Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
04996630
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
04996630
编写于
7月 18, 2019
作者:
S
SunAhong1993
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add caffe emitter for alexnet
上级
99582ade
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
487 addition
and
0 deletion
+487
-0
x2paddle/emitter/caffe_emitter.py
x2paddle/emitter/caffe_emitter.py
+280
-0
x2paddle/parser/caffe_parser.py
x2paddle/parser/caffe_parser.py
+37
-0
x2paddle/parser/caffe_shape.py
x2paddle/parser/caffe_shape.py
+170
-0
未找到文件。
x2paddle/emitter/caffe_emitter.py
浏览文件 @
04996630
...
...
@@ -11,3 +11,283 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numbers
from
x2paddle.parser.caffe_parser
import
CaffeGraph
from
x2paddle.core.emitter
import
Emitter
from
x2paddle.core.util
import
*
class
CaffeEmitter
(
Emitter
):
def
__init__
(
self
,
parser
):
super
(
CaffeEmitter
,
self
).
__init__
()
self
.
parser
=
parser
self
.
graph
=
parser
.
caffe_graph
self
.
weights
=
dict
()
self
.
resolver
=
parser
.
resolver
def
run
(
self
):
print
(
"Total nodes: {}"
.
format
(
len
(
self
.
graph
.
topo_sort
)))
for
node_name
in
self
.
graph
.
topo_sort
:
node
=
self
.
graph
.
get_node
(
node_name
)
op
=
node
.
layer_type
if
hasattr
(
self
,
op
):
emit_func
=
getattr
(
self
,
op
)
emit_func
(
node
)
for
i
in
range
(
len
(
self
.
graph
.
topo_sort
)):
node_name
=
self
.
graph
.
topo_sort
[
i
]
node
=
self
.
graph
.
get_node
(
node_name
)
for
layer
in
node
.
fluid_code
.
layers
:
print
(
layer
.
get_code
())
for
name
,
param
in
self
.
weights
.
items
():
export_paddle_param
(
param
,
name
.
replace
(
'/'
,
'_'
),
"params1"
)
@
staticmethod
def
get_kernel_value
(
scalar
,
repeated
,
idx
,
default
=
None
):
if
scalar
:
return
scalar
if
repeated
:
if
isinstance
(
repeated
,
numbers
.
Number
):
return
repeated
if
len
(
repeated
)
==
1
:
# Same value applies to all spatial dimensions
return
int
(
repeated
[
0
])
assert
idx
<
len
(
repeated
)
# Extract the value for the given spatial dimension
return
repeated
[
idx
]
if
default
is
None
:
raise
ValueError
(
'Unable to determine kernel parameter!'
)
return
default
def
get_kernel_parameters
(
self
,
kind
,
params
):
assert
kind
in
[
'Convolution'
,
'Pooling'
,
'Deconvolution'
]
k_h
=
self
.
get_kernel_value
(
params
.
kernel_h
,
params
.
kernel_size
,
0
)
k_w
=
self
.
get_kernel_value
(
params
.
kernel_w
,
params
.
kernel_size
,
1
)
s_h
=
self
.
get_kernel_value
(
params
.
stride_h
,
params
.
stride
,
0
,
default
=
1
)
s_w
=
self
.
get_kernel_value
(
params
.
stride_w
,
params
.
stride
,
1
,
default
=
1
)
p_h
=
self
.
get_kernel_value
(
params
.
pad_h
,
params
.
pad
,
0
,
default
=
0
)
p_w
=
self
.
get_kernel_value
(
params
.
pad_w
,
params
.
pad
,
1
,
default
=
0
)
dila_h
=
dila_w
=
1
group
=
1
c_o
=
1
if
kind
in
[
'Convolution'
,
'Deconvolution'
]:
c_o
=
params
.
num_output
group
=
params
.
group
dila_len
=
len
(
params
.
dilation
)
if
dila_len
==
2
:
dila_h
=
params
.
dilation
[
0
]
dila_w
=
params
.
dilation
[
1
]
elif
dila_len
==
1
:
dila_h
=
dila_w
=
params
.
dilation
[
0
]
else
:
assert
dila_len
==
0
,
"invalid length[%s] of dilation in convolution"
%
(
dila_len
)
kernel
=
[
k_h
,
k_w
]
stride
=
[
s_h
,
s_w
]
pad
=
[
p_h
,
p_w
]
dilation
=
[
dila_h
,
dila_w
]
return
c_o
,
kernel
,
stride
,
pad
,
dilation
,
group
def
Input
(
self
,
node
):
shape
=
list
(
node
.
layer
.
input_param
.
shape
[
0
].
dim
)[
1
:]
dtype
=
'float32'
attr
=
{
'dtype'
:
string
(
dtype
),
'shape'
:
shape
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"data"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
def
Convolution
(
self
,
node
):
data
=
node
.
data
self
.
weights
[
node
.
layer_name
+
'_weights'
]
=
data
[
0
]
if
len
(
data
)
==
2
:
self
.
weights
[
node
.
layer_name
+
'_bias'
]
=
data
[
1
]
params
=
node
.
layer
.
convolution_param
channel
,
kernel
,
stride
,
pad
,
dilation
,
group
=
self
.
get_kernel_parameters
(
node
.
layer_type
,
params
)
assert
len
(
node
.
inputs
)
==
1
,
'The count of Convolution node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
)
attr
=
{
'filter_size'
:
kernel
,
'num_filters'
:
channel
,
'stride'
:
stride
,
'padding'
:
pad
,
'dilation'
:
dilation
,
'groups'
:
group
,
'name'
:
string
(
node
.
layer_name
),
'param_attr'
:
string
(
node
.
layer_name
+
'_weights'
),
'bias_attr'
:
string
(
node
.
layer_name
+
'_bias'
),
}
node
.
fluid_code
.
add_layer
(
"conv2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Deconvolution
(
self
,
node
):
data
=
node
.
data
self
.
weights
[
node
.
layer_name
+
'_weights'
]
=
data
[
0
]
if
len
(
data
)
==
2
:
self
.
weights
[
node
.
layer_name
+
'_bias'
]
=
data
[
1
]
params
=
node
.
layer
.
convolution_param
channel
,
kernel
,
stride
,
pad
,
dilation
,
group
=
self
.
get_kernel_parameters
(
node
.
layer_type
,
params
)
assert
len
(
node
.
inputs
)
==
1
,
'The count of Deconvolution node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
)
attr
=
{
'output_size'
:
None
,
'filter_size'
:
kernel
,
'num_filters'
:
channel
,
'stride'
:
stride
,
'padding'
:
pad
,
'dilation'
:
dilation
,
'groups'
:
group
,
'name'
:
string
(
node
.
layer_name
),
'param_attr'
:
string
(
node
.
layer_name
+
'_weights'
),
'bias_attr'
:
string
(
node
.
layer_name
+
'_bias'
)
}
node
.
fluid_code
.
add_layer
(
"conv2d_transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Pooling
(
self
,
node
):
params
=
node
.
layer
.
pooling_param
channel
,
kernel
,
stride
,
pad
,
dilation
,
group
=
self
.
get_kernel_parameters
(
node
.
layer_type
,
params
)
if
params
.
pool
==
0
:
pool_type
=
'max'
else
:
pool_type
=
'avg'
assert
len
(
node
.
inputs
)
==
1
,
'The count of Pooling node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
)
attr
=
{
'pool_size'
:
kernel
,
'pool_stride'
:
stride
,
'pool_padding'
:
pad
,
'ceil_mode'
:
True
,
'pool_type'
:
string
(
pool_type
),
'exclusive'
:
True
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"pool2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
ReLU
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
,
'The count of ReLU node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
)
attr
=
{
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"relu"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
LRN
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
,
'The count of LRN node
\'
s input is not 1.'
params
=
node
.
layer
.
lrn_param
# The window size must be an odd value. For a window
# size of (2*n+1), Paddle defines depth_radius = n.
assert
params
.
local_size
%
2
==
1
# Caffe scales by (alpha/(2*n+1)), whereas Paddle
# just scales by alpha (as does Krizhevsky's paper).
# We'll account for that here.
alpha
=
params
.
alpha
/
float
(
params
.
local_size
)
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
)
attr
=
{
'n'
:
params
.
local_size
,
'k'
:
1.0
,
'alpha'
:
alpha
,
'beta'
:
params
.
beta
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"lrn"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
InnerProduct
(
self
,
node
):
data
=
node
.
data
self
.
weights
[
node
.
layer_name
+
'_weights'
]
=
data
[
0
]
if
len
(
data
)
==
2
:
self
.
weights
[
node
.
layer_name
+
'_bias'
]
=
data
[
1
]
assert
len
(
node
.
inputs
)
==
1
,
'The count of InnerProduct node
\'
s input is not 1.'
params
=
node
.
layer
.
inner_product_param
assert
params
.
axis
==
1
assert
params
.
bias_term
==
True
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
)
attr
=
{
'size'
:
params
.
num_output
,
'name'
:
string
(
node
.
layer_name
),
'act'
:
None
,
'param_attr'
:
string
(
node
.
layer_name
+
'_weights'
),
'bias_attr'
:
string
(
node
.
layer_name
+
'_bias'
)
}
node
.
fluid_code
.
add_layer
(
"fc"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
def
Softmax
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
,
'The count of Softmax node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
)
params
=
node
.
layer
.
softmax_param
axis
=
params
.
axis
shape
=
node
.
input_shape
[
0
]
dims
=
len
(
shape
)
axis
=
axis
+
dims
if
axis
<
0
else
axis
need_transpose
=
False
if
axis
+
1
!=
dims
:
need_transpose
=
True
if
need_transpose
:
in_order
=
list
(
range
(
dims
))
in_order
.
remove
(
axis
)
in_order
.
append
(
axis
)
attr
=
{
'perm'
:
in_order
,
'name'
:
string
(
node
.
layer_name
+
'_transpose_in'
)
}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
attr
=
{
'name'
:
string
(
node
.
layer_name
+
'_softmax'
)}
node
.
fluid_code
.
add_layer
(
"softmax"
,
inputs
=
node
if
need_transpose
else
input
,
output
=
node
,
param_attr
=
attr
)
if
need_transpose
:
out_order
=
[
0
,
]
*
dims
for
id
,
v
in
enumerate
(
in_order
):
out_order
[
v
]
=
id
attr
=
{
'perm'
:
out_order
,
'name'
:
string
(
node
.
layer_name
+
'_transpose_out'
)
}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
x2paddle/parser/caffe_parser.py
浏览文件 @
04996630
...
...
@@ -17,6 +17,8 @@ import sys
from
google.protobuf
import
text_format
import
numpy
as
np
from
x2paddle.core.graph
import
GraphNode
,
Graph
from
x2paddle.core.fluid_code
import
FluidCode
from
x2paddle.parser
import
caffe_shape
class
CaffeResolver
(
object
):
...
...
@@ -62,10 +64,19 @@ class CaffeGraphNode(GraphNode):
else
:
super
(
CaffeGraphNode
,
self
).
__init__
(
layer
,
layer_name
)
self
.
layer_type
=
layer
.
type
self
.
fluid_code
=
FluidCode
()
def
set_params
(
self
,
params
):
self
.
data
=
params
def
set_output_shape
(
self
,
input_shape
):
func_name
=
'shape_'
+
self
.
layer_type
.
lower
()
self
.
output_shape
=
getattr
(
caffe_shape
,
func_name
)(
self
.
layer
,
input_shape
)
def
set_input_shape
(
self
,
input_shape
):
self
.
input_shape
=
input_shape
class
CaffeGraph
(
Graph
):
def
__init__
(
self
,
model
,
params
):
...
...
@@ -148,8 +159,34 @@ class CaffeGraph(Graph):
else
:
notice
(
'Ignoring parameters for non-existent layer: %s'
%
\
layer_name
)
for
layer_name
in
self
.
node_map
:
node
=
self
.
node_map
[
layer_name
]
inputs
=
node
.
inputs
i
=
0
input_shape
=
[]
for
nm
in
inputs
:
last_node
=
self
.
get_node
(
nm
)
tmp
=
node
.
layer
.
bottom
[
i
]
i
=
i
+
1
idx
=
list
(
last_node
.
layer
.
top
).
index
(
tmp
)
input_shape
.
append
(
last_node
.
output_shape
[
idx
])
node
.
set_output_shape
(
input_shape
)
node
.
set_input_shape
(
input_shape
)
super
(
CaffeGraph
,
self
).
build
()
def
get_bottom_node
(
self
,
node
,
idx
=
0
,
copy
=
False
):
input_node_name
=
node
.
inputs
[
idx
]
assert
input_node_name
in
self
.
node_map
,
'The {} isn
\'
t a valid node'
.
format
(
name
)
input_node
=
self
.
node_map
[
input_node_name
]
if
len
(
input_node
.
layer
.
top
)
>
1
:
idx
=
list
(
input_node
.
layer
.
top
).
index
(
node
.
layer
.
bottom
[
need
])
name
=
input_node_name
+
':'
+
str
(
idx
)
else
:
name
=
input_node_name
return
self
.
get_node
(
name
,
copy
=
copy
)
class
CaffeParser
(
object
):
def
__init__
(
self
,
proto_path
,
model_path
,
use_caffe
=
True
):
...
...
x2paddle/parser/caffe_shape.py
0 → 100644
浏览文件 @
04996630
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
def
get_params_w_h
(
params
):
if
hasattr
(
params
,
'dilation'
):
if
len
(
params
.
dilation
)
==
0
:
dila_h
=
1
dila_w
=
1
elif
len
(
params
.
dilation
)
==
1
:
dila_h
=
params
.
dilation
[
0
]
dila_w
=
params
.
dilation
[
0
]
else
:
dila_h
=
params
.
dilation
[
0
]
dila_w
=
params
.
dilation
[
1
]
else
:
dila_h
=
1
dila_w
=
1
if
not
isinstance
(
getattr
(
params
,
'pad'
),
int
):
if
len
(
params
.
pad
)
==
0
:
pad_h
=
1
pad_w
=
1
elif
len
(
params
.
pad
)
==
1
:
pad_h
=
params
.
pad
[
0
]
pad_w
=
params
.
pad
[
0
]
else
:
pad_h
,
pad_w
,
=
params
.
pad
[
0
]
pad_w
=
params
.
pad
[
1
]
if
params
.
pad_h
!=
0
or
params
.
pad_w
!=
0
:
pad_h
=
params
.
pad_h
pad_w
=
params
.
pad_w
else
:
if
params
.
pad_h
!=
0
or
params
.
pad_w
!=
0
:
pad_h
=
params
.
pad_h
pad_w
=
params
.
pad_w
else
:
pad_h
=
getattr
(
params
,
'pad'
)
pad_w
=
getattr
(
params
,
'pad'
)
if
not
isinstance
(
getattr
(
params
,
'kernel_size'
),
int
):
if
len
(
params
.
kernel_size
)
==
0
:
kernel_h
=
1
kernel_w
=
1
elif
len
(
params
.
kernel_size
)
==
1
:
kernel_h
=
params
.
kernel_size
[
0
]
kernel_w
=
params
.
kernel_size
[
0
]
else
:
kernel_h
=
params
.
kernel_size
[
0
]
kernel_w
=
params
.
kernel_size
[
1
]
if
params
.
kernel_h
!=
0
or
params
.
kernel_w
!=
0
:
kernel_h
=
params
.
kernel_h
kernel_w
=
params
.
kernel_w
else
:
if
params
.
kernel_h
!=
0
or
params
.
kernel_w
!=
0
:
kernel_h
=
params
.
kernel_h
kernel_w
=
params
.
kernel_w
else
:
kernel_h
=
getattr
(
params
,
'kernel_size'
)
kernel_w
=
getattr
(
params
,
'kernel_size'
)
if
not
isinstance
(
getattr
(
params
,
'stride'
),
int
):
if
len
(
params
.
stride
)
==
0
:
stride_h
=
1
stride_w
=
1
elif
len
(
params
.
stride
)
==
1
:
stride_h
=
params
.
stride
[
0
]
stride_w
=
params
.
stride
[
0
]
else
:
stride_h
=
params
.
stride
[
0
]
stride_w
=
params
.
stride
[
1
]
if
params
.
stride_h
!=
0
or
params
.
stride_w
!=
0
:
stride_h
=
params
.
stride_h
stride_w
=
params
.
stride_w
else
:
if
params
.
stride_h
!=
0
or
params
.
stride_w
!=
0
:
stride_h
=
params
.
stride_h
stride_w
=
params
.
stride_w
else
:
stride_h
=
getattr
(
params
,
'stride'
)
stride_w
=
getattr
(
params
,
'stride'
)
return
dila_h
,
dila_w
,
pad_h
,
pad_w
,
kernel_h
,
kernel_w
,
stride_h
,
stride_w
def
get_filter_output_shape
(
i_h
,
i_w
,
params
,
round_func
):
dila_h
,
dila_w
,
pad_h
,
pad_w
,
kernel_h
,
kernel_w
,
stride_h
,
stride_w
=
get_params_w_h
(
params
)
o_h
=
(
i_h
+
2
*
pad_h
-
(
dila_h
*
(
kernel_h
-
1
)
+
1
))
/
float
(
stride_h
)
+
1
o_w
=
(
i_w
+
2
*
pad_w
-
(
dila_w
*
(
kernel_w
-
1
)
+
1
))
/
float
(
stride_w
)
+
1
return
(
int
(
round_func
(
o_h
)),
int
(
round_func
(
o_w
)))
def
get_strided_kernel_output_shape
(
params
,
input_shape
,
round_func
):
o_h
,
o_w
=
get_filter_output_shape
(
input_shape
[
2
],
input_shape
[
3
],
params
,
round_func
)
has_c_o
=
hasattr
(
params
,
'num_output'
)
c
=
params
.
num_output
if
has_c_o
else
input_shape
[
1
]
return
[[
input_shape
[
0
],
c
,
o_h
,
o_w
]]
def
shape_convolution
(
layer
,
input_shape
):
params
=
layer
.
convolution_param
return
get_strided_kernel_output_shape
(
params
,
input_shape
[
0
],
math
.
floor
)
def
shape_deconvolution
(
layer
,
input_shape
):
h_i
=
input_shape
[
2
]
w_i
=
input_shape
[
3
]
params
=
layer
.
convolution_param
dila_h
,
dila_w
,
pad_h
,
pad_w
,
kernel_h
,
kernel_w
,
stride_h
,
stride_w
=
get_params_w_h
(
params
)
h_o
=
(
h_i
-
1
)
*
stride_h
-
2
*
pad_h
+
dila_h
*
(
kernel_h
-
1
)
+
1
w_o
=
(
w_i
-
1
)
*
stride_w
-
2
*
pad_w
+
dila_w
*
(
kernel_w
-
1
)
+
1
has_c_o
=
hasattr
(
params
,
'num_output'
)
c
=
params
.
num_output
if
has_c_o
else
input_shape
.
channels
return
[[
input_shape
[
0
][
0
],
c
,
h_o
,
w_o
]]
def
shape_pooling
(
layer
,
input_shape
):
params
=
layer
.
pooling_param
global_pool
=
getattr
(
params
,
'global_pooling'
,
False
)
if
global_pool
:
return
[[
input_shape
[
0
][
0
],
input_shape
[
0
][
1
],
1
,
1
]]
ceil_mode
=
getattr
(
params
,
'ceil_mode'
,
True
)
if
ceil_mode
is
True
:
method
=
math
.
ceil
else
:
method
=
math
.
floor
return
get_strided_kernel_output_shape
(
params
,
input_shape
[
0
],
method
)
def
shape_innerproduct
(
layer
,
input_shape
):
params
=
layer
.
inner_product_param
return
[[
input_shape
[
0
][
0
],
params
.
num_output
]]
def
shape_lrn
(
layer
,
input_shape
):
return
input_shape
def
shape_relu
(
layer
,
input_shape
):
return
input_shape
def
shape_softmax
(
layer
,
input_shape
):
return
input_shape
def
shape_input
(
layer
,
input_shape
):
return
[
list
(
layer
.
input_param
.
shape
[
0
].
dim
)]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录