Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
033958c8
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
033958c8
编写于
9月 16, 2020
作者:
S
SunAhong1993
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add aten
上级
4d151cf8
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
546 addition
and
5 deletion
+546
-5
x2paddle/op_mapper/pytorch2paddle/aten.py
x2paddle/op_mapper/pytorch2paddle/aten.py
+546
-4
x2paddle/op_mapper/pytorch2paddle/prim.py
x2paddle/op_mapper/pytorch2paddle/prim.py
+0
-1
未找到文件。
x2paddle/op_mapper/pytorch2paddle/aten.py
浏览文件 @
033958c8
...
@@ -28,6 +28,32 @@ dtype_dict = {
...
@@ -28,6 +28,32 @@ dtype_dict = {
}
}
def
aten_abs
(
mapper
,
graph
,
node
):
""" 构造获取绝对值的PaddleLayer。
TorchScript示例:
%n0.3 : Tensor = aten::abs(%n.3)
参数含义:
%n0.3 (Tensor): 绝对值后的Tensor。
%n.3 (Tensor): 绝对值前的Tensor。
"""
output_name
=
mapper
.
_get_outputs_name
(
node
)[
0
]
layer_outputs
=
[
output_name
]
layer_inputs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%n.3
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
)
layer_inputs
[
"x"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"paddle.fluid.layers.abs"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
)
return
current_inputs
,
current_outputs
def
aten_adaptive_avg_pool2d
(
mapper
,
graph
,
node
):
def
aten_adaptive_avg_pool2d
(
mapper
,
graph
,
node
):
""" 构造average adaptive pool2d的PaddleLayer。
""" 构造average adaptive pool2d的PaddleLayer。
...
@@ -279,7 +305,10 @@ def aten_arange(mapper, graph, node):
...
@@ -279,7 +305,10 @@ def aten_arange(mapper, graph, node):
layer_inputs
[
"end"
]
=
inputs_name
[
0
]
layer_inputs
[
"end"
]
=
inputs_name
[
0
]
current_inputs
.
append
(
inputs_name
[
0
])
current_inputs
.
append
(
inputs_name
[
0
])
# 处理输入1,即%43,代表dtype
# 处理输入1,即%43,代表dtype
layer_attrs
[
"dtype"
]
=
dtype_dict
[
mapper
.
attrs
[
inputs_name
[
1
]]]
if
mapper
.
attrs
[
inputs_name
[
1
]]
is
None
:
layer_attrs
[
"dtype"
]
=
None
else
:
layer_attrs
[
"dtype"
]
=
dtype_dict
[
mapper
.
attrs
[
inputs_name
[
1
]]]
elif
len
(
inputs_name
)
==
6
:
elif
len
(
inputs_name
)
==
6
:
# %position_ids.1 : Tensor = aten::arange(%51, %52, %43, %45, %42, %46)
# %position_ids.1 : Tensor = aten::arange(%51, %52, %43, %45, %42, %46)
# 输入的后三者分别代表layout、device、是否使用梯度
# 输入的后三者分别代表layout、device、是否使用梯度
...
@@ -300,7 +329,10 @@ def aten_arange(mapper, graph, node):
...
@@ -300,7 +329,10 @@ def aten_arange(mapper, graph, node):
layer_inputs
[
"end"
]
=
inputs_name
[
1
]
layer_inputs
[
"end"
]
=
inputs_name
[
1
]
current_inputs
.
append
(
inputs_name
[
1
])
current_inputs
.
append
(
inputs_name
[
1
])
# 处理输入2,即%43,代表dtype
# 处理输入2,即%43,代表dtype
layer_attrs
[
"dtype"
]
=
dtype_dict
[
mapper
.
attrs
[
inputs_name
[
2
]]]
if
mapper
.
attrs
[
inputs_name
[
2
]]
is
None
:
layer_attrs
[
"dtype"
]
=
None
else
:
layer_attrs
[
"dtype"
]
=
dtype_dict
[
mapper
.
attrs
[
inputs_name
[
2
]]]
elif
len
(
inputs_name
)
==
7
:
elif
len
(
inputs_name
)
==
7
:
# %position_ids.1 : Tensor = aten::arange(%51, %52, %53, %43, %45, %42, %46)
# %position_ids.1 : Tensor = aten::arange(%51, %52, %53, %43, %45, %42, %46)
# 输入的后三者分别代表layout、device、是否使用梯度
# 输入的后三者分别代表layout、device、是否使用梯度
...
@@ -329,7 +361,10 @@ def aten_arange(mapper, graph, node):
...
@@ -329,7 +361,10 @@ def aten_arange(mapper, graph, node):
layer_inputs
[
"step"
]
=
inputs_name
[
2
]
layer_inputs
[
"step"
]
=
inputs_name
[
2
]
current_inputs
.
append
(
inputs_name
[
2
])
current_inputs
.
append
(
inputs_name
[
2
])
# 处理输入3,即%43,代表dtype
# 处理输入3,即%43,代表dtype
layer_attrs
[
"dtype"
]
=
dtype_dict
[
mapper
.
attrs
[
inputs_name
[
3
]]]
if
mapper
.
attrs
[
inputs_name
[
3
]]
is
None
:
layer_attrs
[
"dtype"
]
=
None
else
:
layer_attrs
[
"dtype"
]
=
dtype_dict
[
mapper
.
attrs
[
inputs_name
[
3
]]]
else
:
else
:
raise
Exception
(
"Unknown aten::arange signature taking "
+
str
(
raise
Exception
(
"Unknown aten::arange signature taking "
+
str
(
len
(
inputs_name
))
+
" arguments."
)
len
(
inputs_name
))
+
" arguments."
)
...
@@ -582,6 +617,104 @@ def aten___contains__(mapper, graph, node):
...
@@ -582,6 +617,104 @@ def aten___contains__(mapper, graph, node):
return
current_inputs
,
current_outputs
return
current_inputs
,
current_outputs
def
aten_constant_pad_nd
(
mapper
,
graph
,
node
):
""" 构造填充固定值的PaddleLayer。
TorchScript示例:
%58 : Tensor = aten::constant_pad_nd(%input1.24, %4876, %42)
参数含义:
%58 (Tensor): 输出,填充后的Tensor。
%input1.24 (Tensor): 需要填充的Tensor。
%4876 (list): 填充大小。
%42 (-): 填充值。
"""
if
"constant_pad"
in
mapper
.
dygraph_name_id
:
mapper
.
dygraph_name_id
[
"constant_pad"
]
+=
1
else
:
mapper
.
dygraph_name_id
[
"constant_pad"
]
=
0
constant_pad_name
=
"constant_pad"
+
str
(
mapper
.
dygraph_name_id
[
"constant_pad"
])
output_name
=
mapper
.
_get_outputs_name
(
node
)[
0
]
layer_outputs
=
[
constant_pad_name
,
output_name
]
layer_inputs
=
{}
layer_attrs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%input1.24
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
)
layer_inputs
[
"input"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
# 处理输入1,即%4876
layer_attrs
[
"padding"
]
=
mapper
.
attrs
[
inputs_name
[
1
]]
# 处理输入2,即%42
layer_attrs
[
"value"
]
=
mapper
.
attrs
[
inputs_name
[
2
]]
graph
.
add_layer
(
"fluid.layers.shape"
,
inputs
=
{
"input"
:
inputs_name
[
0
]},
outputs
=
[
inputs_name
[
0
]
+
"_shape"
])
graph
.
add_layer
(
"prim.len"
,
inputs
=
{
"input"
:
inputs_name
[
0
]
+
"_shape"
},
outputs
=
[
inputs_name
[
0
]
+
"_len"
])
def
add_pad_layers
(
kernel
,
dim
):
graph
.
add_layer
(
"prim.ne"
,
inputs
=
{
"x"
:
inputs_name
[
0
]
+
"_len"
},
outputs
=
[
inputs_name
[
0
]
+
"_cond"
],
y
=
dim
)
graph
.
add_layer
(
"prim.if"
,
{
'input'
:
inputs_name
[
0
]
+
"_cond"
},
outputs
=
[
inputs_name
[
0
]
+
"_if"
,
output_name
])
if_layer
=
graph
.
layers
[
list
(
graph
.
layers
.
keys
())[
-
1
]]
block
=
PaddleGraph
(
if_layer
,
graph_type
=
"dygraph"
)
block
.
add_layer
(
"prim.sub"
,
inputs
=
{
"y"
:
inputs_name
[
0
]
+
"_len"
},
outputs
=
[
inputs_name
[
0
]
+
"_len0"
],
x
=
dim
)
block
.
add_layer
(
"prim.len2list"
,
inputs
=
{
"len"
:
inputs_name
[
0
]
+
"_len0"
},
outputs
=
[
inputs_name
[
0
]
+
"_list"
])
block
.
add_layer
(
"paddle.tensor.unsqueeze"
,
inputs
=
{
"x"
:
inputs_name
[
0
],
"axis"
:
inputs_name
[
0
]
+
"_list"
},
outputs
=
[
inputs_name
[
0
]
+
"_var"
])
block
.
add_layer
(
kernel
,
inputs
=
{
"input"
:
inputs_name
[
0
]
+
"_var"
},
outputs
=
layer_outputs
,
**
layer_attrs
)
block
.
add_layer
(
"paddle.tensor.squeeze"
,
inputs
=
{
"x"
:
output_name
,
"axis"
:
inputs_name
[
0
]
+
"_list"
},
outputs
=
[
output_name
])
if_layer
.
add_block
(
block
)
block
=
PaddleGraph
(
if_layer
,
graph_type
=
"dygraph"
)
layer_inputs
[
"input"
]
=
inputs_name
[
0
]
block
.
add_layer
(
kernel
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
**
layer_attrs
)
if_layer
.
add_block
(
block
)
if_layer
.
inputs
[
"input-0"
]
=
inputs_name
[
0
]
if_layer
.
inputs
[
"input-1"
]
=
inputs_name
[
0
]
+
"_len"
if
len
(
layer_attrs
[
"padding"
])
==
2
:
add_pad_layers
(
"paddle.nn.ConstantPad1d"
,
3
)
elif
len
(
layer_attrs
[
"padding"
])
==
4
:
add_pad_layers
(
"paddle.nn.ConstantPad2d"
,
4
)
elif
len
(
layer_attrs
[
"padding"
])
==
6
:
add_pad_layers
(
"paddle.nn.ConstantPad3d"
,
5
)
else
:
raise
Exception
(
"The lenght of padding list must be 2, 4 or 6!"
)
return
current_inputs
,
current_outputs
def
aten_contiguous
(
mapper
,
graph
,
node
):
def
aten_contiguous
(
mapper
,
graph
,
node
):
""" 构造在内存中连续存储的PaddleLayer。
""" 构造在内存中连续存储的PaddleLayer。
...
@@ -1156,7 +1289,7 @@ def aten_expand(mapper, graph, node):
...
@@ -1156,7 +1289,7 @@ def aten_expand(mapper, graph, node):
y
=
string
(
"VarType.BOOL"
))
y
=
string
(
"VarType.BOOL"
))
graph
.
add_layer
(
graph
.
add_layer
(
"prim.if"
,
{
'input'
:
inputs_name
[
0
]
+
"_cond"
},
"prim.if"
,
{
'input'
:
inputs_name
[
0
]
+
"_cond"
},
outputs
=
[
inputs_name
[
0
]
+
"_if1"
])
outputs
=
[
inputs_name
[
0
]
+
"_if1"
,
inputs_name
[
1
]
+
"_var"
])
if_layer
=
graph
.
layers
[
list
(
graph
.
layers
.
keys
())[
-
1
]]
if_layer
=
graph
.
layers
[
list
(
graph
.
layers
.
keys
())[
-
1
]]
block
=
PaddleGraph
(
if_layer
,
graph_type
=
"dygraph"
)
block
=
PaddleGraph
(
if_layer
,
graph_type
=
"dygraph"
)
block
.
add_layer
(
block
.
add_layer
(
...
@@ -1474,6 +1607,52 @@ def aten_floor_divide(mapper, graph, node):
...
@@ -1474,6 +1607,52 @@ def aten_floor_divide(mapper, graph, node):
return
current_inputs
,
current_outputs
return
current_inputs
,
current_outputs
def
aten_full_like
(
mapper
,
graph
,
node
):
""" 构造创建一个与输入具有相同的形状并且数据类型固定的Tensor的PaddleLayer。
TorchScript示例:
%159 : Tensor = aten::full_like(%val_if_large.3, %51, %50, %62, %53, %65, %66)
参数含义:
%159 (Tensor): 输出,全为固定值的Tensor。
%val_if_large.3 (Tensor): 类似形状的Tensor。
%51 (int/float/bool): 填充值。
%50 (int): dtype。
%62 (int): layout。
%53 (int): device。
%65 (bool): 是否计算梯度。
%66 (int): 内存形式。
"""
output_name
=
mapper
.
_get_outputs_name
(
node
)[
0
]
layer_outputs
=
[
output_name
]
layer_inputs
=
{}
layer_attrs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%val_if_large.3
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
)
layer_inputs
[
"x"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
# 处理输入1,即%51
if
inputs_name
[
1
]
in
mapper
.
attrs
:
layer_attrs
[
"fill_value"
]
=
mapper
.
attrs
[
inputs_name
[
1
]]
else
:
mapper
.
_check_input
(
graph
,
inputs_node
[
1
],
inputs_name
[
1
],
current_outputs
)
layer_inputs
[
"fill_value"
]
=
inputs_name
[
1
]
current_inputs
.
append
(
inputs_name
[
1
])
# 处理输入2,即%50,代表dtype
layer_attrs
[
"dtype"
]
=
dtype_dict
[
mapper
.
attrs
[
inputs_name
[
2
]]]
graph
.
add_layer
(
"paddle.full_like"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
**
layer_attrs
)
return
current_inputs
,
current_outputs
def
aten_gelu
(
mapper
,
graph
,
node
):
def
aten_gelu
(
mapper
,
graph
,
node
):
""" 构造GeLU激活的PaddleLayer。
""" 构造GeLU激活的PaddleLayer。
...
@@ -1878,6 +2057,32 @@ def aten_len(mapper, graph, node):
...
@@ -1878,6 +2057,32 @@ def aten_len(mapper, graph, node):
return
current_inputs
,
current_outputs
return
current_inputs
,
current_outputs
def
aten_log
(
mapper
,
graph
,
node
):
""" 构构造log的PaddleLayer。
TorchScript示例:
%787 : Tensor = aten::log(%786)
参数含义:
%787 (Tensor): 输出,取log的Tensor。
%786 (Tensor): 需要获取log的Tensor。
"""
output_name
=
mapper
.
_get_outputs_name
(
node
)[
0
]
layer_outputs
=
[
output_name
]
layer_inputs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%786
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
)
layer_inputs
[
"x"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"fluid.layers.log"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
)
return
current_inputs
,
current_outputs
def
aten_lt
(
mapper
,
graph
,
node
):
def
aten_lt
(
mapper
,
graph
,
node
):
""" 构造对比大小的PaddleLayer。
""" 构造对比大小的PaddleLayer。
...
@@ -2002,6 +2207,136 @@ def aten_masked_fill_(mapper, graph, node):
...
@@ -2002,6 +2207,136 @@ def aten_masked_fill_(mapper, graph, node):
return
current_inputs
,
current_outputs
return
current_inputs
,
current_outputs
def
aten_masked_fill
(
mapper
,
graph
,
node
):
""" 构造填充mask的PaddleLayer。
TorchScript示例:
%input.4 : Tensor = aten::masked_fill(%scores.2, %mask.2, %46)
参数含义:
%input.4 (Tensor): 输出,填充后的结果。
%scores.2 (Tensor): 需要填充的Tensor。
%mask.2 (Tensor): bool型的Tensor,哪些位置需要填充。
%46 (-): 填充的值。
"""
output_name
=
mapper
.
_get_outputs_name
(
node
)[
0
]
layer_outputs
=
[
output_name
]
layer_inputs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输入的list
current_inputs
=
[]
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%input.4
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
)
current_inputs
.
append
(
inputs_name
[
0
])
graph
.
add_layer
(
"prim.type"
,
inputs
=
{
"input"
:
inputs_name
[
0
]},
outputs
=
[
inputs_name
[
0
]
+
"_type"
])
# 处理输入1,即%scores.2
mapper
.
_check_input
(
graph
,
inputs_node
[
1
],
inputs_name
[
1
],
current_outputs
)
current_inputs
.
append
(
inputs_name
[
1
])
graph
.
add_layer
(
"paddle.logical_not"
,
inputs
=
{
"x"
:
inputs_name
[
1
]},
outputs
=
[
inputs_name
[
1
]
+
"_not"
])
graph
.
add_layer
(
"fluid.layers.cast"
,
inputs
=
{
"x"
:
inputs_name
[
1
]},
outputs
=
[
inputs_name
[
1
]
+
"_mask"
],
dtype
=
inputs_name
[
0
]
+
"_type"
)
graph
.
add_layer
(
"fluid.layers.cast"
,
inputs
=
{
"x"
:
inputs_name
[
1
]
+
"_not"
},
outputs
=
[
inputs_name
[
1
]
+
"_not_mask"
],
dtype
=
inputs_name
[
0
]
+
"_type"
)
graph
.
add_layer
(
"paddle.multiply"
,
inputs
=
{
"x"
:
inputs_name
[
0
],
"y"
:
inputs_name
[
1
]
+
"_not_mask"
},
outputs
=
[
inputs_name
[
0
]
+
"_not_mask"
])
# 处理输入2,即%46
mapper
.
_check_input
(
graph
,
inputs_node
[
2
],
inputs_name
[
2
],
current_outputs
)
graph
.
add_layer
(
"prim.eq"
,
inputs
=
{
"x"
:
inputs_name
[
2
]},
outputs
=
[
inputs_name
[
2
]
+
"_cond1"
],
y
=
"-float('inf')"
)
graph
.
add_layer
(
"prim.eq"
,
inputs
=
{
"x"
:
inputs_name
[
2
]},
outputs
=
[
inputs_name
[
2
]
+
"_cond2"
],
y
=
"float('inf')"
)
graph
.
add_layer
(
"prim.or"
,
inputs
=
{
"x"
:
inputs_name
[
2
]
+
"_cond1"
,
"y"
:
inputs_name
[
2
]
+
"_cond2"
},
outputs
=
[
inputs_name
[
2
]
+
"_cond"
])
graph
.
add_layer
(
"prim.if"
,
{
'input'
:
inputs_name
[
2
]
+
"_cond"
},
outputs
=
[
inputs_name
[
2
]
+
"_if"
])
if_layer
=
graph
.
layers
[
list
(
graph
.
layers
.
keys
())[
-
1
]]
block
=
PaddleGraph
(
if_layer
,
graph_type
=
"dygraph"
)
block
.
add_layer
(
"prim.equal"
,
inputs
=
{
"input"
:
inputs_name
[
1
]
+
"_mask"
},
outputs
=
[
inputs_name
[
2
]
+
"_1"
])
if_layer
.
add_block
(
block
)
block
=
PaddleGraph
(
if_layer
,
graph_type
=
"dygraph"
)
block
.
add_layer
(
"prim.mul"
,
inputs
=
{
"x"
:
inputs_name
[
1
]
+
"_mask"
,
"y"
:
inputs_name
[
2
]},
outputs
=
[
inputs_name
[
2
]
+
"_1"
])
if_layer
.
add_block
(
block
)
if_layer
.
inputs
[
"input-0"
]
=
inputs_name
[
1
]
+
"_mask"
if_layer
.
inputs
[
"input-1"
]
=
inputs_name
[
2
]
if_layer
.
outputs
.
append
(
inputs_name
[
2
]
+
"_1"
)
graph
.
add_layer
(
"fluid.layers.elementwise_add"
,
inputs
=
{
"x"
:
inputs_name
[
2
]
+
"_1"
,
"y"
:
inputs_name
[
0
]
+
"_not_mask"
},
outputs
=
layer_outputs
)
return
current_inputs
,
current_outputs
def
aten_max
(
mapper
,
graph
,
node
):
""" 构造获取最大值的PaddleLayer。
TorchScript示例:
%val_if_large0.3 : Tensor = aten::max(%val_if_large.3, %159)
参数含义:
%val_if_large0.3 (Tensor): 输出,对比后的结果。
%val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
%159 (Tensor): 输入,需要对比的Tensor2。
"""
output_name
=
mapper
.
_get_outputs_name
(
node
)[
0
]
layer_outputs
=
[
output_name
]
layer_inputs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
input_type
=
list
(
node
.
inputs
())[
1
].
type
()
if
str
(
input_type
)
==
"Tensor"
:
# 处理输入0,即%val_if_large.3
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
)
layer_inputs
[
"x"
]
=
inputs_name
[
0
]
# 处理输入1,即%159
mapper
.
_check_input
(
graph
,
inputs_node
[
1
],
inputs_name
[
1
],
current_outputs
)
layer_inputs
[
"y"
]
=
inputs_name
[
1
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"paddle.maximum"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
)
else
:
pass
return
current_inputs
,
current_outputs
def
aten_max_pool2d
(
mapper
,
graph
,
node
):
def
aten_max_pool2d
(
mapper
,
graph
,
node
):
""" 构造最大池化的PaddleLayer。
""" 构造最大池化的PaddleLayer。
...
@@ -2088,6 +2423,41 @@ def aten_matmul(mapper, graph, node):
...
@@ -2088,6 +2423,41 @@ def aten_matmul(mapper, graph, node):
return
current_inputs
,
current_outputs
return
current_inputs
,
current_outputs
def
aten_min
(
mapper
,
graph
,
node
):
""" 构造获取最小值的PaddleLayer。
TorchScript示例:
%val_if_large0.3 : Tensor = aten::min(%val_if_large.3, %159)
参数含义:
%val_if_large0.3 (Tensor): 输出,对比后的结果。
%val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
%159 (Tensor): 输入,需要对比的Tensor2。
"""
output_name
=
mapper
.
_get_outputs_name
(
node
)[
0
]
layer_outputs
=
[
output_name
]
layer_inputs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
input_type
=
list
(
node
.
inputs
())[
1
].
type
()
if
str
(
input_type
)
==
"Tensor"
:
# 处理输入0,即%val_if_large.3
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
)
layer_inputs
[
"x"
]
=
inputs_name
[
0
]
# 处理输入1,即%159
mapper
.
_check_input
(
graph
,
inputs_node
[
1
],
inputs_name
[
1
],
current_outputs
)
layer_inputs
[
"y"
]
=
inputs_name
[
1
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"paddle.minimum"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
)
else
:
pass
return
current_inputs
,
current_outputs
def
aten_mean
(
mapper
,
graph
,
node
):
def
aten_mean
(
mapper
,
graph
,
node
):
""" 构造求均值的PaddleLayer。
""" 构造求均值的PaddleLayer。
...
@@ -2166,6 +2536,36 @@ def aten_mul(mapper, graph, node):
...
@@ -2166,6 +2536,36 @@ def aten_mul(mapper, graph, node):
return
current_inputs
,
current_outputs
return
current_inputs
,
current_outputs
def
aten_mul_
(
mapper
,
graph
,
node
):
""" 构造数值相乘的PaddleLayer。
TorchScript示例:
%size_prods.39 : int = aten::mul_(%size_prods.38, %114)
参数含义:
%size_prods.39 (Tensor): 输出,相乘后的结果。
%size_prods.38 (-): 数值1。
%114 (-): 数值2。
"""
output_name
=
mapper
.
_get_outputs_name
(
node
)[
0
]
layer_outputs
=
[
output_name
]
layer_inputs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%size_prods.38
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
)
layer_inputs
[
"x"
]
=
inputs_name
[
0
]
# 处理输入1,即%114
mapper
.
_check_input
(
graph
,
inputs_node
[
1
],
inputs_name
[
1
],
current_outputs
)
layer_inputs
[
"y"
]
=
inputs_name
[
1
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
current_outputs
=
layer_outputs
graph
.
add_layer
(
"prim.mul"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
)
return
current_inputs
,
current_outputs
def
aten_ne
(
mapper
,
graph
,
node
):
def
aten_ne
(
mapper
,
graph
,
node
):
""" 构造判断数值是否不相等的PaddleLayer。
""" 构造判断数值是否不相等的PaddleLayer。
...
@@ -2245,6 +2645,46 @@ def aten___not__(mapper, graph, node):
...
@@ -2245,6 +2645,46 @@ def aten___not__(mapper, graph, node):
return
current_inputs
,
current_outputs
return
current_inputs
,
current_outputs
def
aten_ones
(
mapper
,
graph
,
node
):
""" 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。
TorchScript示例:
%input.49 : Tensor = aten::ones(%23, %8, %6, %24, %5)
参数含义:
%input.49 (Tensor): 输出,全0的Tensor。
%23 (list): 形状。
%8 (int): 类型dtype。
%6 (int): layout。
%4995 (Device): 设备。
%4995 (bool): 是否计算梯度。
"""
output_name
=
mapper
.
_get_outputs_name
(
node
)[
0
]
layer_outputs
=
[
output_name
]
layer_inputs
=
{}
layer_attrs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
current_inputs
=
[]
# 处理输入0,即%23,代表end
if
inputs_name
[
0
]
in
mapper
.
attrs
:
layer_attrs
[
"shape"
]
=
mapper
.
attrs
[
inputs_name
[
0
]]
else
:
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
)
layer_inputs
[
"shape"
]
=
inputs_name
[
0
]
current_inputs
.
append
(
inputs_name
[
0
])
# 处理输入1,即%8,代表dtype
layer_attrs
[
"dtype"
]
=
dtype_dict
[
mapper
.
attrs
[
inputs_name
[
1
]]]
graph
.
add_layer
(
"paddle.ones"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
**
layer_attrs
)
return
current_inputs
,
current_outputs
def
aten_permute
(
mapper
,
graph
,
node
):
def
aten_permute
(
mapper
,
graph
,
node
):
""" 构造对bool型取负的PaddleLayer。
""" 构造对bool型取负的PaddleLayer。
...
@@ -2421,6 +2861,45 @@ def aten_relu6(mapper, graph, node):
...
@@ -2421,6 +2861,45 @@ def aten_relu6(mapper, graph, node):
return
current_inputs
,
current_outputs
return
current_inputs
,
current_outputs
def
aten_repeat
(
mapper
,
graph
,
node
):
""" 构造根据参数对输入各维度进行复制的PaddleLayer。
TorchScript示例:
701 : Tensor = aten::repeat(%699, %700)
参数含义:
%701 (Tensor): 输出,复制后的Tensor。
%699 (Tensor): 需要复制的Tensor。
%700 (list): 指定每个维度复制的次数。
"""
output_name
=
mapper
.
_get_outputs_name
(
node
)[
0
]
layer_outputs
=
[
output_name
]
layer_inputs
=
{}
layer_attrs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%699
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
)
layer_inputs
[
"x"
]
=
inputs_name
[
0
]
# 获取当前节点输入、输出的list
current_inputs
=
list
(
layer_inputs
.
values
())
# 处理输入1,即%700
if
inputs_name
[
1
]
in
mapper
.
attrs
:
layer_attrs
[
"repeat_times"
]
=
mapper
.
attrs
[
inputs_name
[
1
]]
else
:
mapper
.
_check_input
(
graph
,
inputs_node
[
1
],
inputs_name
[
1
],
current_outputs
)
layer_inputs
[
"repeat_times"
]
=
inputs_name
[
1
]
current_inputs
.
append
(
inputs_name
[
1
])
graph
.
add_layer
(
"paddle.tile"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
**
layer_attrs
)
return
current_inputs
,
current_outputs
def
aten_reshape
(
mapper
,
graph
,
node
):
def
aten_reshape
(
mapper
,
graph
,
node
):
""" 构造调整大小的PaddleLayer。
""" 构造调整大小的PaddleLayer。
...
@@ -2936,6 +3415,32 @@ def aten_softplus(mapper, graph, node):
...
@@ -2936,6 +3415,32 @@ def aten_softplus(mapper, graph, node):
return
current_inputs
,
current_outputs
return
current_inputs
,
current_outputs
def
aten_sqrt
(
mapper
,
graph
,
node
):
""" 构构造sqrt的PaddleLayer。
TorchScript示例:
%787 : Tensor = aten::sqrt(%786)
参数含义:
%787 (Tensor): 输出,取sqrt的Tensor。
%786 (Tensor): 需要获取sqrt的Tensor。
"""
output_name
=
mapper
.
_get_outputs_name
(
node
)[
0
]
layer_outputs
=
[
output_name
]
layer_inputs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%786
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
)
layer_inputs
[
"x"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"fluid.layers.sqrt"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
)
return
current_inputs
,
current_outputs
def
aten_squeeze
(
mapper
,
graph
,
node
):
def
aten_squeeze
(
mapper
,
graph
,
node
):
""" 构造删除位数为1的维度的PaddleLayer。
""" 构造删除位数为1的维度的PaddleLayer。
...
@@ -3609,3 +4114,40 @@ def aten_zeros(mapper, graph, node):
...
@@ -3609,3 +4114,40 @@ def aten_zeros(mapper, graph, node):
outputs
=
layer_outputs
,
outputs
=
layer_outputs
,
**
layer_attrs
)
**
layer_attrs
)
return
current_inputs
,
current_outputs
return
current_inputs
,
current_outputs
def
aten_zeros_like
(
mapper
,
graph
,
node
):
""" 构造创建与输入Tensor形状一致的、数据类型且值全为0的Tensor的PaddleLayer。
TorchScript示例:
%782 : Tensor = aten::zeros_like(%n.2, %655, %670, %662, %671, %672)
参数含义:
%782 (Tensor): 输出,全0的Tensor。
%n.2 (Tensor): 标准Tensor。
%655 (int): 类型dtype。
%670 (int): layout。
%662 (Device): 设备。
%671 (bool): 是否计算梯度。
%672 (memory_format): 存储类型。
"""
output_name
=
mapper
.
_get_outputs_name
(
node
)[
0
]
layer_outputs
=
[
output_name
]
layer_inputs
=
{}
layer_attrs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%n.2
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
)
layer_inputs
[
"x"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
# 处理输入1,即%655,代表dtype
layer_attrs
[
"dtype"
]
=
dtype_dict
[
mapper
.
attrs
[
inputs_name
[
1
]]]
graph
.
add_layer
(
"paddle.zeros_like"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
**
layer_attrs
)
return
current_inputs
,
current_outputs
x2paddle/op_mapper/pytorch2paddle/prim.py
浏览文件 @
033958c8
...
@@ -32,7 +32,6 @@ def prim_Constant(mapper, graph, node):
...
@@ -32,7 +32,6 @@ def prim_Constant(mapper, graph, node):
if
isinstance
(
value
,
str
):
if
isinstance
(
value
,
str
):
value
=
string
(
value
)
value
=
string
(
value
)
if
str
(
output_type
)
==
"Tensor"
:
if
str
(
output_type
)
==
"Tensor"
:
# value = "paddle.to_tensor({})".format(value)
value
=
"{}"
.
format
(
value
)
value
=
"{}"
.
format
(
value
)
if
"inf"
in
str
(
value
):
if
"inf"
in
str
(
value
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录