
'shape'
,
None
)
if
shape
is
None
:
shape
=
val_output
.
out_shapes
[
0
]
if
shape
is
None
:
shape
=
list
(
value
.
shape
)
_logger
.
warning
(
'in (Constant -> %s): '
'attribute "shape" of %s not inferred, '
'using value as 1-D tensor may lead to fails'
,
val_output
.
layer_name
,
val_output
.
layer_name
)
if
len
(
value
)
==
1
:
value
=
value
.
tolist
()
value
=
value
[
0
]
self
.
paddle_graph
.
add_layer
(
"paddle.full"
,
inputs
=
{},
outputs
=
[
node
.
layer_name
],
dtype
=
string
(
dtype
),
shape
=
[
1
],
fill_value
=
value
)
else
:
value
=
np
.
reshape
(
value
,
shape
)
self
.
weights
[
node
.
layer_name
]
=
value
self
.
paddle_graph
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
node
.
layer_name
],
shape
=
shape
,
attr
=
string
(
node
.
layer_name
),
dtype
=
string
(
dtype
),
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
@
print_mapping_info
def
Resize
(
self
,
node
):
self
.
_interpolate
(
node
)
@
print_mapping_info
def
Upsample
(
self
,
node
):
self
.
_interpolate
(
node
)
@
print_mapping_info
def
InstanceNormalization
(
self
,
node
):
op_name
=
name_generator
(
"instanse_norm"
,
self
.
nn_name2id
)
output_name
=
node
.
layer_name
layer_outputs
=
[
op_name
,
output_name
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_scale
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
epsilon
=
node
.
get_attr
(
'epsilon'
,
1e-5
)
layer_attrs
=
{
'num_features'
:
node
.
out_shapes
[
0
][
1
],
'epsilon'
:
epsilon
,
'weight_attr'
:
string
(
self
.
get_node_name
(
val_scale
)),
'bias_attr'
:
string
(
self
.
get_node_name
(
val_b
))
}
dim
=
len
(
val_x
.
out_shapes
[
0
])
if
dim
==
2
or
dim
==
3
:
paddle_op
=
"paddle.nn.InstanceNorm1D"
elif
dim
==
4
:
paddle_op
=
"paddle.nn.InstanceNorm2D"
elif
dim
==
5
:
paddle_op
=
"paddle.nn.InstanceNorm3D"
else
:
raise
Exception
(
"The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization."
)
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
layer_outputs
,
**
layer_attrs
)
@
print_mapping_info
def
Expand
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_shape
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_x_dtype
=
val_x
.
dtype
name_ones
=
node
.
layer_name
+
'_ones'
attr_ones
=
{
'shape'
:
val_shape
.
layer_name
,
'dtype'
:
string
(
val_x_dtype
),
'fill_value'
:
1
}
self
.
paddle_graph
.
add_layer
(
'paddle.full'
,
inputs
=
{},
outputs
=
[
name_ones
],
**
attr_ones
)
inputs_dict
=
{
'x'
:
name_ones
,
'y'
:
self
.
get_node_name
(
val_x
)}
self
.
paddle_graph
.
add_layer
(
'paddle.multiply'
,
inputs
=
inputs_dict
,
outputs
=
[
node
.
layer_name
])
@
print_mapping_info
def
Gather
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
indices
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
indices_shape
=
indices
.
out_shapes
[
0
]
axis
=
node
.
get_attr
(
'axis'
,
0
)
#assert len(
# indices_shape) <= 2, "Gather op don't support dim of indice >2 "
if
axis
==
0
and
len
(
indices_shape
)
<=
1
:
if
len
(
val_x
.
out_shapes
[
0
])
<=
1
:
self
.
paddle_graph
.
add_layer
(
'paddle.gather'
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
),
'index'
:
self
.
get_node_name
(
indices
)},
outputs
=
[
node
.
layer_name
])
elif
len
(
val_x
.
out_shapes
[
0
])
>
1
:
if
len
(
indices_shape
)
==
0
:
gather_
=
node
.
layer_name
+
'_1'
self
.
paddle_graph
.
add_layer
(
'paddle.gather'
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
),
'index'
:
self
.
get_node_name
(
indices
)},
outputs
=
[
gather_
])
self
.
paddle_graph
.
add_layer
(
'paddle.squeeze'
,
inputs
=
{
'x'
:
gather_
},
outputs
=
[
node
.
layer_name
],
axis
=
[
0
])
else
:
self
.
paddle_graph
.
add_layer
(
'paddle.gather'
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
),
'index'
:
self
.
get_node_name
(
indices
)},
outputs
=
[
node
.
layer_name
])
elif
axis
>
0
and
len
(
indices_shape
)
<=
1
:
perm
=
list
(
range
(
len
(
val_x
.
out_shapes
[
0
])))
perm
=
[
axis
]
+
perm
[:
axis
]
+
perm
[
axis
+
1
:]
name_trans
=
val_x
.
layer_name
+
'_trans'
self
.
paddle_graph
.
add_layer
(
'paddle.transpose'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
name_trans
],
perm
=
perm
)
self
.
paddle_graph
.
add_layer
(
'paddle.gather'
,
inputs
=
{
'x'
:
name_trans
,
'index'
:
self
.
get_node_name
(
indices
)},
outputs
=
[
node
.
layer_name
])
self
.
paddle_graph
.
add_layer
(
'paddle.transpose'
,
inputs
=
{
"x"
:
node
.
layer_name
},
outputs
=
[
node
.
layer_name
],
perm
=
perm
)
if
len
(
indices_shape
)
<
1
:
self
.
paddle_graph
.
add_layer
(
'paddle.squeeze'
,
inputs
=
{
'x'
:
node
.
layer_name
},
outputs
=
[
node
.
layer_name
],
axis
=
[
axis
])
elif
axis
==
0
and
len
(
indices_shape
)
>
1
:
if
val_x
.
out_shapes
[
0
]
is
not
None
and
isinstance
(
val_x
,
ONNXGraphDataNode
):
indices_cast
=
indices
.
layer_name
+
'_cast'
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
indices
)},
outputs
=
indices_cast
,
dtype
=
string
(
'int64'
))
op_name
=
name_generator
(
"embedding"
,
self
.
nn_name2id
)
output_name
=
node
.
layer_name
layer_outputs
=
[
op_name
,
output_name
]
self
.
paddle_graph
.
add_layer
(
'paddle.nn.Embedding'
,
inputs
=
{
"x"
:
indices_cast
},
outputs
=
layer_outputs
,
param_attr
=
string
(
val_x
.
layer_name
),
size
=
val_x
.
out_shapes
[
0
])
else
:
from
functools
import
reduce
reshape_shape
=
reduce
(
lambda
x
,
y
:
x
*
y
,
indices_shape
)
indices_reshape
=
indices
.
layer_name
+
'_shape'
self
.
paddle_graph
.
add_layer
(
'paddle.reshape'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
indices
)},
outputs
=
[
indices_reshape
],
shape
=
[
reshape_shape
,
])
perm
=
list
(
range
(
len
(
val_x
.
out_shapes
[
0
])))
self
.
paddle_graph
.
add_layer
(
'paddle.gather'
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
),
'index'
:
indices_reshape
},
outputs
=
[
node
.
layer_name
])
val_x_shape
=
val_x
.
out_shapes
[
0
]
reshaped_shape
=
[]
for
i
in
perm
:
reshaped_shape
.
append
(
indices_shape
[
i
])
for
i
in
val_x_shape
[:
axis
]
+
val_x_shape
[
axis
+
1
:]:
reshaped_shape
.
append
(
i
)
self
.
paddle_graph
.
add_layer
(
'paddle.reshape'
,
inputs
=
{
"x"
:
node
.
layer_name
},
outputs
=
[
node
.
layer_name
],
shape
=
reshaped_shape
)
elif
axis
>
0
and
len
(
indices_shape
)
>
1
:
from
functools
import
reduce
reshape_shape
=
reduce
(
lambda
x
,
y
:
x
*
y
,
indices_shape
)
indices_reshape
=
indices
.
layer_name
+
'_shape'
self
.
paddle_graph
.
add_layer
(
'paddle.reshape'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
indices
)},
outputs
=
[
indices_reshape
],
shape
=
[
reshape_shape
,
])
perm
=
list
(
range
(
len
(
val_x
.
out_shapes
[
0
])))
perm
=
[
axis
]
+
perm
[:
axis
]
+
perm
[
axis
+
1
:]
name_trans
=
val_x
.
layer_name
+
'_transpose'
self
.
paddle_graph
.
add_layer
(
'paddle.transpose'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
name_trans
],
perm
=
perm
)
self
.
paddle_graph
.
add_layer
(
'paddle.gather'
,
inputs
=
{
'x'
:
name_trans
,
'index'
:
indices_reshape
},
outputs
=
[
node
.
layer_name
])
input_transpose
=
node
.
layer_name
+
'_transpose'
self
.
paddle_graph
.
add_layer
(
'paddle.transpose'
,
inputs
=
{
"x"
:
node
.
layer_name
},
outputs
=
[
input_transpose
],
perm
=
perm
)
val_x_shape
=
val_x
.
out_shapes
[
0
]
reshaped_shape
=
[]
for
i
in
perm
:
reshaped_shape
.
append
(
indices_shape
[
i
])
for
i
in
val_x_shape
[:
axis
]
+
val_x_shape
[
axis
+
1
:]:
reshaped_shape
.
append
(
i
)
self
.
paddle_graph
.
add_layer
(
'paddle.reshape'
,
inputs
=
{
"x"
:
input_transpose
},
outputs
=
[
node
.
layer_name
],
shape
=
reshaped_shape
)
@
print_mapping_info
def
ScatterND
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
indices
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
updates
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
if
len
(
indices
.
out_shapes
[
0
])
==
1
:
self
.
paddle_graph
.
add_layer
(
'paddle.scatter'
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
),
'index'
:
self
.
get_node_name
(
indices
),
'updates'
:
self
.
get_node_name
(
updates
)},
outputs
=
[
node
.
layer_name
])
else
:
input_inner_indices
=
node
.
layer_name
+
'_input_inner_indices'
shape
=
val_x
.
out_shapes
[
0
]
self
.
paddle_graph
.
add_layer
(
'paddle.reshape'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
indices
)},
outputs
=
[
self
.
get_node_name
(
indices
)],
shape
=
indices
.
out_shapes
[
0
])
zeros_like_val_x
=
val_x
.
layer_name
+
'_zeros'
self
.
paddle_graph
.
add_layer
(
'paddle.zeros_like'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
zeros_like_val_x
])
self
.
paddle_graph
.
add_layer
(
'paddle.scatter_nd_add'
,
inputs
=
{
'x'
:
zeros_like_val_x
,
'index'
:
self
.
get_node_name
(
indices
),
'updates'
:
self
.
get_node_name
(
updates
)
},
outputs
=
[
input_inner_indices
])
indices_mask
=
node
.
layer_name
+
'_indices_mask'
constant_minus_one
=
node
.
layer_name
+
'_constant_minus_one'
# full_like support create tensor shape like input tensor
self
.
paddle_graph
.
add_layer
(
'paddle.full_like'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
updates
)},
outputs
=
[
constant_minus_one
],
dtype
=
string
(
updates
.
dtype
),
fill_value
=-
1
)
self
.
paddle_graph
.
add_layer
(
'paddle.scatter_nd_add'
,
inputs
=
{
'x'
:
zeros_like_val_x
,
'index'
:
self
.
get_node_name
(
indices
),
'updates'
:
constant_minus_one
},
outputs
=
[
indices_mask
])
constant_one
=
node
.
layer_name
+
'_constant_1'
# full_like support create tensor shape like input tensor
self
.
paddle_graph
.
add_layer
(
'paddle.full_like'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
constant_one
],
dtype
=
string
(
val_x
.
dtype
),
fill_value
=
1
)
input_out_indices_mask
=
node
.
layer_name
+
'_input_out_indices_mask'
self
.
paddle_graph
.
add_layer
(
"paddle.add"
,
inputs
=
{
"x"
:
indices_mask
,
"y"
:
constant_one
},
outputs
=
[
input_out_indices_mask
])
input_out_indices
=
node
.
layer_name
+
'_input_out_indices'
self
.
paddle_graph
.
add_layer
(
"paddle.multiply"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
),
"y"
:
input_out_indices_mask
},
outputs
=
[
input_out_indices
])
self
.
paddle_graph
.
add_layer
(
"paddle.add"
,
inputs
=
{
"x"
:
input_inner_indices
,
"y"
:
input_out_indices
},
outputs
=
[
node
.
layer_name
])
@
print_mapping_info
def
Range
(
self
,
node
):
val_start
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_limit
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_delta
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
dtype
=
val_start
.
dtype
inputs
=
{
'start'
:
self
.
get_node_name
(
val_start
),
'end'
:
self
.
get_node_name
(
val_limit
),
'step'
:
self
.
get_node_name
(
val_delta
)}
self
.
paddle_graph
.
add_layer
(
'paddle.arange'
,
inputs
=
inputs
,
outputs
=
[
node
.
layer_name
],
dtype
=
string
(
dtype
))
@
print_mapping_info
def
Slice
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
starts
,
ends
,
axes
,
steps
=
None
,
None
,
None
,
None
layer_attrs
=
{}
if
len
(
node
.
inputs
)
>
1
:
starts
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
ends
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
starts_value
=
_const_weight_or_none
(
starts
)
ends_value
=
_const_weight_or_none
(
ends
)
if
len
(
node
.
inputs
)
>
3
:
axes
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
axes
=
_const_weight_or_none
(
axes
,
necessary
=
True
)
if
len
(
node
.
inputs
)
>
4
:
steps
=
self
.
graph
.
get_input_node
(
node
,
idx
=
4
,
copy
=
True
)
steps
=
_const_weight_or_none
(
steps
)
layer_attrs
=
{
"axes"
:
axes
,
"starts"
:
starts
.
layer_name
,
"ends"
:
ends
.
layer_name
}
if
starts_value
is
not
None
and
ends_value
is
not
None
:
starts_value
=
starts_value
.
copy
()
ends_value
=
ends_value
.
copy
()
#for idx in range(len(ends_value)):
# if ends_value[idx] > 2**31 - 1:
# ends_value[idx] = 2**31 - 1
#print(val_x.out_shapes)
for
idx
in
range
(
len
(
ends_value
)):
if
starts_value
[
idx
]
>=
val_x
.
out_shapes
[
0
][
axes
[
idx
]]:
starts_value
[
idx
]
=
val_x
.
out_shapes
[
0
][
axes
[
idx
]]
-
1
ends_value
[
idx
]
=
val_x
.
out_shapes
[
0
][
axes
[
idx
]]
starts_value
[
idx
]
=
val_x
.
out_shapes
[
0
][
axes
[
idx
]]
-
1
elif
ends_value
[
idx
]
>
2
**
31
-
1
:
ends_value
[
idx
]
=
2
**
31
-
1
layer_attrs
=
{
"axes"
:
axes
,
"starts"
:
starts_value
,
"ends"
:
ends_value
}
else
:
if
starts
.
dtype
!=
'int32'
:
starts_cast
=
starts
.
layer_name
+
'_cast'
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
starts
)},
outputs
=
[
starts_cast
],
dtype
=
string
(
'int32'
))
layer_attrs
[
'starts'
]
=
starts_cast
if
ends
.
dtype
!=
'int32'
:
ends_cast
=
ends
.
layer_name
+
'_cast'
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
ends
)},
outputs
=
[
ends_cast
],
dtype
=
string
(
'int32'
))
layer_attrs
[
'ends'
]
=
ends_cast
else
:
starts
=
node
.
get_attr
(
'starts'
)
ends
=
node
.
get_attr
(
'ends'
)
axes
=
node
.
get_attr
(
'axes'
)
for
idx
in
range
(
len
(
ends
)):
if
ends
[
idx
]
>
2
**
31
-
1
:
ends
[
idx
]
=
2
**
31
-
1
layer_attrs
=
{
"axes"
:
axes
,
"starts"
:
starts
,
"ends"
:
ends
}
if
steps
is
not
None
:
layer_attrs
[
'strides'
]
=
steps
self
.
paddle_graph
.
add_layer
(
'paddle.strided_slice'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
**
layer_attrs
)
else
:
self
.
paddle_graph
.
add_layer
(
'paddle.slice'
,
inputs
=
{
"input"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
**
layer_attrs
)
@
print_mapping_info
def
ConstantOfShape
(
self
,
node
):
val_shape
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
value
=
node
.
get_attr
(
'value'
)
dtype
=
value
.
dtype
value
=
value
.
tolist
()
assert
len
(
value
)
==
1
,
(
'given value not Scalar, shape of value > 1, '
'this is not supported'
)
if
len
(
value
)
==
1
:
value
=
value
[
0
]
layer_attrs
=
{
'shape'
:
val_shape
.
layer_name
,
'dtype'
:
string
(
dtype
),
'fill_value'
:
value
}
self
.
paddle_graph
.
add_layer
(
"paddle.full"
,
inputs
=
{},
outputs
=
[
node
.
layer_name
],
**
layer_attrs
)
@
print_mapping_info
def
Clip
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
max_value
,
min_value
=
None
,
None
if
len
(
node
.
inputs
)
==
1
:
max_value
=
node
.
get_attr
(
'max'
)
min_value
=
node
.
get_attr
(
'min'
)
layer_attrs
=
{
'max'
:
max_value
,
'min'
:
min_value
,
}
self
.
paddle_graph
.
add_layer
(
'paddle.clip'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
**
layer_attrs
)
else
:
max_ipt
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
min_ipt
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
max_value
=
_const_weight_or_none
(
max_ipt
)
min_value
=
_const_weight_or_none
(
min_ipt
)
if
max_value
.
shape
==
(
1
,
):
max_value
=
max_value
[
0
]
if
min_value
.
shape
==
(
1
,
):
min_value
=
min_value
[
0
]
if
max_value
is
not
None
and
min_value
is
not
None
:
layer_attrs
=
{
'max'
:
max_value
,
'min'
:
min_value
}
self
.
paddle_graph
.
add_layer
(
'paddle.clip'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
**
layer_attrs
)
else
:
raise
@
print_mapping_info
def
Split
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
paddle_op
=
'split'
split
=
node
.
get_attr
(
'split'
)
axis
=
node
.
get_attr
(
'axis'
,
0
)
layer_attrs
=
{
'num_or_sections'
:
split
,
'axis'
:
axis
,
}
outputs_list
=
list
()
if
isinstance
(
split
,
list
)
or
isinstance
(
split
,
tuple
):
for
i
,
s
in
enumerate
(
split
):
outputs_list
.
append
(
"{}_{}"
.
format
(
node
.
layer_name
,
i
))
else
:
outputs_list
.
append
(
node
.
layer_name
)
self
.
paddle_graph
.
add_layer
(
'paddle.split'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
outputs_list
,
**
layer_attrs
)
@
print_mapping_info
def
Reshape
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_shape
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_reshaped
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
shape_value
=
_const_weight_or_none
(
val_shape
)
shape_dims
=
len
(
val_shape
.
out_shapes
[
0
])
if
shape_value
is
not
None
:
self
.
paddle_graph
.
add_layer
(
'paddle.reshape'
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
shape
=
shape_value
.
tolist
())
elif
len
(
node
.
out_shapes
[
0
])
>
0
and
_is_static_shape
(
node
.
out_shapes
[
0
]):
self
.
paddle_graph
.
add_layer
(
'paddle.reshape'
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
shape
=
node
.
out_shapes
[
0
])
else
:
# shape may be [], come form Gather by scalar indices
if
len
(
val_shape
.
out_shapes
[
0
])
>
0
:
self
.
paddle_graph
.
add_layer
(
'paddle.reshape'
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_shape
)},
outputs
=
[
self
.
get_node_name
(
val_shape
)],
shape
=
val_shape
.
out_shapes
[
0
])
self
.
paddle_graph
.
add_layer
(
'paddle.reshape'
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
),
'shape'
:
self
.
get_node_name
(
val_shape
)},
outputs
=
node
)
@
print_mapping_info
def
Cast
(
self
,
node
):
val_input
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_output
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
dtype
=
node
.
get_attr
(
'to'
)
if
not
isinstance
(
dtype
,
np
.
dtype
):
dtype
=
TENSOR_TYPE_TO_NP_TYPE
[
dtype
]
output_dtype
=
val_output
.
dtype
if
output_dtype
:
assert
dtype
==
output_dtype
,
'dtype of to unmatches output'
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_input
)},
outputs
=
[
node
.
layer_name
],
dtype
=
string
(
dtype
))
@
print_mapping_info
def
Not
(
self
,
node
):
val_input
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
self
.
paddle_graph
.
add_layer
(
'paddle.logical_not'
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_input
)},
outputs
=
[
node
.
layer_name
])
@
print_mapping_info
def
AveragePool
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
auto_pad
=
node
.
get_attr
(
'auto_pad'
,
'NOTSET'
)
kernel_shape
=
node
.
get_attr
(
"kernel_shape"
)
poolnd
=
len
(
kernel_shape
)
strides
=
node
.
get_attr
(
"strides"
)
pad_mode
=
node
.
get_attr
(
"pads"
)
ceil_mode
=
bool
(
node
.
get_attr
(
'ceil_mode'
,
0
))
pads
=
node
.
get_attr
(
'pads'
,
[
0
]
*
(
poolnd
*
2
))
paddings
,
val_x
=
self
.
_pad_if_asymmetric
(
node
,
pads
,
val_x
)
if
auto_pad
==
"SAME_UPPER"
or
auto_pad
==
"SAME_LOWER"
:
input_shape
=
val_x
.
out_shapes
[
0
]
pad_h
=
_get_same_padding
(
input_shape
[
2
],
kernel_shape
[
0
],
strides
[
0
])
pad_w
=
_get_same_padding
(
input_shape
[
3
],
kernel_shape
[
1
],
strides
[
1
])
paddings
=
pad_h
+
pad_w
paddle_op
=
'fluid.layers.pool{}d'
.
format
(
poolnd
)
assert
2
<=
poolnd
<=
3
,
'only pool2d and pool3d are supported'
layer_attrs
=
{
"pool_size"
:
kernel_shape
,
"pool_type"
:
string
(
'avg'
),
"pool_stride"
:
strides
,
"pool_padding"
:
paddings
,
"ceil_mode"
:
ceil_mode
,
"exclusive"
:
'True'
,
"name"
:
string
(
node
.
layer_name
)
}
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
'input'
:
val_x
if
isinstance
(
val_x
,
str
)
else
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
**
layer_attrs
)
# TODO(syf): op has diff
# op_name = name_generator("pool", self.nn_name2id)
# output_name = node.layer_name
# layer_outputs = [op_name, output_name]
# paddle_op = 'paddle.nn.Pool{}D'.format(poolnd)
# assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
# layer_attrs = {
# "kernel_size": kernel_shape,
# "stride": strides,
# "padding": paddings,
# "ceil_mode": ceil_mode,
# "exclusive": 'True',
# }
# self.paddle_graph.add_layer(
# paddle_op,
# inputs={'x': self.get_node_name(val_x)},
# outputs=layer_outputs,
# **layer_attrs)
@
print_mapping_info
def
Concat
(
self
,
node
):
inputs_list
=
[]
dtypes
=
set
()
for
i
in
range
(
len
(
node
.
layer
.
input
)):
ipt
=
self
.
graph
.
get_input_node
(
node
,
idx
=
i
,
copy
=
True
)
inputs_list
.
append
(
self
.
get_node_name
(
ipt
))
dtypes
.
add
(
ipt
.
dtype
)
if
len
(
dtypes
)
>
1
:
assert
'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
axis
=
node
.
get_attr
(
'axis'
)
self
.
paddle_graph
.
add_layer
(
'paddle.concat'
,
inputs
=
{
"x"
:
inputs_list
},
outputs
=
[
node
.
layer_name
],
axis
=
axis
)
@
print_mapping_info
def
Flatten
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
output_shape
=
node
.
out_shapes
[
0
]
axis
=
node
.
get_attr
(
'axis'
,
1
)
shape_list
=
[
1
,
1
]
if
axis
==
0
:
for
s
in
output_shape
:
shape_list
[
1
]
*=
s
else
:
for
s
in
output_shape
[:
axis
]:
shape_list
[
0
]
*=
s
for
s
in
output_shape
[
axis
:]:
shape_list
[
1
]
*=
s
self
.
paddle_graph
.
add_layer
(
'paddle.reshape'
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
shape
=
shape_list
)
@
print_mapping_info
def
Gemm
(
self
,
node
):
val_a
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_c
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
alpha
=
node
.
get_attr
(
'alpha'
,
1.
)
# optional
beta
=
node
.
get_attr
(
'beta'
,
1.
)
# optional
trans_a
=
bool
(
node
.
get_attr
(
'transA'
,
0
))
# optional
trans_b
=
bool
(
node
.
get_attr
(
'transB'
,
0
))
# optional
val_mm
=
node
.
layer_name
+
'_mm'
matmul_inputs
=
{
"x"
:
self
.
get_node_name
(
val_a
),
"y"
:
self
.
get_node_name
(
val_b
)}
attr_matmul
=
{
"transpose_x"
:
trans_a
,
"transpose_y"
:
trans_b
,
}
self
.
paddle_graph
.
add_layer
(
'paddle.matmul'
,
inputs
=
matmul_inputs
,
outputs
=
[
val_mm
],
**
attr_matmul
)
self
.
paddle_graph
.
add_layer
(
"paddle.scale"
,
inputs
=
{
"x"
:
val_mm
},
outputs
=
[
val_mm
],
scale
=
alpha
)
if
beta
!=
0
:
if
beta
==
1.
:
add_inputs
=
{
"x"
:
val_mm
,
"y"
:
self
.
get_node_name
(
val_c
)}
self
.
paddle_graph
.
add_layer
(
"paddle.add"
,
inputs
=
add_inputs
,
outputs
=
[
node
.
layer_name
])
else
:
var_beta
=
node
.
layer_name
+
'_beta'
self
.
paddle_graph
.
add_layer
(
"paddle.scale"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_c
)},
outputs
=
[
var_beta
],
scale
=
beta
)
add_inputs
=
{
"x"
:
val_mm
,
"y"
:
var_beta
}
self
.
paddle_graph
.
add_layer
(
"paddle.addd"
,
inputs
=
add_inputs
,
outputs
=
[
node
.
layer_name
])
@
print_mapping_info
def
Sum
(
self
,
node
):
val_inps
=
node
.
layer
.
input
inputs_dict
=
{
"x"
:
self
.
get_node_name
(
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)),
"y"
:
self
.
get_node_name
(
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)),
}
self
.
paddle_graph
.
add_layer
(
"paddle.add"
,
inputs
=
inputs_dict
,
outputs
=
[
node
.
layer_name
])
for
idx
,
ipt
in
enumerate
(
val_inps
[
2
:]):
y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
idx
,
copy
=
True
)
inputs_dict
=
{
"x"
:
node
.
layer_name
,
"y"
:
self
.
get_node_name
(
y
),
}
self
.
paddle_graph
.
add_layer
(
"paddle.add"
,
inputs
=
inputs_dict
,
outputs
=
[
node
.
layer_name
])
@
print_mapping_info
def
MatMul
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
x_shape
=
val_x
.
out_shapes
[
0
]
y_shape
=
val_y
.
out_shapes
[
0
]
inputs_dict
=
{
"x"
:
self
.
get_node_name
(
val_x
),
"y"
:
self
.
get_node_name
(
val_y
)}
if
y_shape
[
0
]
==
1
and
x_shape
[
-
1
]
!=
1
and
x_shape
[
0
]
!=
1
:
y_squeeze
=
val_y
.
layer_name
+
'_squeeze'
self
.
paddle_graph
.
add_layer
(
"paddle.squeeze"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_y
)},
outputs
=
[
y_squeeze
],
axis
=
[
0
])
inputs_dict
[
'y'
]
=
y_squeeze
self
.
paddle_graph
.
add_layer
(
"paddle.matmul"
,
inputs
=
inputs_dict
,
outputs
=
[
node
.
layer_name
])
else
:
self
.
paddle_graph
.
add_layer
(
"paddle.matmul"
,
inputs
=
inputs_dict
,
outputs
=
[
node
.
layer_name
])
@
print_mapping_info
def
BatchNormalization
(
self
,
node
):
op_name
=
name_generator
(
"batchnorm"
,
self
.
nn_name2id
)
output_name
=
node
.
layer_name
layer_outputs
=
[
op_name
,
output_name
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_scale
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
val_mean
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
val_var
=
self
.
graph
.
get_input_node
(
node
,
idx
=
4
,
copy
=
True
)
momentum
=
node
.
get_attr
(
'momentum'
,
.
9
)
epsilon
=
node
.
get_attr
(
'epsilon'
,
1e-5
)
c
=
val_x
.
out_shapes
[
0
][
1
]
# Attribute: spatial is used in BatchNormalization-1,6,7
spatial
=
bool
(
node
.
get_attr
(
'spatial'
))
layer_attrs
=
{
"num_channels"
:
c
,
"momentum"
:
momentum
,
"epsilon"
:
epsilon
,
"is_test"
:
True
,
"param_attr"
:
string
(
self
.
get_node_name
(
val_scale
)),
"bias_attr"
:
string
(
self
.
get_node_name
(
val_b
)),
"moving_mean_name"
:
string
(
self
.
get_node_name
(
val_mean
)),
"moving_variance_name"
:
string
(
self
.
get_node_name
(
val_var
)),
"use_global_stats"
:
False
,
}
self
.
paddle_graph
.
add_layer
(
"paddle.nn.BatchNorm"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
layer_outputs
,
**
layer_attrs
)
@
print_mapping_info
def
Transpose
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
perm
=
node
.
get_attr
(
'perm'
)
self
.
paddle_graph
.
add_layer
(
"paddle.transpose"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
perm
=
perm
)
@
print_mapping_info
def
PRelu
(
self
,
node
):
op_name
=
name_generator
(
"prelu"
,
self
.
nn_name2id
)
output_name
=
node
.
layer_name
layer_outputs
=
[
op_name
,
output_name
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_slope
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
mode
=
'channel'
shape_slope
=
val_slope
.
out_shapes
[
0
]
if
shape_slope
==
[
1
]:
mode
=
'all'
elif
len
(
shape_slope
)
>
2
:
mode
=
'element'
if
mode
==
'channel'
and
len
(
shape_slope
)
==
1
:
# paddle params shape need be [1, channel]
slope_data
=
_const_weight_or_none
(
val_slope
)
slope_data
=
np
.
reshape
(
slope_data
,
[
1
]
+
shape_slope
)
self
.
weights
[
val_slope
.
layer_name
]
=
slope_data
layer_attrs
=
{
"param_attr"
:
string
(
val_slope
.
layer_name
),
'mode'
:
string
(
mode
),
"channel"
:
val_x
.
out_shapes
[
0
][
1
]
if
mode
==
"channel"
else
None
,
"input_shape"
:
val_x
.
out_shapes
[
0
]
if
mode
==
"element"
else
None
,
}
self
.
paddle_graph
.
add_layer
(
"paddle.nn.PReLU"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
layer_outputs
,
**
layer_attrs
)
@
print_mapping_info
def
Squeeze
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
axes
=
node
.
get_attr
(
'axes'
)
if
len
(
val_x
.
out_shapes
[
0
])
==
1
:
self
.
paddle_graph
.
add_layer
(
"paddle.cast"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
dtype
=
string
(
val_x
.
dtype
))
else
:
self
.
paddle_graph
.
add_layer
(
"paddle.squeeze"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
axis
=
axes
)
@
print_mapping_info
def
Equal
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
self
.
paddle_graph
.
add_layer
(
"paddle.equal"
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
),
'y'
:
self
.
get_node_name
(
val_y
)},
outputs
=
[
node
.
layer_name
])
@
print_mapping_info
def
Greater
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
self
.
paddle_graph
.
add_layer
(
"paddle.greater_than"
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
),
'y'
:
self
.
get_node_name
(
val_y
)},
outputs
=
node
,
param_attr
=
None
)
@
print_mapping_info
def
Where
(
self
,
node
):
condition
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
not_condition
=
condition
.
layer_name
+
'_not'
self
.
paddle_graph
.
add_layer
(
"paddle.logical_not"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
condition
)},
outputs
=
[
not_condition
])
cast_not_condition
=
not_condition
+
'_cast'
self
.
paddle_graph
.
add_layer
(
"paddle.cast"
,
inputs
=
{
"x"
:
not_condition
},
outputs
=
[
cast_not_condition
],
dtype
=
string
(
val_x
.
dtype
))
cast_condition
=
condition
.
layer_name
+
'_cast'
self
.
paddle_graph
.
add_layer
(
"paddle.cast"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
condition
)},
outputs
=
[
cast_condition
],
dtype
=
string
(
val_x
.
dtype
))
mul_val_x
=
val_x
.
layer_name
+
'_mul'
self
.
paddle_graph
.
add_layer
(
"paddle.multiply"
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
),
'y'
:
cast_condition
},
outputs
=
[
mul_val_x
])
mul_val_y
=
val_y
.
layer_name
+
'_mul'
self
.
paddle_graph
.
add_layer
(
"paddle.multiply"
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_y
),
'y'
:
cast_not_condition
},
outputs
=
[
mul_val_y
])
self
.
paddle_graph
.
add_layer
(
"paddle.add"
,
inputs
=
{
'x'
:
mul_val_x
,
'y'
:
mul_val_y
},
outputs
=
[
node
.
layer_name
])
@
print_mapping_info
def
NonZero
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x_dim
=
len
(
val_x
.
out_shapes
[
0
])
if
val_x_dim
==
1
:
self
.
paddle_graph
.
add_layer
(
"paddle.nonzero"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
self
.
get_node_name
(
val_x
)])
self
.
paddle_graph
.
add_layer
(
"paddle.transpose"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_naem
],
perm
=
[
1
,
0
])
if
val_x_dim
>
1
:
self
.
paddle_graph
.
add_layer
(
"paddle.nonzero"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
self
.
get_node_name
(
val_x
)])
self
.
paddle_graph
.
add_layer
(
"paddle.split"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
self
.
get_node_name
(
val_x
)],
num_or_sections
=
1
,
axis
=
val_x_dim
)
self
.
paddle_graph
.
add_layer
(
"paddle.concat"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
])
@
print_mapping_info
def
Identity
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
self
.
paddle_graph
.
add_layer
(
"paddle.assign"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
])
@
print_mapping_info
def
Tile
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_repeats
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
repeats
=
_const_weight_or_none
(
val_repeats
)
if
repeats
is
None
:
repeats
=
val_repeats
.
layer_name
if
val_repeats
.
dtype
!=
'int32'
:
self
.
paddle_graph
.
add_layer
(
"paddle.cast"
,
inputs
=
{
"x"
:
repeats
},
outputs
=
[
"{}.tmp"
.
format
(
repeats
)],
dtype
=
string
(
"int32"
))
repeats
=
"{}.tmp"
.
format
(
repeats
)
elif
isinstance
(
repeats
,
int
):
repeats
=
[
repeats
]
attr
=
{
'expand_times'
:
repeats
,
"name"
:
string
(
node
.
layer_name
),
}
self
.
paddle_graph
.
add_layer
(
"paddle.tile"
,
inputs
=
{
"x"
:
self
.
get_node_name
(
val_x
)},
outputs
=
[
node
.
layer_name
],
repeat_times
=
repeats
)
@
print_mapping_info
def
MaxPool
(
self
,
node
):
op_name
=
name_generator
(
"pool"
,
self
.
nn_name2id
)
output_name
=
node
.
layer_name
layer_outputs
=
[
op_name
,
output_name
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
auto_pad
=
node
.
get_attr
(
'auto_pad'
,
'NOTSET'
)
assert
node
.
get_attr
(
"dilations"
)
is
None
,
'only dilations = 0 is supported'
# optional
kernel_shape
=
node
.
get_attr
(
"kernel_shape"
)
poolnd
=
len
(
kernel_shape
)
strides
=
node
.
get_attr
(
"strides"
)
pad_mode
=
node
.
get_attr
(
"pads"
)
ceil_mode
=
bool
(
node
.
get_attr
(
'ceil_mode'
,
0
))
# optional
pads
=
node
.
get_attr
(
'pads'
,
[
0
]
*
(
poolnd
*
2
))
# optional
paddle_op
=
'paddle.nn.MaxPool{}D'
.
format
(
poolnd
)
assert
1
<=
poolnd
<=
3
,
'only Pool1D, Pool2D and Pool3D are supported'
paddings
,
val_x
=
self
.
_pad_if_asymmetric
(
node
,
pads
,
val_x
)
if
auto_pad
==
"SAME_UPPER"
or
auto_pad
==
"SAME_LOWER"
:
input_shape
=
val_x
.
out_shapes
[
0
]
pad_h
=
_get_same_padding
(
input_shape
[
2
],
kernel_shape
[
0
],
strides
[
0
])
pad_w
=
_get_same_padding
(
input_shape
[
3
],
kernel_shape
[
1
],
strides
[
1
])
paddings
=
pad_h
+
pad_w
layer_attrs
=
{
"kernel_size"
:
kernel_shape
,
"stride"
:
strides
,
"padding"
:
paddings
,
"ceil_mode"
:
ceil_mode
,
}
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
'x'
:
val_x
if
isinstance
(
val_x
,
str
)
else
self
.
get_node_name
(
val_x
)},
outputs
=
layer_outputs
,
**
layer_attrs
)
@
print_mapping_info
def
GlobalMaxPool
(
self
,
node
):
op_name
=
name_generator
(
"pool"
,
self
.
nn_name2id
)
output_name
=
node
.
layer_name
layer_outputs
=
[
op_name
,
output_name
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
input_shape
=
val_x
.
out_shapes
[
0
]
if
len
(
input_shape
)
==
4
:
poolnd
=
2
elif
len
(
input_shape
)
==
5
:
poolnd
=
3
elif
len
(
input_shape
)
==
3
:
poolnd
=
1
paddle_op
=
'paddle.nn.AdaptiveMaxPool{}D'
.
format
(
poolnd
)
assert
1
<=
poolnd
<=
3
,
'only Pool1D, Pool2D and Pool3D are supported'
output_shape
=
node
.
out_shapes
[
0
]
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
)},
outputs
=
layer_outputs
,
output_size
=
output_shape
[
2
:])
@
print_mapping_info
def
GlobalAveragePool
(
self
,
node
):
op_name
=
name_generator
(
"pool"
,
self
.
nn_name2id
)
output_name
=
node
.
layer_name
layer_outputs
=
[
op_name
,
output_name
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
input_shape
=
val_x
.
out_shapes
[
0
]
if
len
(
input_shape
)
==
4
:
poolnd
=
2
elif
len
(
input_shape
)
==
5
:
poolnd
=
3
elif
len
(
input_shape
)
==
3
:
poolnd
=
1
paddle_op
=
'paddle.nn.AdaptiveAvgPool{}D'
.
format
(
poolnd
)
assert
1
<=
poolnd
<=
3
,
'only Pool1D, Pool2D and Pool3D are supported'
output_shape
=
node
.
out_shapes
[
0
]
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
'x'
:
self
.
get_node_name
(
val_x
)},
outputs
=
layer_outputs
,
output_size
=
output_shape
[
2
:])
@
print_mapping_info
def
Conv
(
self
,
node
):
op_name
=
name_generator
(
"conv"
,
self
.
nn_name2id
)
output_name
=
node
.
layer_name
layer_outputs
=
[
op_name
,
output_name
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_w
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
has_bias
=
len
(
node
.
layer
.
input
)
==
3
if
has_bias
:
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
auto_pad
=
node
.
get_attr
(
'auto_pad'
,
'NOTSET'
)
kernel_shape
=
node
.
get_attr
(
'kernel_shape'
)
convnd
=
len
(
kernel_shape
)
assert
2
<=
convnd
<=
3
,
'only Conv2D and Conv3D is supported'
num_out_channels
=
val_w
.
out_shapes
[
0
][
0
]
num_in_channels
=
val_w
.
out_shapes
[
0
][
1
]
paddle_op
=
'paddle.nn.Conv{}D'
.
format
(
convnd
)
num_groups
=
node
.
get_attr
(
'group'
,
1
)
strides
=
node
.
get_attr
(
'strides'
,
[
1
]
*
convnd
)
dilations
=
node
.
get_attr
(
'dilations'
,
[
1
]
*
convnd
)
pads
=
node
.
get_attr
(
'pads'
,
[
0
]
*
(
convnd
*
2
))
input_shape
=
val_x
.
out_shapes
[
0
]
paddings
,
val_x
=
self
.
_pad_if_asymmetric
(
node
,
pads
,
val_x
)
if
auto_pad
==
"SAME_UPPER"
or
auto_pad
==
"SAME_LOWER"
:
pad_h
=
_get_same_padding
(
input_shape
[
2
],
kernel_shape
[
0
],
strides
[
0
])
pad_w
=
_get_same_padding
(
input_shape
[
3
],
kernel_shape
[
1
],
strides
[
1
])
paddings
=
pad_h
+
pad_w
layer_attrs
=
{
"in_channels"
:
num_in_channels
*
num_groups
,
"out_channels"
:
num_out_channels
,
"kernel_size"
:
kernel_shape
,
"stride"
:
strides
,
"padding"
:
paddings
,
"dilation"
:
dilations
,
"groups"
:
num_groups
,
'weight_attr'
:
string
(
val_w
.
layer_name
),
}
if
has_bias
:
layer_attrs
[
"bias_attr"
]
=
string
(
val_b
.
layer_name
)
else
:
layer_attrs
[
"bias_attr"
]
=
False
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
'x'
:
val_x
if
isinstance
(
val_x
,
str
)
else
self
.
get_node_name
(
val_x
)},
outputs
=
layer_outputs
,
**
layer_attrs
)
@
print_mapping_info
def
ConvTranspose
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_w
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_b
=
None
if
len
(
node
.
layer
.
input
)
>
2
:
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
auto_pad
=
node
.
get_attr
(
'auto_pad'
,
'NOTSET'
)
out_padding
=
node
.
get_attr
(
'output_padding'
,
[
0
,
0
])
kernel_shape
=
node
.
get_attr
(
'kernel_shape'
)
assert
kernel_shape
,
'kernel_shape not inferred'
convnd
=
len
(
kernel_shape
)
assert
2
<=
convnd
<=
3
,
'only Conv2DTranspose and Conv3DTranspose supported'
num_in_channels
=
val_w
.
out_shapes
[
0
][
0
]
num_out_channels
=
val_w
.
out_shapes
[
0
][
1
]
paddle_op
=
'paddle.nn.functional.conv{}d_transpose'
.
format
(
convnd
)
num_groups
=
node
.
get_attr
(
'group'
,
1
)
strides
=
node
.
get_attr
(
'strides'
,
[
1
]
*
convnd
)
dilations
=
node
.
get_attr
(
'dilations'
,
[
1
]
*
convnd
)
output_size
=
node
.
get_attr
(
'output_shape'
,
[])
pads
=
node
.
get_attr
(
'pads'
,
[
0
]
*
(
convnd
*
2
))
paddings
,
var_x
=
self
.
_pad_if_asymmetric
(
node
,
pads
,
val_x
)
output_size
=
[
0
,
0
]
output_size
[
0
]
=
(
val_x
.
out_shapes
[
0
][
2
]
-
1
)
*
strides
[
0
]
-
2
*
paddings
[
0
]
+
dilations
[
0
]
*
(
kernel_shape
[
0
]
-
1
)
+
1
+
out_padding
[
0
]
output_size
[
1
]
=
(
val_x
.
out_shapes
[
0
][
3
]
-
1
)
*
strides
[
1
]
-
2
*
paddings
[
1
]
+
dilations
[
1
]
*
(
kernel_shape
[
1
]
-
1
)
+
1
+
out_padding
[
1
]
# layer_attrs = {
# 'in_channels': num_in_channels,
# 'out_channels': num_out_channels,
# 'output_size': output_size or None,
# 'kernel_size': kernel_shape,
# 'padding': paddings,
# 'stride': strides,
# 'dilation': dilations,
# 'groups': num_groups,
# 'weight_attr': string(val_w.layer_name),
# 'bias_attr': None if val_b is None else string(val_b.layer_name),
# }
# self.paddle_graph.add_layer(
# paddle_op,
# inputs={"x": self.get_node_name(val_x)},
# outputs=layer_outputs,
# **layer_attrs)
inputs_dict
=
{
'x'
:
val_x
if
isinstance
(
val_x
,
str
)
else
self
.
get_node_name
(
val_x
),
"weight"
:
val_w
.
layer_name
}
layer_attrs
=
{
"stride"
:
strides
,
"dilation"
:
dilations
,
"padding"
:
paddings
,
"groups"
:
num_groups
,
"output_size"
:
node
.
out_shapes
[
0
][
2
:]}
if
val_b
is
not
None
:
inputs_dict
[
"bias"
]
=
val_b
.
layer_name
else
:
layer_attrs
[
"bias"
]
=
None
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.functional.conv2d_transpose"
,
inputs
=
inputs_dict
,
outputs
=
[
node
.
layer_name
],
**
layer_attrs
)
x2paddle/op_mapper/static/onnx2paddle/onnx_op_mapper.py
浏览文件 @
07c16e50
...
...
@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
x2paddle.op_mapper.onnx2paddle.opset9
import
OpSet9
,
custom_layers
from
x2paddle.op_mapper.
static.
onnx2paddle.opset9
import
OpSet9
,
custom_layers
from
x2paddle.core.op_mapper
import
OpMapper
from
x2paddle.decoder.onnx_decoder
import
ONNXGraph
,
ONNXGraphNode
,
ONNXGraphDataNode
...
...
x2paddle/op_mapper/static/onnx2paddle/opset9/opset.py
浏览文件 @
07c16e50
...
...
@@ -17,7 +17,7 @@ from x2paddle.core.graph import GraphNode
from
x2paddle.core.fluid_code
import
Layer
from
x2paddle.core.fluid_code
import
FluidCode
from
x2paddle.core.util
import
string
from
x2paddle.op_mapper.onnx2paddle.opset9.custom_layer
import
*
from
x2paddle.op_mapper.
static.
onnx2paddle.opset9.custom_layer
import
*
from
functools
import
reduce
import
numpy
as
np
import
onnx
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录