提交 075fef0a 编写于 作者: S SunAhong1993

update caffe2paddle

上级 4f337753
from x2paddle.decoder.caffe_decoder import CaffeDecoder
Decoder = CaffeDecoder
from x2paddle.op_mapper.dygraph.caffe2paddle.caffe_op_mapper import CaffeOpMapper
DygraphOpMapper = CaffeOpMapper
from x2paddle.op_mapper.static.caffe2paddle.caffe_op_mapper import CaffeOpMapper
StaticOpMapper = CaffeOpMapper
from x2paddle.optimizer.caffe_optimizer import CaffeOptimizer
StaticOptimizer = CaffeOptimizer
\ No newline at end of file
......@@ -13,6 +13,7 @@
# limitations under the License.
from six import text_type as _text_type
from x2paddle import program
import argparse
import sys
......@@ -66,8 +67,8 @@ def arg_parser():
parser.add_argument(
"--without_data_format_optimization",
"-wo",
type=_text_type,
default="True",
action="store_true",
default=False,
help="tf model conversion without data format optimization")
parser.add_argument(
"--define_input_shape",
......@@ -88,11 +89,25 @@ def arg_parser():
default=False,
help="define whether merge the params")
parser.add_argument(
"--input_shapes",
"-is",
"--jit_type",
"-jt",
type=_text_type,
default="script",
help="define the jit type of pytorch Module.")
parser.add_argument(
"--input_files",
"-if",
action='append',
default=None,
help="define the inputs' shape")
help="define the inputs' file path")
parser.add_argument(
"--paddle_type",
"-pt",
type=_text_type,
default="dygraph",
help="define the paddle model type after converting(dygraph/static)"
)
return parser
......@@ -117,30 +132,27 @@ def tf2paddle(model_path,
"[ERROR] Tensorflow is not installed, use \"pip install tensorflow\"."
)
return
from x2paddle import program
from x2paddle.decoder.tf_decoder import TFDecoder
from x2paddle.op_mapper.tf_op_mapper import TFOpMapper
from x2paddle.optimizer.tensorflow.bias import BiasOpt
from x2paddle.optimizer.tensorflow.transpose import TransposeOpt
from x2paddle.optimizer.tensorflow.batch_norm import BatchNormOpt
from x2paddle.op_mapper.tf_op_mapper_nhwc import TFOpMapperNHWC
from x2paddle.optimizer.tf_optimizer import TFOptimizer
print("Now translating model from tensorflow to paddle.")
model = TFDecoder(model_path, define_input_shape=define_input_shape)
mapper = TFOpMapper(model)
mapper = TFOpMapperNHWC(model)
program.build()
bias_opt = BiasOpt()
transpose_opt = TransposeOpt()
batch_norm_opt = BatchNormOpt()
bias_opt.run(program)
batch_norm_opt.run(program)
transpose_opt.run(program)
program.gen_model(save_dir)
def caffe2paddle(proto, weight, save_dir, caffe_proto, params_merge=False):
from x2paddle.decoder.caffe_decoder import CaffeDecoder
from x2paddle.op_mapper.caffe_op_mapper import CaffeOpMapper
from x2paddle.optimizer.caffe_optimizer import CaffeOptimizer
def caffe2paddle(proto, weight, save_dir, caffe_proto,
paddle_type, params_merge=False):
from x2paddle.caffe_convert import Decoder
if paddle_type == "dygraph":
from x2paddle.caffe_convert import DygraphOpMapper as OpMapper
else:
from x2paddle.caffe_convert import StaticOpMapper as OpMapper
import google.protobuf as gpb
ver_part = gpb.__version__.split('.')
version_satisfy = False
......@@ -149,12 +161,10 @@ def caffe2paddle(proto, weight, save_dir, caffe_proto, params_merge=False):
version_satisfy = True
assert version_satisfy, '[ERROR] google.protobuf >= 3.6.0 is required'
print("Now translating model from caffe to paddle.")
model = CaffeDecoder(proto, weight, caffe_proto)
mapper = CaffeOpMapper(model)
optimizer = CaffeOptimizer(mapper)
optimizer.merge_bn_scale()
optimizer.merge_op_activation()
mapper.save_inference_model(save_dir, params_merge)
model = Decoder(proto, weight, caffe_proto)
mapper = OpMapper(model)
mapper.pd_graph.build()
mapper.pd_graph.gen_model(save_dir)
def onnx2paddle(model_path, save_dir, params_merge=False):
......@@ -162,8 +172,8 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
try:
import onnx
version = onnx.version.version
if version < '1.6.0':
print("[ERROR] onnx>=1.6.0 is required")
if version != '1.6.0':
print("[ERROR] onnx==1.6.0 is required")
return
except:
print("[ERROR] onnx is not installed, use \"pip install onnx==1.6.0\".")
......@@ -185,7 +195,7 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
print("Paddle model and code generated.")
def pytorch2paddle(model_path, save_dir, input_shapes):
def pytorch2paddle(model_path, save_dir, jit_type, input_files):
# check pytorch installation and version
try:
import torch
......@@ -202,9 +212,12 @@ def pytorch2paddle(model_path, save_dir, input_shapes):
return
print("Now translating model from pytorch to paddle.")
from x2paddle.decoder.pytorch_decoder import PyTorchDecoder
from x2paddle.decoder.pytorch_decoder import ScriptDecoder, TraceDecoder
from x2paddle.op_mapper.pytorch2paddle import pytorch_op_mapper
model = PyTorchDecoder(model_path)
if jit_type == "trace":
model = TraceDecoder(model_path, input_files)
else:
model = ScriptDecoder(model_path)
mapper = pytorch_op_mapper.PyTorchOpMapper(model)
mapper.graph.build()
print("Model optimizing ...")
......@@ -212,34 +225,15 @@ def pytorch2paddle(model_path, save_dir, input_shapes):
graph_opt = GraphOptimizer()
graph_opt.optimize(mapper.graph)
print("Model optimized.")
if input_shapes is not None:
real_input_shapes = list()
for shape in input_shapes:
sp = shape[1:-1].split(",")
for i, s in enumerate(sp):
sp[i] = int(s)
real_input_shapes.append(sp)
else:
real_input_shapes = None
mapper.graph.gen_model(save_dir, real_input_shapes)
mapper.graph.gen_model(save_dir, jit_type, input_files)
def paddle2onnx(model_path, save_dir, opset_version=10):
import paddle.fluid as fluid
try:
import paddle2onnx
except:
print(
"[ERROR] paddle2onnx not installed, use \"pip install paddle2onnx\"")
import paddle2onnx as p2o
model = p2o.PaddleDecoder(model_path, '__model__', '__params__')
mapper = p2o.PaddleOpMapper()
mapper.convert(
model.program,
save_dir,
scope=fluid.global_scope(),
opset_version=opset_version)
from x2paddle.decoder.paddle_decoder import PaddleDecoder
from x2paddle.op_mapper.paddle2onnx.paddle_op_mapper import PaddleOpMapper
model = PaddleDecoder(model_path, '__model__', '__params__')
mapper = PaddleOpMapper()
mapper.convert(model.program, save_dir, opset_number=opset_version)
def main():
......@@ -260,6 +254,7 @@ def main():
assert args.framework is not None, "--framework is not defined(support tensorflow/caffe/onnx)"
assert args.save_dir is not None, "--save_dir is not defined"
assert args.paddle_type in ["dygraph", "static"], "--paddle_type must be 'dygraph' or 'static'"
try:
import paddle
......@@ -267,8 +262,8 @@ def main():
print("paddle.__version__ = {}".format(paddle.__version__))
if v0 == '0' and v1 == '0' and v2 == '0':
print("[WARNING] You are use develop version of paddlepaddle")
elif int(v0) != 1 or int(v1) < 6:
print("[ERROR] paddlepaddle>=1.6.0 is required")
elif int(v0) != 2 or int(v1) < 0:
print("[ERROR] paddlepaddle>=2.0.0 is required")
return
except:
print(
......@@ -277,12 +272,11 @@ def main():
if args.framework == "tensorflow":
assert args.model is not None, "--model should be defined while translating tensorflow model"
assert args.without_data_format_optimization in [
"True", "False"
], "--the param without_data_format_optimization should be defined True or False"
without_data_format_optimization = False
define_input_shape = False
params_merge = False
without_data_format_optimization = True if args.without_data_format_optimization == "True" else False
if args.without_data_format_optimization:
without_data_format_optimization = True
if args.define_input_shape:
define_input_shape = True
if args.params_merge:
......@@ -296,7 +290,7 @@ def main():
if args.params_merge:
params_merge = True
caffe2paddle(args.prototxt, args.weight, args.save_dir,
args.caffe_proto, params_merge)
args.caffe_proto, args.paddle_type, params_merge)
elif args.framework == "onnx":
assert args.model is not None, "--model should be defined while translating onnx model"
params_merge = False
......@@ -304,10 +298,13 @@ def main():
if args.params_merge:
params_merge = True
onnx2paddle(args.model, args.save_dir, params_merge)
elif args.framework == "pytorch":
assert args.model is not None, "--model should be defined while translating pytorch model"
pytorch2paddle(args.model, args.save_dir, args.jit_type, args.input_files)
elif args.framework == "paddle2onnx":
assert args.model is not None, "--model should be defined while translating paddle model to onnx"
paddle2onnx(args.model, args.save_dir, opset_version=args.onnx_opset)
paddle2onnx(args.model, args.save_dir, args.onnx_opset)
else:
raise Exception(
......
# -*- coding:UTF-8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
......@@ -21,15 +20,15 @@ import paddle
from paddle.fluid.proto import framework_pb2
from collections import OrderedDict
import numpy
import collections
import sys
import os
import six
import pickle
import numpy as np
class PaddleLayer(object):
def __init__(self, id, kernel, inputs, outputs, **kwargs):
def __init__(self, id, kernel, inputs, outputs, scope_name="", **kwargs):
assert isinstance(
inputs,
dict), "parameter 'inputs' for PaddleLayer should be type of dict"
......@@ -53,10 +52,12 @@ class PaddleLayer(object):
self.kernel = kernel
self.inputs = inputs
self.outputs = outputs
self.scope_name = scope_name
self.attrs = kwargs
self.id = id
self.blocks = list()
def add_block(self, block):
self.blocks.append(block)
......@@ -71,13 +72,24 @@ class PaddleGraph(object):
self.parameters = dict()
self.parent_layer = parent_layer
self.graph_type = graph_type
self.custom_func = None
self.inputs_info = None
def set_name(self, name):
self.name = name
self.name = name.replace("-", "_").replace("/", "_")
def set_parameters(self, parameters):
self.parameters = parameters
def set_custom_func(self, custom_func):
self.custom_func = custom_func
def set_inputs_info(self, inputs_info):
self.inputs_info = inputs_info
def set_script(self, script):
self.script = script
def clear(self):
self.layers = OrderedDict()
self.edges_out = dict()
......@@ -90,13 +102,13 @@ class PaddleGraph(object):
self.edges_out = dict()
self.edges_in = dict()
def add_layer(self, kernel, inputs, outputs, **kwargs):
def add_layer(self, kernel, inputs, outputs, scope_name="", **kwargs):
layer_id = str(len(self.layers))
if self.parent_layer is not None:
layer_id = "{}.{}.{}".format(self.parent_layer.id,
len(self.parent_layer.blocks),
layer_id)
layer = PaddleLayer(layer_id, kernel, inputs, outputs, **kwargs)
layer = PaddleLayer(layer_id, kernel, inputs, outputs, scope_name=scope_name, **kwargs)
self.layers[layer_id] = layer
return layer_id
......@@ -156,6 +168,10 @@ class PaddleGraph(object):
if not isinstance(vs, list):
vs = [vs]
for v in vs:
if "[" in v:
remove_index = v.index("[")
v_part = v[remove_index:]
v = v.replace(v_part, "")
assert v in outputs_from_nodes or (
inputs is not None and v in list(inputs.values())
) or (
......@@ -215,9 +231,60 @@ class PaddleGraph(object):
block_global_layers = update(block.layers)
global_layers.update(block_global_layers)
return global_layers
return update(self.layers)
def gen_model(self, save_dir, jit_type=None):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if self.graph_type == "static":
code_dir = os.path.join(save_dir, 'model_with_code')
infer_dir = os.path.join(save_dir, 'inference_model')
self.gen_code(code_dir)
sys.path.append(code_dir)
import x2paddle_model
paddle.enable_static()
scope = paddle.static.Scope()
startup_program = paddle.static.Program()
main_program = paddle.static.Program()
with paddle.static.scope_guard(scope):
with paddle.static.program_guard(main_program, startup_program):
inputs, outputs = x2paddle_model.x2paddle_net()
exe = fluid.Executor(fluid.CPUPlace())
exe.run(startup_program)
param_dir = os.path.join(code_dir, 'weights')
for k, v in self.parameters.items():
if scope.find_var(k):
self.dump_parameter(k, v, param_dir)
def if_exist(var):
b = os.path.exists(
os.path.join(os.path.join(param_dir, var.name)))
return b
fluid.io.load_vars(
exe, param_dir, main_program, predicate=if_exist)
fluid.io.save_inference_model(
dirname=infer_dir,
feeded_var_names=[i.name for i in inputs],
target_vars=outputs,
executor=exe)
else:
if jit_type == "trace":
from x2paddle.optimizer.code_optimizer import HierarchicalTree
hierarchical_tree = HierarchicalTree(self)
for layer_id, layer in self.layers.items():
hierarchical_tree.insert(layer)
hierarchical_tree.save_source_files(save_dir)
self.dump_dygraph_parameter(save_dir)
else:
self.gen_dygraph_code(save_dir)
self.dump_dygraph_parameter(save_dir)
input_shapes = list()
input_types = list()
for input_name in self.inputs:
input_shapes.append(self.inputs_info[input_name][0])
input_types.append(self.inputs_info[input_name][1])
# 如果input_files非空,则导出推理模型;其值类似[[None, 3, 224, 224]]
self.dygraph2static(save_dir, input_shapes, input_types)
def gen_code(self, code_dir):
def write_code(f, code_list, indent=0):
indent_blank = " " * indent
......@@ -235,10 +302,24 @@ class PaddleGraph(object):
f, [
"from paddle.fluid.initializer import Constant",
"from paddle.fluid.param_attr import ParamAttr",
"import paddle.fluid as fluid", "import math", "",
"def x2paddle_net():"
"import paddle.fluid as fluid",
"import paddle", "import math", "",
],
indent=0)
if self.custom_func is not None:
write_code(
f,
list(self.custom_func.values()),
indent=0)
write_code(f,
["", "def x2paddle_net():"],
indent=0)
write_code(
f, [
"paddle.enable_static()"
],
indent=1)
for layer_id, layer in self.layers.items():
edges_in = self.edges_in.get(layer_id, [])
edges_out = self.edges_out.get(layer_id, [])
......@@ -253,7 +334,9 @@ class PaddleGraph(object):
for output in layer.outputs:
line += "{}, ".format(output)
line = line.strip(", ")
if layer.kernel.startswith("combination_layer"):
line += " = {}(".format(layer.kernel.split(":")[-1].lower() + "_layer")
else:
line += " = {}(".format(layer.kernel)
for k, v in layer.inputs.items():
if isinstance(v, list):
......@@ -274,47 +357,6 @@ class PaddleGraph(object):
indent=1)
f.close()
def gen_model(self, save_dir, input_shapes=None):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if self.graph_type == "static":
code_dir = os.path.join(save_dir, 'model_with_code')
infer_dir = os.path.join(save_dir, 'inference_model')
self.gen_code(code_dir)
sys.path.append(code_dir)
import x2paddle_model
scope = fluid.Scope()
startup_program = fluid.Program()
main_program = fluid.Program()
with fluid.scope_guard(scope):
with fluid.program_guard(main_program, startup_program):
inputs, outputs = x2paddle_model.x2paddle_net()
exe = fluid.Executor(fluid.CPUPlace())
exe.run(startup_program)
param_dir = os.path.join(code_dir, 'weights')
for k, v in self.parameters.items():
if scope.find_var(k):
self.dump_parameter(k, v, param_dir)
def if_exist(var):
b = os.path.exists(
os.path.join(os.path.join(param_dir, var.name)))
return b
fluid.io.load_vars(
exe, param_dir, main_program, predicate=if_exist)
fluid.io.save_inference_model(
dirname=infer_dir,
feeded_var_names=[i.name for i in inputs],
target_vars=outputs,
executor=exe)
else:
self.gen_dygraph_code(save_dir)
self.dump_dygraph_parameter(save_dir)
if input_shapes is not None:
# 如果input_shapes非空,则导出推理模型;其值类似[[None, 3, 224, 224]]
self.dygraph2static(save_dir, input_shapes)
def dump_parameter(self, param_name, param, save_dir):
if not os.path.exists(save_dir):
......@@ -356,10 +398,10 @@ class PaddleGraph(object):
if self.edges_in.get(layer_id, 0) == 0 and self.edges_out.get(
layer_id, 0) == 0:
continue
if layer.kernel == "fluid.dygraph.base.to_variable":
value = layer.attrs["value"]
if not value.startswith("params["):
self.inputs.append(value)
if layer.kernel == "paddle.to_tensor":
data = layer.attrs["data"]
if not data.startswith("params["):
self.inputs.append(data)
if len(layer.blocks) > 0:
for block in layer.blocks:
block.get_dygraph_inputs()
......@@ -376,11 +418,15 @@ class PaddleGraph(object):
layer_id, 0) == 0:
continue
if self.edges_out.get(layer_id, 0) == 0:
for output_name in layer.outputs:
if not output_name.startswith("x"):
for i, output_name in enumerate(layer.outputs):
if ("paddle.nn" in layer.kernel and "functional" not in layer.kernel) or \
(layer.kernel == "paddle.to_tensor" and layer.attrs["data"].startswith("params["))or \
"paddle.fluid.dygraph" in layer.kernel:
if i == 0:
continue
if output_name not in self.outputs:
self.outputs.append(output_name)
self.outputs = list(set(self.outputs))
def gen_dygraph_code(self, code_dir=None, indent=2):
def gen_codes(code_list, indent=0):
......@@ -416,6 +462,23 @@ class PaddleGraph(object):
["def forward(self, {}):".format(input_data_name)],
indent=1))
def gen_run_net_code(code_dir):
input_data_name = ', '.join(self.inputs)
self.run_func = gen_codes(
[
"",
"def run_net({}):".format(input_data_name),
],
indent=0)
self.run_func.extend(
gen_codes(["paddle.disable_static()",
"params, _ = fluid.load_dygraph('{}/model')".format(code_dir),
"model = {}(params)".format(self.name),
"model.set_dict(params)",
"model.eval()",
"out = model({})".format(input_data_name),
"return out"], indent=1))
def write_code(code_dir):
f = open(os.path.join(code_dir, 'x2paddle_code.py'), 'w')
for code_line in self.head:
......@@ -431,6 +494,8 @@ class PaddleGraph(object):
self.forward_func.extend(gen_codes([return_code], indent=2))
for code_line in self.forward_func:
f.write(code_line)
for code_line in self.run_func:
f.write(code_line)
f.close()
self.init_func = []
......@@ -440,12 +505,12 @@ class PaddleGraph(object):
for layer_id, layer in self.layers.items():
if ("paddle.nn" in layer.kernel and "functional" not in layer.kernel
) or layer.kernel == "fluid.dygraph.base.to_variable" or \
) or layer.kernel == "paddle.to_tensor" or \
"paddle.fluid.dygraph" in layer.kernel:
line = "{}".format(
layer.outputs[0]
) if layer.kernel == "fluid.dygraph.base.to_variable" and not layer.attrs[
"value"].startswith("params[") else "self.{}".format(
) if layer.kernel == "paddle.to_tensor" and not layer.attrs[
"data"].startswith("params[") else "self.{}".format(
layer.outputs[0])
line += " = {}(".format(layer.kernel)
for k, v in layer.attrs.items():
......@@ -453,8 +518,8 @@ class PaddleGraph(object):
line = line.strip(", ")
line += ")"
if layer.kernel == "fluid.dygraph.base.to_variable" and not layer.attrs[
"value"].startswith("params["):
if layer.kernel == "paddle.to_tensor" and not layer.attrs[
"data"].startswith("params["):
self.forward_func.extend(gen_codes([line], indent=indent))
continue
else:
......@@ -466,8 +531,8 @@ class PaddleGraph(object):
line = layer.outputs[1]
else:
line = ','.join(layer.outputs[1:])
if layer.kernel == "fluid.dygraph.base.to_variable" and layer.attrs[
"value"].startswith("params["):
if layer.kernel == "paddle.to_tensor" and layer.attrs[
"data"].startswith("params["):
line += " = self.{}".format(layer.outputs[0])
else:
line += " = self.{}(".format(layer.outputs[0])
......@@ -478,7 +543,7 @@ class PaddleGraph(object):
self.forward_func.extend(gen_codes([line], indent=indent))
elif "prim" in layer.kernel:
func_name = layer.kernel.replace(".", "_")
from x2paddle.op_mapper.pytorch2paddle import prim2code
from x2paddle.op_mapper.dygraph import prim2code
if hasattr(prim2code, func_name):
func = getattr(prim2code, func_name)
func(
......@@ -504,6 +569,7 @@ class PaddleGraph(object):
line += ")"
self.forward_func.extend(gen_codes([line], indent=indent))
if indent == 2:
gen_run_net_code(code_dir)
write_code(code_dir)
else:
return self.init_func, self.forward_func
......@@ -513,23 +579,22 @@ class PaddleGraph(object):
pickle.dump(self.parameters, params_output)
params_output.close()
def dygraph2static(self, save_dir, input_shapes=[]):
def dygraph2static(self, save_dir, input_shapes=[], input_types=[]):
from paddle.fluid.dygraph.jit import declarative
sepc_list = list()
for i, name in enumerate(self.inputs):
input_shapes[i][0] = -1
sepc_list.append(
paddle.static.InputSpec(
shape=input_shapes[i], name=name))
shape=input_shapes[i], name=name, dtype=input_types[i]))
import sys
path = osp.abspath(save_dir)
sys.path.insert(0, save_dir)
import x2paddle_code
place = fluid.CPUPlace()
with fluid.dygraph.guard(place):
paddle.disable_static()
restore, _ = fluid.load_dygraph(osp.join(save_dir, "model"))
model = getattr(x2paddle_code, self.name)(restore)
model.set_dict(restore)
model.eval()
model.forward = declarative(model.forward, sepc_list)
fluid.dygraph.jit.save(
layer=model, model_path=osp.join(save_dir, "inference"))
static_model = paddle.jit.to_static(model, input_spec=sepc_list)
paddle.jit.save(static_model, osp.join(save_dir, "inference_model/model"))
\ No newline at end of file
......@@ -18,7 +18,6 @@ from google.protobuf import text_format
import numpy as np
from x2paddle.core.graph import GraphNode, Graph
from x2paddle.core.fluid_code import FluidCode
from x2paddle.op_mapper import caffe_shape
class CaffeResolver(object):
......@@ -50,10 +49,10 @@ class CaffeGraphNode(GraphNode):
def __init__(self, layer, type_str, layer_name=None):
if layer_name is None:
super(CaffeGraphNode, self).__init__(
layer, layer.name.replace('/', '_').replace('-', '_'))
layer, layer.name.replace('/', '_').replace('-', '_').lower())
else:
super(CaffeGraphNode, self).__init__(
layer, layer_name.replace('/', '_').replace('-', '_'))
layer, layer_name.replace('/', '_').replace('-', '_').lower())
self.layer_type = type_str
self.fluid_code = FluidCode()
self.data = None
......@@ -66,6 +65,13 @@ class CaffeGraph(Graph):
def __init__(self, model, params, caffe_pb):
self.params = params
self.caffe_pb = caffe_pb
if hasattr(model, "name"):
if model.name == "":
self.graph_name = "CaffeModel"
else:
self.graph_name = model.name
else:
self.graph_name = "CaffeModel"
super(CaffeGraph, self).__init__(model)
def filter_layers(self, layers):
......
......@@ -12,14 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import torch
import numpy as np
class PyTorchDecoder(object):
def __init__(self, script_path):
self.script = torch.jit.load(script_path)
self.graph = self._optimize_graph(self.script.inlined_graph)
class Decoder(object):
def _optimize_graph(self, graph):
torch._C._jit_pass_constant_propagation(graph)
torch._C._jit_pass_dce(graph)
......@@ -32,3 +31,36 @@ class PyTorchDecoder(object):
torch._C._jit_pass_lint(graph)
torch._C._jit_pass_constant_propagation(graph)
return graph
class ScriptDecoder(Decoder):
""" 当script_path非None,直接load ScriptModule;
当model_path非None,load PyTorchModule后使用script方式转换为ScriptModule。
Args:
script_path (str): ScriptModule保存路径。
model_path (str): PyTorchModule保存路径。
"""
def __init__(self, script_path=None):
self.script = torch.jit.load(script_path)
self.graph = self._optimize_graph(self.script.inlined_graph)
class TraceDecoder(Decoder):
""" PyTorchModule后使用trace方式转换为ScriptModule。
Args:
model_path (str): PyTorchModule保存路径。
input_files (list): 输入网络的numpy,每个numpy保存成.npy文件,
文件路径存储在input_files中。
"""
def __init__(self, model_path, input_files=list()):
# TODO(syf): 传入pytorch的Module(即import),否则出错
model = torch.load(model_path)
model.eval()
input_list = list()
for npy_file in input_files:
input_list.append(torch.tensor(np.load(npy_file)))
self.script = torch.jit.trace(model, input_list, strict=False)
self.graph = self._optimize_graph(self.script.inlined_graph)
# print(self.graph)
# print(getattr(getattr(self.script.decoder.block, "5").layer, "2"))
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numbers
from functools import reduce
def get_kernel_parameters(params):
[k_h, k_w] = [1, 1]
if isinstance(params.kernel_size, numbers.Number):
[k_h, k_w] = [params.kernel_size] * 2
elif len(params.kernel_size) > 0:
k_h = params.kernel_h if params.kernel_h > 0 else params.kernel_size[0]
k_w = params.kernel_w if params.kernel_w > 0 else params.kernel_size[
len(params.kernel_size) - 1]
elif params.kernel_h > 0 or params.kernel_w > 0:
k_h = params.kernel_h
k_w = params.kernel_w
[s_h, s_w] = [1, 1]
if isinstance(params.stride, numbers.Number):
[s_h, s_w] = [params.stride] * 2
elif len(params.stride) > 0:
s_h = params.stride_h if params.stride_h > 0 else params.stride[0]
s_w = params.stride_w if params.stride_w > 0 else params.stride[len(
params.stride) - 1]
elif params.stride_h > 0 or params.stride_w > 0:
s_h = params.stride_h
s_w = params.stride_w
[p_h, p_w] = [0, 0]
if isinstance(params.pad, numbers.Number):
[p_h, p_w] = [params.pad] * 2
elif len(params.pad) > 0:
p_h = params.pad_h if params.pad_h > 0 else params.pad[0]
p_w = params.pad_w if params.pad_w > 0 else params.pad[len(params.pad) -
1]
elif params.pad_h > 0 or params.pad_w > 0:
p_h = params.pad_h
p_w = params.pad_w
dila_h = dila_w = 1
if hasattr(params, 'dilation'):
dila_len = len(params.dilation)
if dila_len == 2:
dila_h = params.dilation[0]
dila_w = params.dilation[1]
elif dila_len == 1:
dila_h = dila_w = params.dilation[0]
else:
assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
dila_len)
return dila_h, dila_w, p_h, p_w, k_h, k_w, s_h, s_w
def get_strided_kernel_output_shape(params, input_shape, round_func):
i_h = input_shape[2]
i_w = input_shape[3]
dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w = get_kernel_parameters(
params)
o_h = (i_h + 2 * pad_h - (dila_h *
(kernel_h - 1) + 1)) / float(stride_h) + 1
o_w = (i_w + 2 * pad_w - (dila_w *
(kernel_w - 1) + 1)) / float(stride_w) + 1
o_h = int(round_func(o_h))
o_w = int(round_func(o_w))
has_c_o = hasattr(params, 'num_output')
c = params.num_output if has_c_o else input_shape[1]
return [[input_shape[0], c, o_h, o_w]]
def shape_convolution(layer, input_shape):
params = layer.convolution_param
return get_strided_kernel_output_shape(params, input_shape[0], math.floor)
def shape_deconvolution(layer, input_shape):
h_i = input_shape[0][2]
w_i = input_shape[0][3]
params = layer.convolution_param
dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w = get_kernel_parameters(
params)
h_o = (h_i - 1) * stride_h - 2 * pad_h + dila_h * (kernel_h - 1) + 1
w_o = (w_i - 1) * stride_w - 2 * pad_w + dila_w * (kernel_w - 1) + 1
has_c_o = hasattr(params, 'num_output')
c = params.num_output if has_c_o else input_shape.channels
return [[input_shape[0][0], c, h_o, w_o]]
def shape_pooling(layer, input_shape):
params = layer.pooling_param
global_pool = getattr(params, 'global_pooling', False)
if global_pool:
return [[input_shape[0][0], input_shape[0][1], 1, 1]]
ceil_mode = getattr(params, 'ceil_mode', True)
if ceil_mode is True:
method = math.ceil
else:
method = math.floor
return get_strided_kernel_output_shape(params, input_shape[0], method)
def shape_convolutiondepthwise(layer, input_shape):
params = layer.convolution_param
return get_strided_kernel_output_shape(params, input_shape[0], math.floor)
def shape_innerproduct(layer, input_shape):
params = layer.inner_product_param
return [[input_shape[0][0], params.num_output]]
def shape_lrn(layer, input_shape):
return input_shape
def shape_relu(layer, input_shape):
return input_shape
def shape_softmax(layer, input_shape):
return input_shape
def shape_input(layer, input_shape):
return [list(layer.input_param.shape[0].dim)]
def shape_memorydata(layer, input_shape):
params = layer.memory_data_param
shape = []
shape.append(int(params.batch_size))
shape.append(int(params.channels))
shape.append(int(params.height))
shape.append(int(params.width))
return [shape]
def shape_concat(layer, input_shape):
params = layer.concat_param
axis = params.axis
output_shape = None
for shape in input_shape:
if output_shape is None:
output_shape = []
for i in range(len(shape)):
output_shape.append(shape[i])
else:
output_shape[axis] += shape[axis]
return [output_shape]
def shape_slice(layer, input_shape):
inshape = input_shape[0]
top_len = len(layer.top)
params = layer.slice_param
axis = params.axis
slice_dim = params.slice_dim
if slice_dim != 1 and axis == 1:
axis = slice_dim
points = list(params.slice_point)
count = inshape[axis]
if len(points) == 0:
assert count % top_len == 0, "the parameter of Slice is wrong"
part = count / top_len
t = part
while t < count:
points.append(int(t))
t += part
points = [0] + points + [count]
output_shape = []
for i in range(len(points)):
shape = []
for ii in range(len(inshape)):
shape.append(inshape[ii])
size = points[i + 1] - points[i]
shape[axis] = size
output_shape.append(shape)
if i == len(points) - 2:
break
return output_shape
def shape_prelu(layer, input_shape):
return input_shape
def shape_sigmoid(layer, input_shape):
return input_shape
def shape_absval(layer, input_shape):
return input_shape
def shape_accuracy(layer, input_shape):
return [[1]]
def shape_tanh(layer, input_shape):
return input_shape
def shape_eltwise(layer, input_shape):
return [input_shape[0]]
def shape_batchnorm(layer, input_shape):
return input_shape
def shape_scale(layer, input_shape):
return input_shape
def shape_reshape(layer, input_shape):
def count(num_list):
return reduce(lambda a, b: a * b, num_list)
inshape = input_shape[0]
params = layer.reshape_param
axis = params.axis if hasattr(params, 'axis') else 0
num_axes = params.num_axes if hasattr(params, 'num_axes') else -1
if inshape[0] == -1:
inshape[0] = 1
input_count = count(inshape)
input_num_axes = len(inshape)
input_start_axis = axis
start_axis = input_start_axis if input_start_axis >= 0 \
else input_num_axes + input_start_axis + 1
assert start_axis >= 0, "[Reshape]axis %d out of range" % (input_start_axis)
assert start_axis <= input_num_axes, "[Reshape]axis %d out of range for %d-D input data"\
% (input_start_axis, input_num_axes)
assert num_axes >= -1, "[Reshape]num_axes must be >= 0, or -1 for all"
end_axis = input_num_axes if num_axes == -1 else start_axis + num_axes
assert end_axis <= input_num_axes, "end_axis[%d] = axis[%d] + num_axes[%d] is out of range"\
% (end_axis, start_axis, num_axes)
num_axes_replaced = end_axis - start_axis
num_axes_retained = input_num_axes - num_axes_replaced
num_new_axes = len(list(params.shape.dim))
output_shape = []
for i in range(start_axis):
output_shape.append(inshape[i])
for i in range(num_new_axes):
output_shape.append(params.shape.dim[i])
for i in range(end_axis, input_num_axes):
output_shape.append(inshape[i])
assert len(output_shape) == num_axes_retained + num_new_axes,\
"[Reshape]invalid dims of output shape[%s]" % (str(output_shape))
inferred_axis = -1
copy_axes = []
constant_count = 1
for i in range(num_new_axes):
top_dim = params.shape.dim[i]
if top_dim == 0:
copy_axes.append(i)
copy_axis_index = start_axis + i
output_shape[copy_axis_index] = inshape[copy_axis_index]
elif top_dim == -1:
assert inferred_axis == -1, "[Reshape]new shape contains multiple -1 dims"
inferred_axis = i
else:
constant_count *= top_dim
if inferred_axis >= 0:
explicit_count = constant_count
l = inshape[0:start_axis]
if len(l) > 0:
explicit_count *= count(l)
l = inshape[end_axis:]
if len(l) > 0:
explicit_count *= count(l)
for i in range(len(copy_axes)):
explicit_count *= output_shape[start_axis + copy_axes[i]]
assert input_count % explicit_count == 0, "[Reshape]botom count[%d] "\
"must be divisible by product of the specified dimensions[%d] "\
% (input_count, explicit_count)
output_shape[start_axis + inferred_axis] = int(input_count / explicit_count)
output_count = count(output_shape)
assert output_count == input_count, "[Reshape]output count[%d] must match input count[%d]" % (
output_count, input_count)
output_shape[0] = -1
return [output_shape]
def shape_argmax(layer, input_shape):
inshape = input_shape[0]
params = layer.argmax_param
out_max_val = params.out_max_val if hasattr(params, out_max_val) else False
top_k = params.top_k if hasattr(params, top_k) else 1
axis = parmas.axis if hasattr(params, axis) else -1
if axis < 0:
axis += len(inshape)
assert (axis + 1 == len(inshape)
), 'only can be applied on the last dimension[axis:%d, %s] now,'\
'make sure you have set axis param in xxx.prototxt file' \
% (axis, str(inshape))
output_shape = inshape
output_shape[-1] = top_k
if out_max_val is True:
output_shape[-1] *= 2
return [output_shape]
def shape_crop(layer, input_shape):
assert len(input_shape) == 2, "the number of crop's inputs must be 2"
return [input_shape[1]]
def shape_flatten(layer, input_shape):
assert len(input_shape) == 1, "the number of flatten's inputs must be 1"
inshape = input_shape[0]
params = layer.flatten_param
start_axis = params.axis
end_axis = params.end_axis
if start_axis < 0:
start_axis += len(inshape)
if end_axis < 0:
end_axis += len(inshape) + 1
assert start_axis <= end_axis, 'invalid axis[%d] or end_axis[%d] params'\
% (start_axis, end_axis)
output_shape = inshape[0:start_axis]
if len(inshape[start_axis:end_axis]) != 0:
flat_sz = reduce(lambda a, b: a * b, inshape[start_axis:end_axis])
output_shape += [flat_sz]
output_shape += inshape[end_axis:len(inshape)]
output_shape[0] = -1
return [output_shape]
def shape_power(layer, input_shape):
return input_shape
def shape_reduction(layer, input_shape):
params = layer.reduction_param
axis = params.axis
if axis < 0:
axis += len(input_shape[0]) + 1
assert axis <= len(input_shape[0]), 'invalid axis[%d] error' % (axis)
return [input_shape[0:axis]]
def shape_axpy(layer, input_shape):
assert len(input_shapes) == 3, "not valid input shape for axpy layer"
assert len(input_shapes[0]) == len(input_shapes[1]), 'should have same dims'
output_shape = input_shapes[1]
assert (input_shapes[2] == output_shape),\
"shape not consistent for axpy[%s <--> %s]" \
% (str(output_shape), str(input_shapes[2]))
return [output_shape]
def shape_detectionoutput(layer, input_shape):
return [[-1, 6]]
def shape_normalize(layer, input_shape):
return input_shape
def shape_permute(layer, input_shape, order=None):
inshape = input_shape[0]
output_shape = []
order = list(order)
for ii in order:
assert ii < len(inshape), "invalid order for permute[%s]" % (name)
output_shape.append(inshape[ii])
return [output_shape]
def shape_priorbox(layer, input_shape, max_size=None, aspect_ratio=None):
fc_shape = input_shape[0]
N = 1
if not max_size == None:
N += 1
if not aspect_ratio == None:
N += 2 * len(aspect_ratio)
N_bbx = fc_shape[2] * fc_shape[3] * N
output_shape = [1, 2, 4 * N_bbx]
return [output_shape]
def shape_relu6(layer, input_shape):
return input_shape
def shape_roipooling(layer, input_shape, pooled_w=None, pooled_h=None):
base_fea_shape = input_shapes[0]
rois_shape = input_shapes[1]
output_shape = base_fea_shape
output_shape[0] = rois_shape[0]
output_shape[2] = pooled_h
output_shape[3] = pooled_w
return [output_shape]
def shape_shufflechannel(layer, input_shape):
return input_shape
def shape_upsample(layer, input_shape, scale):
assert len(input_shapes) == 1, "not valid input shape for upsample layer"
assert type(scale) is int
input_shape = input_shapes[0]
new_h = scale * input_shape[2]
new_w = scale * input_shape[3]
output_shape = [input_shape[0], input_shape[1], new_h, new_w]
return [output_shape]
def shape_select(layer, input_shape, slice_point, axis):
input_shape = input_shapes[0]
start = slice_point[0]
if len(slice_point) == 2:
end = slice_point[1]
else:
end = input_shape[axis]
assert end > start, "invalid slice_point with [start:%d, end:%d]"\
% (start, end)
output_shape = input_shape
output_shape[axis] = end - start
return [output_shape]
此差异已折叠。
......@@ -16,8 +16,8 @@ def axpy_layer(inputs, input_shape=None, name=None):
alpha = inputs[0]
x = inputs[1]
y = inputs[2]
out = fluid.layers.elementwise_mul(x, alpha, axis=0)
out = fluid.layers.elementwise_add(out, y, name=name)
out = paddle.multiply(x, alpha, axis=0)
out = paddle.add(out, y, name=name)
return out
......
......@@ -15,15 +15,6 @@ def convolutiondepthwise_shape(input_shape,
kernel_w=None,
stride_h=None,
stride_w=None):
[k_h, k_w] = [1, 1]
if isinstance(kernel_size, numbers.Number):
[k_h, k_w] = [kernel_size] * 2
elif len(kernel_size) > 0:
k_h = kernel_h if kernel_h > 0 else kernel_size[0]
k_w = kernel_w if kernel_w > 0 else kernel_size[len(kernel_size) - 1]
elif kernel_h > 0 or kernel_w > 0:
k_h = kernel_h
k_w = kernel_w
[s_h, s_w] = [1, 1]
if isinstance(stride, numbers.Number):
[s_h, s_w] = [stride] * 2
......@@ -79,15 +70,6 @@ def convolutiondepthwise_layer(inputs,
input_shape=None,
name=None):
import numbers
[k_h, k_w] = [1, 1]
if isinstance(kernel_size, numbers.Number):
[k_h, k_w] = [kernel_size] * 2
elif len(kernel_size) > 0:
k_h = kernel_h if kernel_h > 0 else kernel_size[0]
k_w = kernel_w if kernel_w > 0 else kernel_size[len(kernel_size) - 1]
elif kernel_h > 0 or kernel_w > 0:
k_h = kernel_h
k_w = kernel_w
[s_h, s_w] = [1, 1]
if isinstance(stride, numbers.Number):
[s_h, s_w] = [stride] * 2
......@@ -122,16 +104,14 @@ def convolutiondepthwise_layer(inputs,
c_out = num_output if num_output is not None else input_shape[0][1]
group = int(c_in / (c_in / c_out)) if c_in > c_out else int(c_in /
(c_out / c_in))
out = fluid.layers.conv2d(
out = paddle.nn.functional.conv2d(
input,
dilation=[dila_h, dila_w],
filter_size=[k_h, k_w],
stride=[s_h, s_w],
padding=[p_h, p_w],
groups=group,
num_filters=c_out,
param_attr=name + '_weights',
bias_attr=name + '_bias',
weight=name + '_weights',
bias=name + '_bias',
name=name)
return out
......
......@@ -14,30 +14,18 @@ def detectionoutput_layer(inputs,
confidence_threshold=0.1,
input_shape=None,
name=None):
nms_param_str = nms_param
nms_param = {}
part = nms_param_str.split(',')
for s in part:
if s == '':
break
else:
name, obj = s.split(': ')
if name == 'top_k':
nms_param[name] = int(obj)
else:
nms_param[name] = float(obj)
if nms_param is None:
nms_param = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
mbox_conf_flatten = inputs[1]
mbox_priorbox = inputs[2]
mbox_priorbox_list = fluid.layers.split(mbox_priorbox, 2, dim=1)
mbox_priorbox_list = paddle.split(mbox_priorbox, 2, dim=1)
pb = mbox_priorbox_list[0]
pbv = mbox_priorbox_list[1]
pb = fluid.layers.reshape(x=pb, shape=[-1, 4])
pbv = fluid.layers.reshape(x=pbv, shape=[-1, 4])
pb = paddle.reshape(x=pb, shape=[-1, 4])
pbv = paddle.reshape(x=pbv, shape=[-1, 4])
mbox_loc = inputs[0]
mbox_loc = fluid.layers.reshape(x=mbox_loc, shape=[-1, pb.shape[0], 4])
mbox_conf_flatten = fluid.layers.reshape(
mbox_loc = paddle.reshape(x=mbox_loc, shape=[-1, pb.shape[0], 4])
mbox_conf_flatten = paddle.reshape(
x=mbox_conf_flatten, shape=[0, pb.shape[0], -1])
default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
......
......@@ -13,14 +13,14 @@ def normalize_layer(inputs,
name=None):
assert across_spatial == False, "Only support across_spatial == False for Normalize"
input = inputs[0]
l2_norm = fluid.layers.l2_normalize(input, axis=1, name=name + '_l2')
scale_param = fluid.layers.create_parameter(
l2_norm = paddle.nn.functional.normalize(input, axis=1, p=2, name=name + '_l2')
scale_param = paddle.static.create_parameter(
shape=[1] if channel_shared else [1, 1, 1, input_shape[0][1]],
dtype=input.dtype,
attr=fluid.ParamAttr(name=name + '_scale'))
scale_param = fluid.layers.reshape(x=scale_param, \
attr=paddle.ParamAttr(name=name + '_scale'))
scale_param = paddle.reshape(x=scale_param, \
shape=[1] if channel_shared else [input_shape[0][1]])
out = fluid.layers.elementwise_mul(
out = paddle.multiply(
x=l2_norm, y=scale_param, axis=-1 if channel_shared else 1)
return out
......
......@@ -14,7 +14,7 @@ def permute_shape(input_shape, order=None):
def permute_layer(inputs, order=None, input_shape=None, name=None):
input = inputs[0]
order = list(order)
out = fluid.layers.transpose(input, perm=order, name=name)
out = paddle.transpose(input, perm=order, name=name)
return out
......
......@@ -8,7 +8,7 @@ def relu6_shape(input_shape):
def relu6_layer(inputs, input_shape=None, name=None):
input = inputs[0]
out = fluid.layers.relu6(x=input)
out = paddle.nn.functional.relu6(x=input)
return out
......
......@@ -20,7 +20,7 @@ def roipooling_layer(inputs,
name=None):
input = inputs[0]
roi = inputs[1]
roi = fluid.layers.slice(roi, axes=[1], starts=[1], ends=[5])
roi = paddle.slice(roi, axes=[1], starts=[1], ends=[5])
out = fluid.layers.roi_pool(
input,
roi,
......
......@@ -30,7 +30,7 @@ def select_layer(inputs,
out = []
for i in range(len(slice_point)):
out.append(
fluid.layers.slice(
paddle.slice(
input,
axes=[axis],
starts=[slice_point[i]],
......
......@@ -42,8 +42,8 @@ def upsample_layer(inputs, scale, input_shape=None, name=None):
:return:
"""
x = inputs[0]
out = fluid.layers.resize_nearest(
x, align_corners=False, scale=scale, name=name)
out = paddle.nn.functioanl.interpolate(
x, align_corners=False, scale_factor=scale, name=name)
return out
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册