Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
027bfe06
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
027bfe06
编写于
7月 15, 2020
作者:
C
Channingss
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
paddle2onnx support opset:9,10,11
上级
bbc964e8
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
4 addition
and
4013 deletion
+4
-4013
x2paddle/convert.py
x2paddle/convert.py
+4
-4
x2paddle/op_mapper/onnx_op_mapper.py
x2paddle/op_mapper/onnx_op_mapper.py
+0
-92
x2paddle/op_mapper/onnx_opsets/__init__.py
x2paddle/op_mapper/onnx_opsets/__init__.py
+0
-0
x2paddle/op_mapper/onnx_opsets/custom_layer/InstanceNormalization.py
..._mapper/onnx_opsets/custom_layer/InstanceNormalization.py
+0
-56
x2paddle/op_mapper/onnx_opsets/custom_layer/__init__.py
x2paddle/op_mapper/onnx_opsets/custom_layer/__init__.py
+0
-115
x2paddle/op_mapper/onnx_opsets/custom_layer/register.py
x2paddle/op_mapper/onnx_opsets/custom_layer/register.py
+0
-55
x2paddle/op_mapper/onnx_opsets/opset9.py
x2paddle/op_mapper/onnx_opsets/opset9.py
+0
-1523
x2paddle/op_mapper/paddle_custom_layer/__init__.py
x2paddle/op_mapper/paddle_custom_layer/__init__.py
+0
-0
x2paddle/op_mapper/paddle_custom_layer/im2sequence.py
x2paddle/op_mapper/paddle_custom_layer/im2sequence.py
+0
-80
x2paddle/op_mapper/paddle_custom_layer/multiclass_nms.py
x2paddle/op_mapper/paddle_custom_layer/multiclass_nms.py
+0
-416
x2paddle/op_mapper/paddle_custom_layer/yolo_box.py
x2paddle/op_mapper/paddle_custom_layer/yolo_box.py
+0
-822
x2paddle/op_mapper/paddle_op_mapper.py
x2paddle/op_mapper/paddle_op_mapper.py
+0
-850
未找到文件。
x2paddle/convert.py
浏览文件 @
027bfe06
...
...
@@ -178,7 +178,7 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
return
print
(
"Now translating model from onnx to paddle."
)
from
x2paddle.op_mapper.onnx_op_mapper
import
ONNXOpMapper
from
x2paddle.op_mapper.onnx
2paddle.onnx
_op_mapper
import
ONNXOpMapper
from
x2paddle.decoder.onnx_decoder
import
ONNXDecoder
from
x2paddle.optimizer.onnx_optimizer
import
ONNXOptimizer
model
=
ONNXDecoder
(
model_path
)
...
...
@@ -192,12 +192,12 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
print
(
"Paddle model and code generated."
)
def
paddle2onnx
(
model_path
,
save_dir
,
opset
):
def
paddle2onnx
(
model_path
,
save_dir
,
opset
_number
):
from
x2paddle.decoder.paddle_decoder
import
PaddleDecoder
from
x2paddle.op_mapper.paddle_op_mapper
import
PaddleOpMapper
from
x2paddle.op_mapper.paddle
2onnx.paddle
_op_mapper
import
PaddleOpMapper
model
=
PaddleDecoder
(
model_path
,
'__model__'
,
'__params__'
)
mapper
=
PaddleOpMapper
()
mapper
.
convert
(
model
.
program
,
save_dir
,
opset
)
mapper
.
convert
(
model
.
program
,
save_dir
,
opset
_number
=
opset_number
)
def
main
():
...
...
x2paddle/op_mapper/onnx_op_mapper.py
已删除
100644 → 0
浏览文件 @
bbc964e8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
x2paddle.op_mapper.onnx_opsets.opset9
import
OpSet9
from
x2paddle.core.op_mapper
import
OpMapper
from
x2paddle.op_mapper.onnx_opsets.custom_layer
import
*
from
x2paddle.decoder.onnx_decoder
import
ONNXGraph
,
ONNXGraphNode
,
ONNXGraphDataNode
class
ONNXOpMapper
(
OpMapper
):
def
__init__
(
self
,
decoder
):
super
(
ONNXOpMapper
,
self
).
__init__
()
self
.
support_op_sets
=
[
9
,
]
self
.
default_op_set
=
9
self
.
graph
=
decoder
.
graph
self
.
opset
=
self
.
create_opset
(
decoder
)
if
not
self
.
op_checker
():
raise
Exception
(
"Model are not supported yet."
)
#mapping op
print
(
"Total nodes: {}"
.
format
(
sum
([
isinstance
(
node
,
ONNXGraphNode
)
for
name
,
node
in
self
.
graph
.
node_map
.
items
()
])))
print
(
"Nodes converting ..."
)
for
node_name
in
self
.
graph
.
topo_sort
:
node
=
self
.
graph
.
get_node
(
node_name
)
op
=
node
.
layer_type
if
hasattr
(
self
.
opset
,
op
):
func
=
getattr
(
self
.
opset
,
op
)
func
(
node
)
elif
op
in
self
.
opset
.
default_op_mapping
:
self
.
opset
.
directly_map
(
node
)
elif
op
in
custom_layers
:
self
.
opset
.
deal_custom_layer
(
node
)
elif
op
in
self
.
opset
.
elementwise_ops
:
self
.
opset
.
elementwise_map
(
node
)
print
(
"Nodes converted."
)
self
.
weights
=
self
.
opset
.
weights
self
.
omit_nodes
=
self
.
opset
.
omit_nodes
self
.
used_custom_layers
=
self
.
opset
.
used_custom_layers
def
op_checker
(
self
):
unsupported_ops
=
set
()
for
node_name
in
self
.
graph
.
topo_sort
:
node
=
self
.
graph
.
get_node
(
node_name
)
op
=
node
.
layer_type
if
not
hasattr
(
self
.
opset
,
op
)
and
\
op
not
in
self
.
opset
.
default_op_mapping
and
\
op
not
in
custom_layers
and
\
op
not
in
self
.
opset
.
elementwise_ops
:
unsupported_ops
.
add
(
op
)
if
len
(
unsupported_ops
)
==
0
:
return
True
else
:
print
(
"There are {} ops not supported yet, list as below"
.
format
(
len
(
unsupported_ops
)))
for
op
in
unsupported_ops
:
print
(
op
)
return
False
def
create_opset
(
self
,
decoder
):
run_op_set
=
self
.
default_op_set
opset
=
''
if
decoder
.
op_set
in
self
.
support_op_sets
:
opset
=
'OpSet'
+
str
(
decoder
.
op_set
)
elif
decoder
.
op_set
<
self
.
default_op_set
:
opset
=
'OpSet'
+
str
(
self
.
default_op_set
)
else
:
for
op_set
in
self
.
support_op_sets
:
if
decoder
.
op_set
>
op_set
:
run_op_set
=
op_set
else
:
break
opset
=
'OpSet'
+
str
(
run_op_set
)
print
(
'Now, onnx2paddle support convert onnx model opset_verison {},'
'opset_verison of your onnx model is {}, automatically treated as op_set: {}.'
.
format
(
self
.
support_op_sets
,
decoder
.
op_set
,
run_op_set
))
return
eval
(
opset
)(
decoder
)
x2paddle/op_mapper/onnx_opsets/__init__.py
已删除
100644 → 0
浏览文件 @
bbc964e8
x2paddle/op_mapper/onnx_opsets/custom_layer/InstanceNormalization.py
已删除
100644 → 0
浏览文件 @
bbc964e8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.register
import
register
def
InstanceNormalization_shape
(
input_shape
):
return
input_shape
def
InstanceNormalization_layer
(
inputs
,
name
=
None
):
# TODO(lvmengsi@baidu.com): Check the accuracy when using fluid.layers.layer_norm.
epsilon
=
1e-5
input_
=
inputs
[
0
]
mean
=
fluid
.
layers
.
reduce_mean
(
input_
,
dim
=
[
2
,
3
],
keep_dim
=
True
)
var
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
square
(
input_
-
mean
),
dim
=
[
2
,
3
],
keep_dim
=
True
)
if
name
is
not
None
:
scale_name
=
name
+
"_scale"
offset_name
=
name
+
"_offset"
scale_param
=
inputs
[
1
]
offset_param
=
inputs
[
2
]
scale
=
fluid
.
layers
.
create_parameter
(
name
=
scale_param
.
name
,
shape
=
input_
.
shape
[
1
:
2
],
dtype
=
"float32"
)
offset
=
fluid
.
layers
.
create_parameter
(
name
=
offset_param
.
name
,
shape
=
input_
.
shape
[
1
:
2
],
dtype
=
"float32"
)
tmp
=
fluid
.
layers
.
elementwise_mul
(
x
=
(
input_
-
mean
),
y
=
scale
,
axis
=
1
)
tmp
=
tmp
/
fluid
.
layers
.
sqrt
(
var
+
epsilon
)
tmp
=
fluid
.
layers
.
elementwise_add
(
tmp
,
offset
,
axis
=
1
)
return
tmp
def
InstanceNormalization_weights
(
name
,
data
=
None
):
weights_name
=
[
name
+
'_scale'
]
return
weights_name
register
(
kind
=
'InstanceNormalization'
,
shape
=
InstanceNormalization_shape
,
layer
=
InstanceNormalization_layer
,
child_func
=
None
,
weights
=
InstanceNormalization_weights
)
x2paddle/op_mapper/onnx_opsets/custom_layer/__init__.py
已删除
100644 → 0
浏览文件 @
bbc964e8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.register
import
get_registered_layers
#custom layer import begins
from
.
import
InstanceNormalization
#custom layer import ends
custom_layers
=
get_registered_layers
()
def
set_args
(
f
,
params
):
""" set args for function 'f' using the parameters in node.layer.param
Args:
f (function): a python function object
params (object): a object contains attributes needed by f's arguments
Returns:
arg_names (list): a list of argument names
kwargs (dict): a dict contains needed arguments
"""
argc
=
f
.
__code__
.
co_argcount
arg_list
=
f
.
__code__
.
co_varnames
[
0
:
argc
]
kwargs
=
{}
for
arg_name
in
arg_list
:
if
hasattr
(
params
,
arg_name
)
and
params
is
not
None
:
kwargs
[
arg_name
]
=
getattr
(
params
,
arg_name
)
return
arg_list
,
kwargs
def
has_layer
(
layer_type
):
""" test whether this layer exists in custom layer
"""
return
layer_type
in
custom_layers
def
get_params
(
layer
,
layer_type
):
import
re
if
layer_type
.
lower
()
==
"deconvolution"
or
layer_type
.
lower
(
)
==
"convolutiondepthwise"
:
param_name
=
'_'
.
join
((
'convolution'
,
'param'
))
elif
layer_type
.
lower
()
==
"normalize"
:
param_name
=
'_'
.
join
((
'norm'
,
'param'
))
elif
len
(
layer_type
)
-
len
(
re
.
sub
(
"[A-Z]"
,
""
,
layer_type
))
>=
2
:
s
=
''
tmp_name
=
''
for
i
,
ch
in
enumerate
(
layer_type
):
if
i
==
0
:
s
+=
ch
.
lower
()
continue
elif
ch
.
isupper
()
and
layer_type
[
i
-
1
].
islower
():
tmp_name
+=
(
s
+
'_'
)
s
=
''
s
+=
ch
.
lower
()
tmp_name
+=
s
param_name
=
'_'
.
join
((
tmp_name
,
'param'
))
else
:
param_name
=
'_'
.
join
((
layer_type
.
lower
(),
'param'
))
return
getattr
(
layer
,
param_name
,
None
)
def
compute_output_shape
(
node
):
""" compute the output shape of custom layer
"""
layer_type
=
node
.
layer_type
assert
layer_type
in
custom_layers
,
"layer[%s] not exist in custom layers"
%
(
layer_type
)
shape_func
=
custom_layers
[
layer_type
][
'shape'
]
layer
=
node
.
layer
params
=
get_params
(
layer
,
layer_type
)
arg_names
,
kwargs
=
set_args
(
shape_func
,
params
)
input_shape
=
node
.
input_shape
return
shape_func
(
input_shape
,
**
kwargs
)
def
make_custom_layer
(
node
):
""" get the code which implement the custom layer function
"""
layer_type
=
node
.
layer_type
assert
layer_type
in
custom_layers
,
"layer[%s] not exist in custom layers"
%
(
layer_type
)
layer_func
=
custom_layers
[
layer_type
][
'layer'
]
import
inspect
return
inspect
.
getsource
(
layer_func
),
layer_func
def
make_custom_child_func
(
node
):
""" get the code which implement the custom layer function
"""
layer_type
=
node
.
layer_type
child_func
=
custom_layers
[
layer_type
][
'child_func'
]
if
child_func
is
None
:
return
None
,
child_func
import
inspect
return
inspect
.
getsource
(
child_func
),
child_func
def
deal_weights
(
node
,
data
=
None
):
""" deal the weights of the custom layer
"""
layer_type
=
node
.
layer_type
weights_func
=
custom_layers
[
layer_type
][
'weights'
]
name
=
node
.
layer_name
return
weights_func
(
name
,
data
)
x2paddle/op_mapper/onnx_opsets/custom_layer/register.py
已删除
100644 → 0
浏览文件 @
bbc964e8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" this module provides 'register' for registering customized layers
"""
g_custom_layers
=
{}
def
register
(
kind
,
shape
,
layer
,
child_func
,
weights
):
""" register a custom layer or a list of custom layers
Args:
@kind (str or list): type name of the layer
@shape (function): a function to generate the shape of layer's output
@layer (function): a function to generate the paddle code of layer
@weights (function): a function to deal with weights data
Returns:
None
"""
assert
type
(
shape
).
__name__
==
'function'
,
'shape should be a function'
assert
type
(
layer
).
__name__
==
'function'
,
'layer should be a function'
if
type
(
kind
)
is
str
:
kind
=
[
kind
]
else
:
assert
type
(
kind
)
is
list
,
'invalid param "kind" for register, not a list or str'
for
k
in
kind
:
assert
type
(
k
)
is
str
,
'invalid param "kind" for register, not a list of str'
assert
k
not
in
g_custom_layers
,
'this type[%s] has already been registered'
%
(
k
)
g_custom_layers
[
k
]
=
{
'shape'
:
shape
,
'layer'
:
layer
,
'child_func'
:
child_func
,
'weights'
:
weights
}
def
get_registered_layers
():
return
g_custom_layers
x2paddle/op_mapper/onnx_opsets/opset9.py
已删除
100644 → 0
浏览文件 @
bbc964e8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
x2paddle.decoder.onnx_decoder
import
ONNXGraph
,
ONNXGraphNode
,
ONNXGraphDataNode
from
x2paddle.core.graph
import
GraphNode
from
x2paddle.core.fluid_code
import
Layer
from
x2paddle.core.fluid_code
import
FluidCode
from
x2paddle.core.util
import
string
from
functools
import
reduce
import
numpy
as
np
import
onnx
import
onnx.numpy_helper
as
numpy_helper
from
onnx.mapping
import
TENSOR_TYPE_TO_NP_TYPE
import
logging
as
_logging
from
collections
import
OrderedDict
import
math
import
os
import
shutil
_logger
=
_logging
.
getLogger
(
__name__
)
def
_const_weight_or_none
(
node
):
if
'Constant'
in
node
.
layer_type
:
return
node
.
value
if
isinstance
(
node
,
ONNXGraphDataNode
):
return
node
.
weight
return
None
def
get_same_padding
(
in_size
,
kernel_size
,
stride
):
new_size
=
int
(
math
.
ceil
(
in_size
*
1.0
/
stride
))
pad_size
=
(
new_size
-
1
)
*
stride
+
kernel_size
-
in_size
pad0
=
int
(
pad_size
/
2
)
pad1
=
pad_size
-
pad0
return
[
pad0
,
pad1
]
def
print_mapping_info
(
func
):
def
run_mapping
(
*
args
,
**
kwargs
):
node
=
args
[
1
]
try
:
res
=
func
(
*
args
,
**
kwargs
)
except
:
print
(
"convert failed node:{}, op_type is {}"
.
format
(
node
.
layer_name
[
9
:],
node
.
layer_type
))
raise
else
:
#print("convert successfully node:{}, op_type is {}".format(
# node.layer_name[9:], node.layer_type))
return
res
return
run_mapping
class
OpSet9
():
elementwise_ops
=
{
'Add'
:
'elementwise_add'
,
'Div'
:
'elementwise_div'
,
'Sub'
:
'elementwise_sub'
,
'Mul'
:
'elementwise_mul'
,
'Pow'
:
'elementwise_pow'
,
}
default_op_mapping_field_values
=
OrderedDict
()
default_op_mapping_field_values
[
'FLUID_OP'
]
=
''
default_op_mapping_field_values
[
'FLUID_INPUT_ARGS'
]
=
None
default_op_mapping_field_values
[
'FLUID_OUTPUT_ARGS'
]
=
None
default_op_mapping_field_values
[
'ATTR_MAPPING'
]
=
dict
()
default_op_mapping_field_values
[
'DEFAULTS'
]
=
dict
()
default_op_mapping_field_values
[
'INPUT_PERM'
]
=
None
default_op_mapping_field_values
[
'OUTPUT_PERM'
]
=
None
default_op_mapping_field_values
[
'FILL_NAME_FIELD'
]
=
True
default_op_mapping
=
{
'Shape'
:
[
'shape'
,
[
'X'
],
[
'Out'
]],
'Clip'
:
[
'clip'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
min
=
(
np
.
asarray
(
[
255
,
255
,
127
,
255
],
dtype
=
np
.
uint8
).
view
(
np
.
float32
)[
0
]),
max
=
(
np
.
asarray
(
[
255
,
255
,
127
,
127
],
dtype
=
np
.
uint8
).
view
(
np
.
float32
)[
0
]),
)
],
'Erf'
:
[
'erf'
,
[
'X'
],
[
'Out'
]],
'Ceil'
:
[
'ceil'
,
[
'X'
],
[
'Out'
]],
'ReduceMean'
:
[
'reduce_mean'
,
[
'X'
],
[
'Out'
],
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
],
'ReduceSum'
:
[
'reduce_sum'
,
[
'X'
],
[
'Out'
],
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
],
'ReduceMin'
:
[
'reduce_min'
,
[
'X'
],
[
'Out'
],
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
],
#active function
'Relu'
:
[
'relu'
,
[
'X'
],
[
'Out'
]],
'LeakyRelu'
:
[
'leaky_relu'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
alpha
=
.
01
)],
'Elu'
:
[
'elu'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
alpha
=
1.
)],
'ThresholdedRelu'
:
[
'thresholded_relu'
,
[
'X'
],
[
'Out'
],
dict
(
alpha
=
'threshold'
),
dict
(
alpha
=
1.
)
],
'Tanh'
:
[
'tanh'
,
[
'X'
],
[
'Out'
]],
'Sigmoid'
:
[
'sigmoid'
,
[
'X'
],
[
'Out'
]],
'HardSigmoid'
:
[
'hard_sigmoid'
,
[
'X'
],
[
'Out'
],
dict
(
alpha
=
'slope'
,
beta
=
'offset'
),
dict
(
slope
=
.
2
,
offset
=
.
5
)
],
'Softsign'
:
[
'softsign'
,
[
'X'
],
[
'Out'
]],
'Softplus'
:
[
'softplus'
,
[
'X'
],
[
'Out'
]],
'Exp'
:
[
'exp'
,
[
'X'
],
[
'Out'
]],
'Softmax'
:
[
'softmax'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
axis
=
1
)],
'Sqrt'
:
[
'sqrt'
,
[
'X'
],
[
'Out'
]],
'Floor'
:
[
'floor'
,
[
'X'
],
[
'Out'
]],
'Abs'
:
[
'abs'
,
[
'X'
],
[
'Out'
]],
}
default_ioa_constraint
=
{
'Gather'
:
[(
lambda
i
,
o
,
a
:
a
.
get
(
'axis'
,
0
)
==
0
,
'only axis = 0 is supported'
)],
}
def
__init__
(
self
,
decoder
):
super
(
OpSet9
,
self
).
__init__
()
self
.
graph
=
decoder
.
graph
self
.
input_shapes
=
[]
self
.
weights
=
dict
()
self
.
omit_nodes
=
list
()
self
.
used_custom_layers
=
dict
()
@
print_mapping_info
def
directly_map
(
self
,
node
,
name
=
''
,
*
args
,
**
kwargs
):
inputs
=
node
.
layer
.
input
outputs
=
node
.
layer
.
output
op_type
=
node
.
layer_type
attrs
=
node
.
attr_map
info
=
self
.
default_op_mapping
[
op_type
]
info
.
extend
(
list
(
self
.
default_op_mapping_field_values
.
values
())[
len
(
info
):])
(
fluid_op
,
fluid_input_args
,
fluid_output_args
,
attr_mapping
,
default_attrs
,
input_perm
,
output_perm
,
fill_name_field
,
)
=
info
if
fluid_op
in
self
.
default_ioa_constraint
:
for
predicate
,
message
in
self
.
default_ioa_constraint
[
fluid_op
]:
assert
predicate
(
inputs
,
outputs
,
attrs
),
message
mapped_attrs
=
{
attr_mapping
.
get
(
key
,
key
):
value
for
key
,
value
in
attrs
.
items
()
}
if
''
in
mapped_attrs
:
mapped_attrs
.
pop
(
''
)
if
'_'
in
mapped_attrs
:
mapped_attrs
.
pop
(
'_'
)
fluid_attrs
=
default_attrs
.
copy
()
fluid_attrs
.
update
(
mapped_attrs
)
inputs
=
inputs
if
input_perm
is
None
else
list
(
map
(
lambda
i
:
inputs
[
i
],
input_perm
))
val_inps
=
[]
for
idx
,
ipt
in
enumerate
(
inputs
):
val_inps
.
append
(
self
.
graph
.
get_input_node
(
node
,
idx
=
idx
,
copy
=
True
))
val_outs
=
outputs
if
output_perm
is
None
else
list
(
map
(
lambda
i
:
outputs
[
i
],
output_perm
))
attr
=
fluid_attrs
assert
len
(
val_inps
)
==
1
,
'directly_map error with multi inputs'
if
fluid_op
not
in
[
'shape'
,
'erf'
]:
attr
[
'name'
]
=
string
(
node
.
layer_name
)
node
.
fluid_code
.
add_layer
(
fluid_op
,
inputs
=
val_inps
[
0
],
output
=
val_outs
[
0
],
param_attr
=
attr
)
if
fluid_op
in
[
'shape'
]:
node
.
fluid_code
.
add_layer
(
'cast'
,
inputs
=
val_outs
[
0
],
output
=
val_outs
[
0
],
param_attr
=
{
'dtype'
:
string
(
'int64'
)})
@
print_mapping_info
def
deal_custom_layer
(
self
,
node
):
op
=
node
.
layer_type
custom_code
,
func
=
make_custom_layer
(
node
)
child_func_code
,
child_func
=
make_custom_child_func
(
node
)
params
=
get_params
(
node
.
layer
,
node
.
layer_type
)
arg_names
,
kwargs
=
set_args
(
func
,
params
)
kwargs
[
'name'
]
=
string
(
node
.
layer_name
)
node
.
fluid_code
.
add_layer
(
func
.
__code__
.
co_name
,
inputs
=
node
.
inputs
,
output
=
node
,
param_attr
=
kwargs
,
is_custom_layer
=
True
)
if
op
not
in
self
.
used_custom_layers
:
self
.
used_custom_layers
[
op
]
=
custom_code
if
op
+
'_child_func'
not
in
self
.
used_custom_layers
:
if
child_func_code
is
not
None
:
self
.
used_custom_layers
[
op
+
'_child_func'
]
=
child_func_code
@
print_mapping_info
def
elementwise_map
(
self
,
node
):
assert
node
.
layer_type
in
self
.
elementwise_ops
op_type
=
self
.
elementwise_ops
[
node
.
layer_type
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_y_shape
=
val_y
.
out_shapes
[
0
]
val_x_shape
=
val_x
.
out_shapes
[
0
]
if
len
(
val_x_shape
)
<
len
(
val_y_shape
):
val_x
,
val_y
=
val_y
,
val_x
val_y_shape
,
val_x_shape
=
val_x_shape
,
val_y_shape
str_y_shape
=
','
.
join
(
str
(
e
)
for
e
in
val_y_shape
)
str_x_shape
=
','
.
join
(
str
(
e
)
for
e
in
val_x_shape
)
slice_idx
=
0
if
str_y_shape
not
in
str_x_shape
:
for
dim
in
val_y_shape
:
if
dim
==
1
:
slice_idx
+=
1
else
:
break
attr
=
{
"name"
:
string
(
node
.
layer_name
)}
if
slice_idx
<
len
(
val_y_shape
)
and
slice_idx
>
0
:
val_y_reshaped
=
val_y_shape
[
slice_idx
:]
var_y_reshaped
=
val_y
.
layer_name
+
'_reshaped'
attr_reshaped
=
{
'shape'
:
val_y_reshaped
,
'name'
:
string
(
var_y_reshaped
)
}
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
val_y
,
output
=
var_y_reshaped
,
param_attr
=
attr_reshaped
)
inputs
=
{
'x'
:
val_x
,
'y'
:
var_y_reshaped
}
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
else
:
inputs
=
{
'x'
:
val_x
,
'y'
:
val_y
}
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
place_holder
(
self
,
node
):
self
.
input_shapes
.
append
(
node
.
out_shapes
[
0
])
shape
=
node
.
out_shapes
[
0
]
for
i
,
dim_shape
in
enumerate
(
shape
):
if
dim_shape
==
0
and
i
==
0
:
shape
[
i
]
=
1
if
dim_shape
==
0
and
i
!=
0
:
assert
'shape of input is not assigned'
attr
=
{
"dtype"
:
string
(
node
.
dtype
),
"shape"
:
shape
,
"name"
:
string
(
node
.
layer_name
),
"append_batch_size"
:
'False'
}
node
.
fluid_code
.
add_layer
(
"data"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
create_parameter
(
self
,
node
,
parameter
=
None
):
if
parameter
is
not
None
:
node
=
parameter
dtype
=
node
.
dtype
shape
=
node
.
out_shapes
[
0
]
if
len
(
node
.
weight
.
shape
)
==
0
:
shape
=
[
1
]
self
.
weights
[
node
.
layer_name
]
=
node
.
weight
attr
=
{
'dtype'
:
string
(
dtype
),
'shape'
:
shape
,
'name'
:
string
(
node
.
layer_name
),
'default_initializer'
:
'Constant(0.0)'
}
if
dtype
==
'bool'
:
attr
[
'dtype'
]
=
string
(
'int64'
)
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"cast"
,
inputs
=
node
,
output
=
node
,
param_attr
=
{
'dtype'
:
string
(
'bool'
)})
elif
dtype
==
'uint8'
:
attr
[
'dtype'
]
=
string
(
'float32'
)
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
else
:
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
def
_pad_if_asymmetric
(
self
,
node
,
pads
,
val_name
):
# pads: SSEE
assert
len
(
pads
)
&
1
==
0
symmetric
=
True
ndims
=
len
(
pads
)
//
2
for
idx_dim
in
range
(
ndims
):
if
pads
[
idx_dim
]
!=
pads
[
ndims
+
idx_dim
]:
symmetric
=
False
break
if
symmetric
:
return
pads
[:
ndims
],
val_name
val_padded
=
self
.
Pad
(
node
,
op_independent
=
False
)
return
[
0
]
*
ndims
,
val_padded
def
_interpolate
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
if
node
.
layer_type
==
'Resize'
:
val_scales
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
elif
node
.
layer_type
==
'Upsample'
:
val_scales
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
attr
=
{
'name'
:
string
(
node
.
layer_name
)}
mode
=
node
.
get_attr
(
'mode'
,
'nearest'
)
fluid_op
=
'resize_{}'
.
format
(
mode
)
if
'linear'
in
mode
:
print
(
'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
)
fluid_op
=
'resize_bilinear'
node
.
fluid_code
.
add_layer
(
fluid_op
,
inputs
=
{
'input'
:
val_x
,
'scale'
:
val_scales
},
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
RoiAlign
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_rois
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
pooled_height
=
node
.
get_attr
(
'output_height'
)
pooled_width
=
node
.
get_attr
(
'output_width'
)
spatial_scale
=
node
.
get_attr
(
'spatial_scale'
)
sampling_ratio
=
node
.
get_attr
(
'sampling_ratio'
)
attr
=
{
'pooled_height'
:
pooled_height
,
'pooled_width'
:
pooled_width
,
'spatial_scale'
:
spatial_scale
,
'sampling_ratio'
:
sampling_ratio
,
}
node
.
fluid_code
.
add_layer
(
'roi_align'
,
inputs
=
{
'input'
:
val_x
,
'rois'
:
val_rois
},
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
MaxRoiPool
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_rois
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
spatial_scale
=
node
.
get_attr
(
'spatial_scale'
)
pooled_height
,
pooled_width
=
node
.
get_attr
(
'pooled_shape'
)
attr
=
{
'pooled_height'
:
pooled_height
,
'pooled_width'
:
pooled_width
,
'spatial_scale'
:
spatial_scale
,
}
node
.
fluid_code
.
add_layer
(
'roi_pool'
,
inputs
=
{
'input'
:
val_x
,
'rois'
:
val_rois
},
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Pad
(
self
,
node
,
op_independent
=
True
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
pads
=
node
.
get_attr
(
'pads'
)
mode
=
node
.
get_attr
(
'mode'
,
'constant'
)
value
=
node
.
get_attr
(
'value'
,
0.
)
data_shape
=
val_x
.
out_shapes
[
0
]
output_shape
=
node
.
out_shapes
[
0
]
assume_pad2d
=
False
attr
=
{}
if
len
(
pads
)
==
4
:
assume_pad2d
|=
mode
!=
'constant'
if
data_shape
:
assume_pad2d
|=
data_shape
and
len
(
data_shape
)
==
4
# NCHW
if
output_shape
:
assume_pad2d
|=
output_shape
and
len
(
output_shape
)
==
4
# NCHW
if
assume_pad2d
:
fluid_op
=
'pad2d'
attr
[
'data_format'
]
=
string
(
'NCHW'
)
attr
[
'mode'
]
=
string
(
mode
)
else
:
attr
=
{
'pad_value'
:
value
}
fluid_op
=
'pad'
if
len
(
pads
)
==
4
:
paddings
=
np
.
array
(
pads
).
reshape
(
(
-
1
,
2
)).
transpose
().
flatten
().
tolist
()
# SSEE -> SESE
elif
len
(
pads
)
==
8
:
paddings
=
np
.
array
(
pads
).
reshape
(
(
-
1
,
4
)).
transpose
().
flatten
().
tolist
()
# SSEE -> SESE
if
sum
(
paddings
[:
4
])
==
0
:
fluid_op
=
'pad2d'
paddings
=
paddings
[
4
:]
attr
[
'mode'
]
=
string
(
mode
)
attr
[
'paddings'
]
=
paddings
if
op_independent
:
attr
[
'name'
]
=
string
(
node
.
layer_name
)
node
.
fluid_code
.
add_layer
(
fluid_op
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
else
:
attr
[
'name'
]
=
string
(
node
.
layer_name
+
'_paded'
)
node
.
fluid_code
.
add_layer
(
fluid_op
,
inputs
=
val_x
,
output
=
node
.
layer_name
+
'_paded'
,
param_attr
=
attr
)
return
node
.
layer_name
+
'_paded'
@
print_mapping_info
def
Unsqueeze
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
axes
=
node
.
get_attr
(
'axes'
)
attr
=
{
'axes'
:
axes
,
'name'
:
string
(
node
.
layer_name
)}
if
len
(
val_x
.
out_shapes
[
0
])
==
0
:
if
node
.
layer_name
:
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
{
'shape'
:
[
1
]})
else
:
node
.
fluid_code
.
add_layer
(
'unsqueeze'
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Shrink
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
bias
=
node
.
get_attr
(
'bias'
)
lambd
=
node
.
get_attr
(
'lambd'
)
assert
bias
==
0.0
,
'not support bias!=0'
attr
=
{
'threshold'
:
lambd
,
'name'
:
node
.
layer_name
}
node
.
fluid_code
.
add_layer
(
'hard_shrink'
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
def
Greater
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
node
.
fluid_code
.
add_layer
(
'greater_than'
,
inputs
=
{
'x'
:
val_x
,
'y'
:
val_y
},
output
=
node
,
param_attr
=
None
)
@
print_mapping_info
def
Constant
(
self
,
node
):
val_output
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
value
=
node
.
get_attr
(
'value'
)
dtype
=
np
.
dtype
(
value
.
dtype
)
output_dtype
=
val_output
.
dtype
if
output_dtype
:
assert
dtype
==
output_dtype
,
'tensor dtype unmatches storage dtype'
shape
=
node
.
get_attr
(
'shape'
,
None
)
if
shape
is
None
:
shape
=
val_output
.
out_shapes
[
0
]
if
shape
is
None
:
shape
=
list
(
value
.
shape
)
_logger
.
warning
(
'in (Constant -> %s): '
'attribute "shape" of %s not inferred, '
'using value as 1-D tensor may lead to fails'
,
val_output
.
layer_name
,
val_output
.
layer_name
)
if
len
(
value
)
==
1
:
value
=
value
.
tolist
()
shape
=
[
1
]
value
=
value
[
0
]
if
dtype
.
name
==
'int64'
:
dtype
=
'int32'
attr
=
{
'shape'
:
shape
,
'dtype'
:
string
(
dtype
),
'value'
:
value
}
node
.
fluid_code
.
add_layer
(
'fill_constant'
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
else
:
if
dtype
.
name
==
'uint8'
:
dtype
=
'int64'
value
=
np
.
reshape
(
value
,
shape
)
self
.
weights
[
node
.
layer_name
]
=
value
attr
=
{
'dtype'
:
string
(
dtype
),
'shape'
:
shape
,
'name'
:
string
(
node
.
layer_name
),
'default_initializer'
:
'Constant(0.0)'
}
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Resize
(
self
,
node
):
self
.
_interpolate
(
node
)
@
print_mapping_info
def
Upsample
(
self
,
node
):
self
.
_interpolate
(
node
)
@
print_mapping_info
def
InstanceNormalization
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_scale
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
epsilon
=
node
.
get_attr
(
'epsilon'
,
1e-5
)
attr
=
{
'epsilon'
:
epsilon
,
'param_attr'
:
string
(
val_scale
.
layer_name
),
'bias_attr'
:
string
(
val_b
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"instance_norm"
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Expand
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_shape
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
if
len
(
val_shape
.
outputs
)
==
1
:
self
.
omit_nodes
.
append
(
val_shape
.
layer_name
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
out_shape
=
node
.
out_shapes
[
0
]
val_x_dtype
=
val_x
.
dtype
name_ones
=
node
.
layer_name
+
'_ones'
attr_ones
=
{
'shape'
:
out_shape
,
'dtype'
:
string
(
val_x_dtype
)}
node
.
fluid_code
.
add_layer
(
'ones'
,
inputs
=
None
,
output
=
name_ones
,
param_attr
=
attr_ones
)
inputs
=
{
'x'
:
name_ones
,
'y'
:
val_x
}
attr
=
{
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
'elementwise_mul'
,
inputs
=
inputs
,
output
=
node
.
layer_name
,
param_attr
=
attr
)
@
print_mapping_info
def
Gather
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
indices
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
indices_shape
=
indices
.
out_shapes
[
0
]
axis
=
node
.
get_attr
(
'axis'
,
0
)
#assert len(
# indices_shape) <= 2, "Gather op don't support dim of indice >2 "
if
axis
==
0
and
len
(
indices_shape
)
<=
1
:
node
.
fluid_code
.
add_layer
(
'gather'
,
inputs
=
{
'input'
:
val_x
,
'index'
:
indices
},
output
=
node
,
param_attr
=
None
)
elif
axis
>
0
and
len
(
indices_shape
)
<=
1
:
perm
=
list
(
range
(
len
(
val_x
.
out_shapes
[
0
])))
perm
=
[
axis
]
+
perm
[:
axis
]
+
perm
[
axis
+
1
:]
attr_trans
=
{
'perm'
:
perm
}
name_trans
=
val_x
.
layer_name
+
'_trans'
node
.
fluid_code
.
add_layer
(
'transpose'
,
inputs
=
val_x
,
output
=
name_trans
,
param_attr
=
attr_trans
)
node
.
fluid_code
.
add_layer
(
'gather'
,
inputs
=
{
'input'
:
name_trans
,
'index'
:
indices
},
output
=
node
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
'transpose'
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr_trans
)
elif
axis
==
0
and
len
(
indices_shape
)
>
1
:
if
val_x
.
out_shapes
[
0
]
is
not
None
and
isinstance
(
val_x
,
ONNXGraphDataNode
):
node
.
fluid_code
.
add_layer
(
'embedding'
,
inputs
=
indices
,
output
=
node
,
use_fluid
=
True
,
param_attr
=
{
'param_attr'
:
string
(
val_x
.
layer_name
),
'size'
:
val_x
.
out_shapes
[
0
]
})
else
:
from
functools
import
reduce
#indices_shape = [1,7]
reshape_shape
=
reduce
(
lambda
x
,
y
:
x
*
y
,
indices_shape
)
indices_reshape
=
indices
.
layer_name
+
'_shape'
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
indices
,
output
=
indices_reshape
,
param_attr
=
{
'shape'
:
[
reshape_shape
,
]})
perm
=
list
(
range
(
len
(
val_x
.
out_shapes
[
0
])))
node
.
fluid_code
.
add_layer
(
'gather'
,
inputs
=
{
'input'
:
val_x
,
'index'
:
indices_reshape
},
output
=
node
,
param_attr
=
None
)
val_x_shape
=
val_x
.
out_shapes
[
0
]
reshaped_shape
=
[]
for
i
in
perm
:
reshaped_shape
.
append
(
indices_shape
[
i
])
for
i
in
val_x_shape
[:
axis
]
+
val_x_shape
[
axis
+
1
:]:
reshaped_shape
.
append
(
i
)
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
node
,
output
=
node
,
param_attr
=
{
'shape'
:
reshaped_shape
})
elif
axis
>
0
and
len
(
indices_shape
)
>
1
:
from
functools
import
reduce
reshape_shape
=
reduce
(
lambda
x
,
y
:
x
*
y
,
indices_shape
)
indices_reshape
=
indices
.
layer_name
+
'_shape'
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
indices
,
output
=
indices_reshape
,
param_attr
=
{
'shape'
:
[
reshape_shape
,
]})
perm
=
list
(
range
(
len
(
val_x
.
out_shapes
[
0
])))
perm
=
[
axis
]
+
perm
[:
axis
]
+
perm
[
axis
+
1
:]
attr_trans
=
{
'perm'
:
perm
}
name_trans
=
val_x
.
layer_name
+
'_trans'
node
.
fluid_code
.
add_layer
(
'transpose'
,
inputs
=
val_x
,
output
=
name_trans
,
param_attr
=
attr_trans
)
node
.
fluid_code
.
add_layer
(
'gather'
,
inputs
=
{
'input'
:
name_trans
,
'index'
:
indices_reshape
},
output
=
node
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
'transpose'
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr_trans
)
val_x_shape
=
val_x
.
out_shapes
[
0
]
reshaped_shape
=
[]
for
i
in
perm
:
reshaped_shape
.
append
(
indices_shape
[
i
])
for
i
in
val_x_shape
[:
axis
]
+
val_x_shape
[
axis
+
1
:]:
reshaped_shape
.
append
(
i
)
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
node
,
output
=
node
,
param_attr
=
{
'shape'
:
reshaped_shape
})
@
print_mapping_info
def
Range
(
self
,
node
):
val_start
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_limit
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_delta
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
dtype
=
val_start
.
dtype
inputs
=
{
'start'
:
val_start
,
'end'
:
val_limit
,
'step'
:
val_delta
}
node
.
fluid_code
.
add_layer
(
'range'
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
{
'dtype'
:
string
(
dtype
)})
@
print_mapping_info
def
Slice
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
starts
,
ends
,
axes
,
steps
=
None
,
None
,
None
,
None
attr
=
{}
if
len
(
node
.
inputs
)
>
1
:
starts
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
ends
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
if
len
(
node
.
inputs
)
>
3
:
axes
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
axes
=
_const_weight_or_none
(
axes
)
if
len
(
node
.
inputs
)
>
4
:
steps
=
self
.
graph
.
get_input_node
(
node
,
idx
=
4
,
copy
=
True
)
steps
=
_const_weight_or_none
(
steps
)
if
steps
is
not
None
:
assert
steps
==
1
,
"Only support convert op:Slice, which attribute:steps == 1"
attr
=
{
"axes"
:
axes
,
"starts"
:
starts
.
layer_name
,
"ends"
:
ends
.
layer_name
}
starts_value
=
_const_weight_or_none
(
starts
)
ends_value
=
_const_weight_or_none
(
ends
)
if
starts_value
is
not
None
and
ends_value
is
not
None
:
self
.
omit_nodes
.
append
(
starts
.
layer_name
)
self
.
omit_nodes
.
append
(
ends
.
layer_name
)
ends_value
=
ends_value
.
copy
()
for
idx
in
range
(
len
(
ends_value
)):
if
ends_value
[
idx
]
>
2
**
31
-
1
:
ends_value
[
idx
]
=
2
**
31
-
1
attr
=
{
"axes"
:
axes
,
"starts"
:
starts_value
,
"ends"
:
ends_value
}
else
:
if
starts
.
dtype
!=
'int32'
:
node
.
fluid_code
.
add_layer
(
'cast'
,
inputs
=
starts
,
output
=
starts
,
param_attr
=
{
'dtype'
:
string
(
'int32'
)})
if
ends
.
dtype
!=
'int32'
:
node
.
fluid_code
.
add_layer
(
'cast'
,
inputs
=
ends
,
output
=
ends
,
param_attr
=
{
'dtype'
:
string
(
'int32'
)})
else
:
starts
=
node
.
get_attr
(
'starts'
)
ends
=
node
.
get_attr
(
'ends'
)
axes
=
node
.
get_attr
(
'axes'
)
for
idx
in
range
(
len
(
ends
)):
if
ends
[
idx
]
>
2
**
31
-
1
:
ends
[
idx
]
=
2
**
31
-
1
attr
=
{
"axes"
:
axes
,
"starts"
:
starts
,
"ends"
:
ends
}
node
.
fluid_code
.
add_layer
(
'slice'
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
ConstantOfShape
(
self
,
node
):
val_shape
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
value
=
node
.
get_attr
(
'value'
)
dtype
=
value
.
dtype
value
=
value
.
tolist
()
assert
len
(
value
)
==
1
,
(
'given value not Scalar, shape of value > 1, '
'this is not supported'
)
if
len
(
value
)
==
1
:
value
=
value
[
0
]
if
dtype
.
name
==
'int64'
:
dtype
=
'int32'
attr
=
{
'shape'
:
val_shape
.
layer_name
,
'dtype'
:
string
(
dtype
),
'value'
:
value
}
node
.
fluid_code
.
add_layer
(
'fill_constant'
,
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Split
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
fluid_op
=
'split'
split
=
node
.
get_attr
(
'split'
)
axis
=
node
.
get_attr
(
'axis'
,
0
)
attr
=
{
'num_or_sections'
:
split
,
'dim'
:
axis
,
'name'
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
'split'
,
inputs
=
val_x
,
output
=
val_y
,
param_attr
=
attr
)
@
print_mapping_info
def
Reshape
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_shape
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_reshaped
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
attr
=
{}
shape_value
=
_const_weight_or_none
(
val_shape
)
shape_dims
=
len
(
val_shape
.
out_shapes
[
0
])
if
shape_value
is
not
None
:
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
{
'x'
:
val_x
},
output
=
node
,
param_attr
=
{
'shape'
:
shape_value
.
tolist
()})
elif
val_shape
.
dtype
==
'int64'
:
val_shape_cast
=
val_shape
.
layer_name
+
'_cast'
node
.
fluid_code
.
add_layer
(
'cast'
,
inputs
=
val_shape
,
output
=
val_shape_cast
,
param_attr
=
{
'dtype'
:
string
(
'int32'
)})
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
val_shape_cast
,
output
=
val_shape_cast
,
param_attr
=
{
'shape'
:
val_shape
.
out_shapes
[
0
]})
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
{
'x'
:
val_x
,
'shape'
:
val_shape_cast
},
output
=
node
,
param_attr
=
attr
)
else
:
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
val_shape
,
output
=
val_shape
,
param_attr
=
{
'shape'
:
val_shape
.
out_shapes
[
0
]})
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
{
'x'
:
val_x
,
'shape'
:
val_shape
},
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Cast
(
self
,
node
):
val_input
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_output
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
dtype
=
node
.
get_attr
(
'to'
)
if
not
isinstance
(
dtype
,
np
.
dtype
):
dtype
=
TENSOR_TYPE_TO_NP_TYPE
[
dtype
]
output_dtype
=
val_output
.
dtype
if
output_dtype
:
assert
dtype
==
output_dtype
,
'dtype of to unmatches output'
attr
=
{
'dtype'
:
string
(
dtype
)}
node
.
fluid_code
.
add_layer
(
'cast'
,
inputs
=
val_input
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
AveragePool
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
auto_pad
=
node
.
get_attr
(
'auto_pad'
,
'NOTSET'
)
kernel_shape
=
node
.
get_attr
(
"kernel_shape"
)
poolnd
=
len
(
kernel_shape
)
strides
=
node
.
get_attr
(
"strides"
)
pad_mode
=
node
.
get_attr
(
"pads"
)
ceil_mode
=
bool
(
node
.
get_attr
(
'ceil_mode'
,
0
))
pads
=
node
.
get_attr
(
'pads'
,
[
0
]
*
(
poolnd
*
2
))
fluid_op
=
'pool{}d'
.
format
(
poolnd
)
assert
2
<=
poolnd
<=
3
,
'only pool2d and pool3d is supported'
paddings
,
val_x
=
self
.
_pad_if_asymmetric
(
node
,
pads
,
val_x
)
if
auto_pad
==
"SAME_UPPER"
or
auto_pad
==
"SAME_LOWER"
:
input_shape
=
val_x
.
out_shapes
[
0
]
pad_h
=
get_same_padding
(
input_shape
[
2
],
kernel_shape
[
0
],
strides
[
0
])
pad_w
=
get_same_padding
(
input_shape
[
3
],
kernel_shape
[
1
],
strides
[
1
])
attr
=
{
"paddings"
:
pad_h
+
pad_w
,
"pad_value"
:
0.0
}
attr
=
{
"pool_size"
:
kernel_shape
,
"pool_type"
:
string
(
'avg'
),
"pool_stride"
:
strides
,
"pool_padding"
:
paddings
,
"ceil_mode"
:
ceil_mode
,
"exclusive"
:
'True'
,
"name"
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
fluid_op
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Concat
(
self
,
node
):
inputs
=
[]
for
i
in
range
(
len
(
node
.
layer
.
input
)):
ipt
=
self
.
graph
.
get_input_node
(
node
,
idx
=
i
,
copy
=
True
)
if
isinstance
(
ipt
,
str
):
inputs
.
append
(
ipt
)
else
:
inputs
.
append
(
ipt
.
layer_name
)
axis
=
node
.
get_attr
(
'axis'
)
attr
=
{
'axis'
:
axis
}
node
.
fluid_code
.
add_layer
(
'concat'
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Flatten
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
axis
=
node
.
get_attr
(
'axis'
,
1
)
attr
=
{
"axis"
:
str
(
axis
),
"name"
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
'flatten'
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Gemm
(
self
,
node
):
val_a
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_c
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
alpha
=
node
.
get_attr
(
'alpha'
,
1.
)
# optional
beta
=
node
.
get_attr
(
'beta'
,
1.
)
# optional
trans_a
=
bool
(
node
.
get_attr
(
'transA'
,
0
))
# optional
trans_b
=
bool
(
node
.
get_attr
(
'transB'
,
0
))
# optional
val_mm
=
node
.
layer_name
+
'_mm'
matmul_inputs
=
{
"x"
:
val_a
,
"y"
:
val_b
}
attr_matmul
=
{
"transpose_x"
:
trans_a
,
"transpose_y"
:
trans_b
,
"alpha"
:
alpha
,
"name"
:
string
(
val_mm
)
}
node
.
fluid_code
.
add_layer
(
'matmul'
,
inputs
=
matmul_inputs
,
output
=
val_mm
,
param_attr
=
attr_matmul
)
if
beta
!=
0
:
if
beta
==
1.
:
add_inputs
=
{
"x"
:
val_mm
,
"y"
:
val_c
}
attr
=
{
"name"
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
add_inputs
,
output
=
node
,
param_attr
=
attr
)
else
:
var_beta
=
node
.
layer_name
+
'_beta'
matmul_beta_inputs
=
{
"x"
:
val_c
,
"y"
:
var_beta
}
node
.
fluid_code
.
add_layer
(
"Constant"
,
inputs
=
matmul_beta_inputs
,
output
=
var_beta
,
param_attr
=
{
'value'
:
beta
})
add_inputs
=
{
"x"
:
val_mm
,
"y"
:
var_beta
}
attr
=
{
"name"
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
add_inputs
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Sum
(
self
,
node
):
val_inps
=
node
.
layer
.
input
inputs
=
{
"x"
:
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
),
"y"
:
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
),
}
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
inputs
,
output
=
node
)
for
idx
,
ipt
in
enumerate
(
val_inps
[
2
:]):
y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
idx
,
copy
=
True
)
inputs
=
{
"x"
:
node
.
layer_name
,
"y"
:
y
,
}
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
inputs
,
output
=
node
)
@
print_mapping_info
def
MatMul
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
inputs
=
{
"x"
:
val_x
,
"y"
:
val_y
}
attr
=
{
"name"
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"matmul"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
BatchNormalization
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_scale
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
val_mean
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
val_var
=
self
.
graph
.
get_input_node
(
node
,
idx
=
4
,
copy
=
True
)
self
.
omit_nodes
.
append
(
val_scale
.
layer_name
)
self
.
omit_nodes
.
append
(
val_b
.
layer_name
)
self
.
omit_nodes
.
append
(
val_mean
.
layer_name
)
self
.
omit_nodes
.
append
(
val_var
.
layer_name
)
momentum
=
node
.
get_attr
(
'momentum'
,
.
9
)
epsilon
=
node
.
get_attr
(
'epsilon'
,
1e-5
)
# Attribute: spatial is used in BatchNormalization-1,6,7
spatial
=
bool
(
node
.
get_attr
(
'spatial'
))
attr
=
{
"momentum"
:
momentum
,
"epsilon"
:
epsilon
,
"data_layout"
:
string
(
'NCHW'
),
"is_test"
:
True
,
"param_attr"
:
string
(
val_scale
.
layer_name
),
"bias_attr"
:
string
(
val_b
.
layer_name
),
"moving_mean_name"
:
string
(
val_mean
.
layer_name
),
"moving_variance_name"
:
string
(
val_var
.
layer_name
),
"use_global_stats"
:
spatial
,
"name"
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
"batch_norm"
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Transpose
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
perm
=
node
.
get_attr
(
'perm'
)
attr
=
{
'perm'
:
perm
,
"name"
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Relu
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
attr
=
{
"name"
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"relu"
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
PRelu
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_slope
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
mode
=
'channel'
shape_slope
=
val_slope
.
out_shapes
[
0
]
if
len
(
shape_slope
)
==
1
:
mode
=
'all'
elif
len
(
shape_slope
)
>
2
:
mode
=
'element'
attr
=
{
"param_attr"
:
string
(
val_slope
.
layer_name
),
'mode'
:
string
(
mode
)
}
node
.
fluid_code
.
add_layer
(
"prelu"
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Squeeze
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
axes
=
node
.
get_attr
(
'axes'
)
attr
=
{
'axes'
:
axes
,
"name"
:
string
(
node
.
layer_name
)}
if
len
(
val_x
.
out_shapes
[
0
])
==
1
:
node
.
fluid_code
.
add_layer
(
"cast"
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
{
'dtype'
:
string
(
val_x
.
dtype
)})
else
:
node
.
fluid_code
.
add_layer
(
"squeeze"
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Equal
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
node
.
fluid_code
.
add_layer
(
"equal"
,
inputs
=
{
'x'
:
val_x
,
'y'
:
val_y
},
output
=
node
,
param_attr
=
None
)
@
print_mapping_info
def
Where
(
self
,
node
):
condition
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
not_condition
=
condition
.
layer_name
+
'_not'
node
.
fluid_code
.
add_layer
(
"logical_not"
,
inputs
=
condition
,
output
=
not_condition
,
param_attr
=
None
)
cast_not_condition
=
not_condition
+
'_cast'
node
.
fluid_code
.
add_layer
(
"cast"
,
inputs
=
not_condition
,
output
=
cast_not_condition
,
param_attr
=
{
'dtype'
:
string
(
val_x
.
dtype
)})
cast_condition
=
condition
.
layer_name
+
'_cast'
node
.
fluid_code
.
add_layer
(
"cast"
,
inputs
=
condition
,
output
=
cast_condition
,
param_attr
=
{
'dtype'
:
string
(
val_x
.
dtype
)})
mul_val_x
=
val_x
.
layer_name
+
'_mul'
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
{
'x'
:
val_x
,
'y'
:
cast_condition
},
output
=
mul_val_x
,
param_attr
=
None
)
mul_val_y
=
val_y
.
layer_name
+
'_mul'
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
{
'x'
:
val_y
,
'y'
:
cast_not_condition
},
output
=
mul_val_y
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
{
'x'
:
mul_val_x
,
'y'
:
mul_val_y
},
output
=
node
,
param_attr
=
None
)
@
print_mapping_info
def
NonZero
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x_dim
=
len
(
val_x
.
out_shapes
[
0
])
print
(
val_x
.
layer_name
,
val_x
.
out_shapes
[
0
])
if
val_x_dim
==
1
:
node
.
fluid_code
.
add_layer
(
"nonzero"
,
inputs
=
val_x
,
output
=
val_x
)
node
.
fluid_code
.
add_layer
(
"transpose"
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
{
'perm'
:
[
1
,
0
]})
if
val_x_dim
>
1
:
node
.
fluid_code
.
add_layer
(
"nonzero"
,
inputs
=
val_x
,
output
=
val_x
)
node
.
fluid_code
.
add_layer
(
"split"
,
inputs
=
val_x
,
output
=
val_x
,
param_attr
=
{
'num_or_sections'
:
1
,
'dim'
:
val_x_dim
})
node
.
fluid_code
.
add_layer
(
"concat"
,
inputs
=
val_x
,
output
=
node
)
@
print_mapping_info
def
Identity
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
node
.
fluid_code
.
add_layer
(
"assign"
,
inputs
=
val_x
,
output
=
node
)
@
print_mapping_info
def
Tile
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_repeats
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
repeats
=
_const_weight_or_none
(
val_repeats
)
if
repeats
is
None
:
repeats
=
val_repeats
.
layer_name
elif
isinstance
(
repeats
,
int
):
repeats
=
[
repeats
]
attr
=
{
'expand_times'
:
repeats
,
"name"
:
string
(
node
.
layer_name
),
}
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
MaxPool
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
auto_pad
=
node
.
get_attr
(
'auto_pad'
,
'NOTSET'
)
assert
node
.
get_attr
(
"dilations"
)
is
None
,
'only dilations = 0 is supported'
# optional
kernel_shape
=
node
.
get_attr
(
"kernel_shape"
)
poolnd
=
len
(
kernel_shape
)
strides
=
node
.
get_attr
(
"strides"
)
pad_mode
=
node
.
get_attr
(
"pads"
)
ceil_mode
=
bool
(
node
.
get_attr
(
'ceil_mode'
,
0
))
# optional
pads
=
node
.
get_attr
(
'pads'
,
[
0
]
*
(
poolnd
*
2
))
# optional
fluid_op
=
'pool{}d'
.
format
(
poolnd
)
assert
2
<=
poolnd
<=
3
,
'only pool2d and pool3d is supported'
paddings
,
val_x
=
self
.
_pad_if_asymmetric
(
node
,
pads
,
val_x
)
if
auto_pad
==
"SAME_UPPER"
or
auto_pad
==
"SAME_LOWER"
:
input_shape
=
val_x
.
out_shapes
[
0
]
pad_h
=
get_same_padding
(
input_shape
[
2
],
kernel_shape
[
0
],
strides
[
0
])
pad_w
=
get_same_padding
(
input_shape
[
3
],
kernel_shape
[
1
],
strides
[
1
])
attr
=
{
"paddings"
:
pad_h
+
pad_w
,
"pad_value"
:
0.0
}
attr
=
{
"pool_size"
:
kernel_shape
,
"pool_type"
:
string
(
"max"
),
"pool_stride"
:
strides
,
"pool_padding"
:
paddings
,
"ceil_mode"
:
ceil_mode
,
"name"
:
string
(
node
.
layer_name
),
"exclusive"
:
False
}
node
.
fluid_code
.
add_layer
(
fluid_op
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
def
_global_pool
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
fluid_op
=
'pool2d'
pool_type
=
None
if
node
.
layer
.
op_type
==
'GlobalMaxPool'
:
pool_type
=
'max'
elif
node
.
layer
.
op_type
==
'GlobalAveragePool'
:
pool_type
=
'avg'
attr
=
{
"pool_type"
:
string
(
pool_type
),
"global_pooling"
:
True
,
"name"
:
string
(
node
.
layer_name
)
}
node
.
fluid_code
.
add_layer
(
fluid_op
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
GlobalMaxPool
(
self
,
node
):
self
.
_global_pool
(
node
)
@
print_mapping_info
def
GlobalAveragePool
(
self
,
node
):
self
.
_global_pool
(
node
)
@
print_mapping_info
def
Conv
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_w
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
self
.
omit_nodes
.
append
(
val_w
.
layer_name
)
has_bias
=
len
(
node
.
layer
.
input
)
==
3
if
has_bias
:
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
self
.
omit_nodes
.
append
(
val_b
.
layer_name
)
auto_pad
=
node
.
get_attr
(
'auto_pad'
,
'NOTSET'
)
kernel_shape
=
node
.
get_attr
(
'kernel_shape'
)
convnd
=
len
(
kernel_shape
)
assert
2
<=
convnd
<=
3
,
'only conv2d and conv3d is supported'
num_out_channels
=
val_w
.
out_shapes
[
0
][
0
]
# OI...
fluid_op
=
'conv{}d'
.
format
(
convnd
)
num_groups
=
node
.
get_attr
(
'group'
,
1
)
strides
=
node
.
get_attr
(
'strides'
,
[
1
]
*
convnd
)
# optional
dilations
=
node
.
get_attr
(
'dilations'
,
[
1
]
*
convnd
)
# optional
pads
=
node
.
get_attr
(
'pads'
,
[
0
]
*
(
convnd
*
2
))
# optional
input_shape
=
val_x
.
out_shapes
[
0
]
paddings
,
val_x
=
self
.
_pad_if_asymmetric
(
node
,
pads
,
val_x
)
if
auto_pad
==
"SAME_UPPER"
or
auto_pad
==
"SAME_LOWER"
:
pad_h
=
get_same_padding
(
input_shape
[
2
],
kernel_shape
[
0
],
strides
[
0
])
pad_w
=
get_same_padding
(
input_shape
[
3
],
kernel_shape
[
1
],
strides
[
1
])
attr
=
{
"paddings"
:
pad_h
+
pad_w
,
"pad_value"
:
0.0
}
attr
=
{
"num_filters"
:
num_out_channels
,
"filter_size"
:
kernel_shape
,
"stride"
:
strides
,
"padding"
:
paddings
,
"dilation"
:
dilations
,
"groups"
:
num_groups
,
'param_attr'
:
string
(
val_w
.
layer_name
),
"name"
:
string
(
node
.
layer_name
)
}
if
has_bias
:
attr
[
"bias_attr"
]
=
string
(
val_b
.
layer_name
)
else
:
attr
[
"bias_attr"
]
=
False
node
.
fluid_code
.
add_layer
(
fluid_op
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
ConvTranspose
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_w
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_b
=
None
if
len
(
node
.
layer
.
input
)
>
2
:
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
self
.
omit_nodes
.
append
(
val_b
.
layer_name
)
self
.
omit_nodes
.
append
(
val_w
.
layer_name
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
auto_pad
=
node
.
get_attr
(
'auto_pad'
,
'NOTSET'
)
out_padding
=
node
.
get_attr
(
'output_padding'
,
[
0
,
0
])
kernel_shape
=
node
.
get_attr
(
'kernel_shape'
)
assert
kernel_shape
,
'kernel_shape not inferred'
convnd
=
len
(
kernel_shape
)
assert
2
<=
convnd
<=
3
,
'only conv2d_transpose and conv3d_transpose supported'
num_out_channels
=
val_w
.
out_shapes
[
0
][
1
]
fluid_op
=
'conv{}d_transpose'
.
format
(
convnd
)
num_groups
=
node
.
get_attr
(
'group'
,
1
)
strides
=
node
.
get_attr
(
'strides'
,
[
1
]
*
convnd
)
dilations
=
node
.
get_attr
(
'dilations'
,
[
1
]
*
convnd
)
output_size
=
node
.
get_attr
(
'output_shape'
,
[])
pads
=
node
.
get_attr
(
'pads'
,
[
0
]
*
(
convnd
*
2
))
paddings
,
var_x
=
self
.
_pad_if_asymmetric
(
node
,
pads
,
val_x
)
output_size
=
[
0
,
0
]
output_size
[
0
]
=
(
val_x
.
out_shapes
[
0
][
2
]
-
1
)
*
strides
[
0
]
-
2
*
paddings
[
0
]
+
dilations
[
0
]
*
(
kernel_shape
[
0
]
-
1
)
+
1
+
out_padding
[
0
]
output_size
[
1
]
=
(
val_x
.
out_shapes
[
0
][
3
]
-
1
)
*
strides
[
1
]
-
2
*
paddings
[
1
]
+
dilations
[
1
]
*
(
kernel_shape
[
1
]
-
1
)
+
1
+
out_padding
[
1
]
attr
=
{
'num_filters'
:
num_out_channels
,
'output_size'
:
output_size
or
None
,
'filter_size'
:
kernel_shape
,
'padding'
:
paddings
,
'stride'
:
strides
,
'dilation'
:
dilations
,
'groups'
:
num_groups
,
'param_attr'
:
string
(
val_w
.
layer_name
),
'bias_attr'
:
None
if
val_b
is
None
else
string
(
val_b
.
layer_name
),
'name'
:
string
(
node
.
layer_name
),
}
node
.
fluid_code
.
add_layer
(
fluid_op
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
GRU
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_w
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_r
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
val_b
=
None
val_len
=
None
val_xh
=
None
miss_arg_num
=
0
num_ipt
=
len
(
node
.
layer
.
input
)
if
num_ipt
>
3
and
node
.
layer
.
input
[
3
]
!=
''
:
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
else
:
miss_arg_num
+=
1
if
num_ipt
>
4
and
node
.
layer
.
input
[
4
]
!=
''
:
val_len
=
self
.
graph
.
get_input_node
(
node
,
idx
=
4
-
miss_arg_num
,
copy
=
True
)
else
:
miss_arg_num
+=
1
if
num_ipt
>
5
and
node
.
layer
.
input
[
5
]
!=
''
:
val_xh
=
self
.
graph
.
get_input_node
(
node
,
idx
=
5
-
miss_arg_num
,
copy
=
True
)
x_shape
=
val_x
.
out_shapes
[
0
]
assert
x_shape
[
1
]
==
1
,
'only X with batch_size = 1 supported'
assert
node
.
get_attr
(
'clip'
,
None
)
is
None
,
'clipping not supported'
hidden_size
=
node
.
get_attr
(
'hidden_size'
,
None
)
if
hidden_size
is
None
:
r_shape
=
val_r
.
out_shapes
[
0
]
if
r_shape
:
hidden_size
=
r_shape
[
-
1
]
if
hidden_size
is
None
:
w_shape
=
var_w
.
out_shapes
[
0
]
if
w_shape
:
hidden_size
=
w_shape
[
-
2
]
//
3
if
hidden_size
is
None
and
val_b
:
b_shape
=
val_b
.
out_shapes
[
0
]
if
b_shape
:
hidden_size
=
b_shape
[
-
1
]
//
6
if
hidden_size
is
None
and
val_xh
:
xh_shape
=
val_xh
.
out_shapes
[
0
]
if
xh_shape
:
hidden_size
=
xh_shape
[
-
1
]
direction
=
node
.
get_attr
(
'direction'
,
'forward'
)
assert
direction
!=
'bidirectional'
,
'direction = bidirectional not supported'
activations
=
node
.
get_attr
(
'activations'
,
[
'Sigmoid'
,
'Tanh'
])
assert
len
(
activations
)
==
2
,
'bidirectional operation not supported'
assert
node
.
get_attr
(
'linear_before_reset'
,
0
)
==
0
,
'only linear_before_reset = 0 supported'
activations
=
[
s
.
lower
()
for
s
in
activations
]
gate_activation
,
candidate_activation
=
activations
is_reverse
=
direction
==
'reverse'
var_x0
=
node
.
layer_name
+
'_x0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
val_x
,
output
=
var_x0
,
param_attr
=
{
'axes'
:
[
1
],
'name'
:
string
(
var_x0
)})
var_w0
=
node
.
layer_name
+
'_w0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
val_w
,
output
=
var_w0
,
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_w0
)})
var_fc
=
node
.
layer_name
+
'_fc'
var_mm
=
(
node
.
layer_name
+
'_mm'
)
if
val_b
else
var_fc
node
.
fluid_code
.
add_layer
(
'matmul'
,
inputs
=
{
'x'
:
var_x0
,
'y'
:
var_w0
},
output
=
var_mm
,
param_attr
=
{
'transpose_x'
:
0
,
'transpose_y'
:
1
,
'name'
:
string
(
var_mm
)
})
var_r0
=
node
.
layer_name
+
'_r0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
val_r
,
output
=
var_r0
,
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_r0
)})
var_r0t
=
node
.
layer_name
+
'_r0t'
node
.
fluid_code
.
add_layer
(
'transpose'
,
inputs
=
var_r0
,
output
=
var_r0t
,
param_attr
=
{
'perm'
:
[
1
,
0
],
'name'
:
string
(
var_r0t
)})
if
val_b
:
var_bi
=
node
.
layer_name
+
'_bi'
var_bh
=
node
.
layer_name
+
'_bh'
node
.
fluid_code
.
add_layer
(
'split'
,
inputs
=
val_b
,
output
=
var_bi
+
','
+
var_bh
,
param_attr
=
{
'axis'
:
1
,
'split'
:
[
hidden_size
*
3
,
hidden_size
*
3
],
'name'
:
string
(
node
.
layer_name
+
'.b/split'
)
})
var_bi0
=
node
.
layer_name
+
'_bi0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
var_bi
,
output
=
var_bi0
,
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_bi0
)})
node
.
fluid_code
.
add_layer
(
'elmentwise_add'
,
inputs
=
[
var_mm
,
var_bi0
],
output
=
var_fc
,
param_attr
=
{
'axes'
:
1
,
'name'
:
string
(
node
.
layer_name
+
'.i/bias'
)
})
if
val_xh
:
var_xh0
=
node
.
layer_name
+
'_xh0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
val_xh
,
output
=
var_xh0
,
param_attr
=
{
'axes'
:
[
1
],
'name'
:
string
(
var_xh0
)})
var_y00
=
node
.
layer_name
+
'_y00'
attr
=
{
'origin_mode'
:
True
,
'h_0'
:
var_xh0
if
val_xh
else
None
,
'is_reverse'
:
is_reverse
,
'gate_activation'
:
string
(
gate_activation
),
'candidate_activation'
:
string
(
candidate_activation
),
'param_attr'
:
string
(
var_r0t
),
'bias_attr'
:
string
(
var_bh
)
if
val_b
else
False
,
}
node
.
fluid_code
.
add_layer
(
'dynamic_gru'
,
inputs
=
var_fc
+
','
+
str
(
hidden_size
),
output
=
var_y00
,
param_attr
=
attr
)
num_opt
=
len
(
node
.
layer
.
output
)
if
num_opt
>
0
and
node
.
layer
.
output
[
0
]
!=
''
:
node
.
fluid_code
.
add_layer
(
'unsqueeze'
,
inputs
=
var_y00
,
output
=
node
.
layer
.
output
[
0
],
param_attr
=
{
'axes'
:
[
1
,
1
],
'name'
:
string
(
node
.
layer
.
output
[
0
])
})
if
num_opt
>
1
and
node
.
layer
.
output
[
1
]
!=
''
:
node
.
fluid_code
.
add_layer
(
'unsqueeze'
,
inputs
=
var_y00
,
output
=
node
.
layer
.
output
[
1
],
param_attr
=
{
'axes'
:
[
1
,
1
],
'name'
:
string
(
node
.
layer
.
output
[
1
])
})
x2paddle/op_mapper/paddle_custom_layer/__init__.py
已删除
100644 → 0
浏览文件 @
bbc964e8
x2paddle/op_mapper/paddle_custom_layer/im2sequence.py
已删除
100644 → 0
浏览文件 @
bbc964e8
import
onnx
import
numpy
as
np
from
onnx
import
onnx_pb
,
helper
im2seq_counter
=
0
def
im2sequence
(
op
,
block
):
global
im2sequence_counter
n
,
c
,
h
,
w
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
assert
h
>
0
and
w
>
0
,
"Only supported fixed input shape for im2sequence operator."
stride_h
,
stride_w
=
op
.
attr
(
'strides'
)
paddings
=
op
.
attr
(
'paddings'
)
assert
op
.
attr
(
'out_stride'
)
!=
1
,
"Only out_stride==1 is supported for im2sequence operator."
h
=
h
+
paddings
[
0
]
+
paddings
[
1
]
w
=
w
+
paddings
[
1
]
+
paddings
[
2
]
kernel_h
,
kernel_w
=
op
.
attr
(
'kernels'
)
out_h
=
1
+
(
h
-
kernel_h
+
stride_h
-
1
)
//
stride_h
out_w
=
1
+
(
w
-
kernel_w
+
stride_w
-
1
)
//
stride_w
h_steps
=
list
()
for
i
in
range
(
out_h
):
h_steps
.
append
([
i
*
stride_h
,
i
*
stride_h
+
kernel_h
])
w_steps
=
list
()
for
i
in
range
(
out_w
):
w_steps
.
append
([
i
*
stride_w
,
i
*
stride_w
+
kernel_w
])
nodes
=
list
()
slice_blocks
=
list
()
for
i
in
range
(
out_h
):
for
j
in
range
(
out_w
):
starts_name
=
"im2sequence.starts.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
starts_tensor
=
helper
.
make_tensor
(
name
=
starts_name
,
data_type
=
onnx_pb
.
TensorProto
.
INT64
,
dims
=
[
4
],
vals
=
[
0
,
0
,
h_steps
[
i
][
0
],
w_steps
[
j
][
0
]])
ends_name
=
"im2sequence.ends.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
ends_tensor
=
helper
.
make_tensor
(
name
=
ends_name
,
data_type
=
onnx_pb
.
TensorProto
.
INT64
,
dims
=
[
4
],
vals
=
[
999999
,
999999
,
h_steps
[
i
][
1
],
w_steps
[
j
][
1
]])
starts_node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
starts_name
],
value
=
starts_tensor
)
ends_node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
ends_name
],
value
=
ends_tensor
)
nodes
.
extend
([
starts_node
,
ends_node
])
slice_block_name
=
"im2sequence.slice.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
slice_block_node
=
helper
.
make_node
(
'Slice'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
starts_name
,
ends_name
],
outputs
=
[
slice_block_name
])
flatten_block_name
=
"im2sequence.flatten.{}.{}.{}"
.
format
(
im2seq_counter
,
i
,
j
)
flatten_block_node
=
helper
.
make_node
(
"Flatten"
,
inputs
=
[
slice_block_name
],
outputs
=
[
flatten_block_name
],
axis
=
0
)
nodes
.
extend
([
slice_block_node
,
flatten_block_node
])
slice_blocks
.
append
(
flatten_block_name
)
concat_block_name
=
"im2sequence.concat_block.{}"
.
format
(
im2seq_counter
)
# concat_block_node = helper.make_node("Concat", inputs=slice_blocks, outputs=[concat_block_name], axis=0)
concat_block_node
=
helper
.
make_node
(
"Concat"
,
inputs
=
slice_blocks
,
outputs
=
op
.
output
(
'Out'
),
axis
=
0
)
nodes
.
append
(
concat_block_node
)
print
(
"
\n\n
==========Importance Notice==========="
)
print
(
"Since im2sequence operator is used in your paddlepaddle model, the translated onnx model only support input data with batch_size=1."
)
print
(
"======================================
\n
"
)
return
nodes
x2paddle/op_mapper/paddle_custom_layer/multiclass_nms.py
已删除
100644 → 0
浏览文件 @
bbc964e8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
sys
import
os
import
numpy
as
np
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
import
onnx
import
warnings
from
onnx
import
helper
,
onnx_pb
def
multiclass_nms
(
op
,
block
):
"""
Convert the paddle multiclass_nms to onnx op.
This op is get the select boxes from origin boxes.
"""
inputs
=
dict
()
outputs
=
dict
()
attrs
=
dict
()
for
name
in
op
.
input_names
:
inputs
[
name
]
=
op
.
input
(
name
)
for
name
in
op
.
output_names
:
outputs
[
name
]
=
op
.
output
(
name
)
for
name
in
op
.
attr_names
:
attrs
[
name
]
=
op
.
attr
(
name
)
result_name
=
outputs
[
'Out'
][
0
]
background
=
attrs
[
'background_label'
]
normalized
=
attrs
[
'normalized'
]
if
normalized
==
False
:
warnings
.
warn
(
'The parameter normalized of multiclass_nms OP of Paddle is False, which has diff with ONNX.
\
Please set normalized=True in multiclass_nms of Paddle'
)
#convert the paddle attribute to onnx tensor
name_score_threshold
=
[
outputs
[
'Out'
][
0
]
+
"@score_threshold"
]
name_iou_threshold
=
[
outputs
[
'Out'
][
0
]
+
"@iou_threshold"
]
name_keep_top_k
=
[
outputs
[
'Out'
][
0
]
+
'@keep_top_k'
]
name_keep_top_k_2D
=
[
outputs
[
'Out'
][
0
]
+
'@keep_top_k_1D'
]
node_score_threshold
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_score_threshold
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_score_threshold
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
float
(
attrs
[
'score_threshold'
])]))
node_iou_threshold
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_iou_threshold
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_iou_threshold
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
float
(
attrs
[
'nms_threshold'
])]))
node_keep_top_k
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_keep_top_k
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_keep_top_k
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
(),
vals
=
[
np
.
int64
(
attrs
[
'keep_top_k'
])]))
node_keep_top_k_2D
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_keep_top_k_2D
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_keep_top_k_2D
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
1
,
1
],
vals
=
[
np
.
int64
(
attrs
[
'keep_top_k'
])]))
# the paddle data format is x1,y1,x2,y2
kwargs
=
{
'center_point_box'
:
0
}
name_select_nms
=
[
outputs
[
'Out'
][
0
]
+
"@select_index"
]
node_select_nms
=
onnx
.
helper
.
make_node
(
'NonMaxSuppression'
,
inputs
=
inputs
[
'BBoxes'
]
+
inputs
[
'Scores'
]
+
name_keep_top_k
+
\
name_iou_threshold
+
name_score_threshold
,
outputs
=
name_select_nms
)
# step 1 nodes select the nms class
node_list
=
[
node_score_threshold
,
node_iou_threshold
,
node_keep_top_k
,
node_keep_top_k_2D
,
node_select_nms
]
# create some const value to use
name_const_value
=
[
result_name
+
"@const_0"
,
result_name
+
"@const_1"
,
\
result_name
+
"@const_2"
,
\
result_name
+
"@const_-1"
]
value_const_value
=
[
0
,
1
,
2
,
-
1
]
for
name
,
value
in
zip
(
name_const_value
,
value_const_value
):
node
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
name
],
value
=
onnx
.
helper
.
make_tensor
(
name
=
name
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
1
],
vals
=
[
value
]))
node_list
.
append
(
node
)
# Ine this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# and the same time, decode the select indices to 1 * D, gather the select_indices
outputs_gather_1
=
[
result_name
+
"@gather_1"
]
node_gather_1
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
name_select_nms
+
[
result_name
+
"@const_1"
],
outputs
=
outputs_gather_1
,
axis
=
1
)
node_list
.
append
(
node_gather_1
)
outputs_squeeze_gather_1
=
[
result_name
+
"@sequeeze_gather_1"
]
node_squeeze_gather_1
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_gather_1
,
outputs
=
outputs_squeeze_gather_1
,
axes
=
[
1
])
node_list
.
append
(
node_squeeze_gather_1
)
outputs_gather_2
=
[
result_name
+
"@gather_2"
]
node_gather_2
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
name_select_nms
+
[
result_name
+
"@const_2"
],
outputs
=
outputs_gather_2
,
axis
=
1
)
node_list
.
append
(
node_gather_2
)
#slice the class is not 0
if
background
==
0
:
outputs_nonzero
=
[
result_name
+
"@nonzero"
]
node_nonzero
=
onnx
.
helper
.
make_node
(
'NonZero'
,
inputs
=
outputs_squeeze_gather_1
,
outputs
=
outputs_nonzero
)
node_list
.
append
(
node_nonzero
)
else
:
name_thresh
=
[
result_name
+
"@thresh"
]
node_thresh
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_thresh
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_thresh
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT32
,
dims
=
[
1
],
vals
=
[
-
1
]))
node_list
.
append
(
node_thresh
)
outputs_cast
=
[
result_name
+
"@cast"
]
node_cast
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_squeeze_gather_1
,
outputs
=
outputs_cast
,
to
=
6
)
node_list
.
append
(
node_cast
)
outputs_greater
=
[
result_name
+
"@greater"
]
node_greater
=
onnx
.
helper
.
make_node
(
'Greater'
,
inputs
=
outputs_cast
+
name_thresh
,
outputs
=
outputs_greater
)
node_list
.
append
(
node_greater
)
outputs_nonzero
=
[
result_name
+
"@nonzero"
]
node_nonzero
=
onnx
.
helper
.
make_node
(
'NonZero'
,
inputs
=
outputs_greater
,
outputs
=
outputs_nonzero
)
node_list
.
append
(
node_nonzero
)
outputs_gather_1_nonzero
=
[
result_name
+
"@gather_1_nonzero"
]
node_gather_1_nonzero
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_1
+
outputs_nonzero
,
outputs
=
outputs_gather_1_nonzero
,
axis
=
0
)
node_list
.
append
(
node_gather_1_nonzero
)
outputs_gather_2_nonzero
=
[
result_name
+
"@gather_2_nonzero"
]
node_gather_2_nonzero
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_2
+
outputs_nonzero
,
outputs
=
outputs_gather_2_nonzero
,
axis
=
0
)
node_list
.
append
(
node_gather_2_nonzero
)
# reshape scores N * C * M to (N*C*M) * 1
outputs_reshape_scores_rank1
=
[
result_name
+
"@reshape_scores_rank1"
]
node_reshape_scores_rank1
=
onnx
.
helper
.
make_node
(
"Reshape"
,
inputs
=
inputs
[
'Scores'
]
+
[
result_name
+
"@const_-1"
],
outputs
=
outputs_reshape_scores_rank1
)
node_list
.
append
(
node_reshape_scores_rank1
)
# get the shape of scores
outputs_shape_scores
=
[
result_name
+
"@shape_scores"
]
node_shape_scores
=
onnx
.
helper
.
make_node
(
'Shape'
,
inputs
=
inputs
[
'Scores'
],
outputs
=
outputs_shape_scores
)
node_list
.
append
(
node_shape_scores
)
# gather the index: 2 shape of scores
outputs_gather_scores_dim1
=
[
result_name
+
"@gather_scores_dim1"
]
node_gather_scores_dim1
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_shape_scores
+
[
result_name
+
"@const_2"
],
outputs
=
outputs_gather_scores_dim1
,
axis
=
0
)
node_list
.
append
(
node_gather_scores_dim1
)
# mul class * M
outputs_mul_classnum_boxnum
=
[
result_name
+
"@mul_classnum_boxnum"
]
node_mul_classnum_boxnum
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_gather_1_nonzero
+
outputs_gather_scores_dim1
,
outputs
=
outputs_mul_classnum_boxnum
)
node_list
.
append
(
node_mul_classnum_boxnum
)
# add class * M * index
outputs_add_class_M_index
=
[
result_name
+
"@add_class_M_index"
]
node_add_class_M_index
=
onnx
.
helper
.
make_node
(
'Add'
,
inputs
=
outputs_mul_classnum_boxnum
+
outputs_gather_2_nonzero
,
outputs
=
outputs_add_class_M_index
)
node_list
.
append
(
node_add_class_M_index
)
# Squeeze the indices to 1 dim
outputs_squeeze_select_index
=
[
result_name
+
"@squeeze_select_index"
]
node_squeeze_select_index
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_add_class_M_index
,
outputs
=
outputs_squeeze_select_index
,
axes
=
[
0
,
2
])
node_list
.
append
(
node_squeeze_select_index
)
# gather the data from flatten scores
outputs_gather_select_scores
=
[
result_name
+
"@gather_select_scores"
]
node_gather_select_scores
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_reshape_scores_rank1
+
\
outputs_squeeze_select_index
,
outputs
=
outputs_gather_select_scores
,
axis
=
0
)
node_list
.
append
(
node_gather_select_scores
)
# get nums to input TopK
outputs_shape_select_num
=
[
result_name
+
"@shape_select_num"
]
node_shape_select_num
=
onnx
.
helper
.
make_node
(
'Shape'
,
inputs
=
outputs_gather_select_scores
,
outputs
=
outputs_shape_select_num
)
node_list
.
append
(
node_shape_select_num
)
outputs_gather_select_num
=
[
result_name
+
"@gather_select_num"
]
node_gather_select_num
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_shape_select_num
+
[
result_name
+
"@const_0"
],
outputs
=
outputs_gather_select_num
,
axis
=
0
)
node_list
.
append
(
node_gather_select_num
)
outputs_unsqueeze_select_num
=
[
result_name
+
"@unsqueeze_select_num"
]
node_unsqueeze_select_num
=
onnx
.
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
outputs_gather_select_num
,
outputs
=
outputs_unsqueeze_select_num
,
axes
=
[
0
])
node_list
.
append
(
node_unsqueeze_select_num
)
outputs_concat_topK_select_num
=
[
result_name
+
"@conat_topK_select_num"
]
node_conat_topK_select_num
=
onnx
.
helper
.
make_node
(
'Concat'
,
inputs
=
outputs_unsqueeze_select_num
+
name_keep_top_k_2D
,
outputs
=
outputs_concat_topK_select_num
,
axis
=
0
)
node_list
.
append
(
node_conat_topK_select_num
)
outputs_cast_concat_topK_select_num
=
[
result_name
+
"@concat_topK_select_num"
]
node_outputs_cast_concat_topK_select_num
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_concat_topK_select_num
,
outputs
=
outputs_cast_concat_topK_select_num
,
to
=
6
)
node_list
.
append
(
node_outputs_cast_concat_topK_select_num
)
# get min(topK, num_select)
outputs_compare_topk_num_select
=
[
result_name
+
"@compare_topk_num_select"
]
node_compare_topk_num_select
=
onnx
.
helper
.
make_node
(
'ReduceMin'
,
inputs
=
outputs_cast_concat_topK_select_num
,
outputs
=
outputs_compare_topk_num_select
,
keepdims
=
0
)
node_list
.
append
(
node_compare_topk_num_select
)
# unsqueeze the indices to 1D tensor
outputs_unsqueeze_topk_select_indices
=
[
result_name
+
"@unsqueeze_topk_select_indices"
]
node_unsqueeze_topk_select_indices
=
onnx
.
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
outputs_compare_topk_num_select
,
outputs
=
outputs_unsqueeze_topk_select_indices
,
axes
=
[
0
])
node_list
.
append
(
node_unsqueeze_topk_select_indices
)
# cast the indices to INT64
outputs_cast_topk_indices
=
[
result_name
+
"@cast_topk_indices"
]
node_cast_topk_indices
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_unsqueeze_topk_select_indices
,
outputs
=
outputs_cast_topk_indices
,
to
=
7
)
node_list
.
append
(
node_cast_topk_indices
)
# select topk scores indices
outputs_topk_select_topk_indices
=
[
result_name
+
"@topk_select_topk_values"
,
\
result_name
+
"@topk_select_topk_indices"
]
node_topk_select_topk_indices
=
onnx
.
helper
.
make_node
(
'TopK'
,
inputs
=
outputs_gather_select_scores
+
outputs_cast_topk_indices
,
outputs
=
outputs_topk_select_topk_indices
)
node_list
.
append
(
node_topk_select_topk_indices
)
# gather topk label, scores, boxes
outputs_gather_topk_scores
=
[
result_name
+
"@gather_topk_scores"
]
node_gather_topk_scores
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_select_scores
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_scores
,
axis
=
0
)
node_list
.
append
(
node_gather_topk_scores
)
outputs_gather_topk_class
=
[
result_name
+
"@gather_topk_class"
]
node_gather_topk_class
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_1_nonzero
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_class
,
axis
=
1
)
node_list
.
append
(
node_gather_topk_class
)
# gather the boxes need to gather the boxes id, then get boxes
outputs_gather_topk_boxes_id
=
[
result_name
+
"@gather_topk_boxes_id"
]
node_gather_topk_boxes_id
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
outputs_gather_2_nonzero
+
[
outputs_topk_select_topk_indices
[
1
]],
outputs
=
outputs_gather_topk_boxes_id
,
axis
=
1
)
node_list
.
append
(
node_gather_topk_boxes_id
)
# squeeze the gather_topk_boxes_id to 1 dim
outputs_squeeze_topk_boxes_id
=
[
result_name
+
"@squeeze_topk_boxes_id"
]
node_squeeze_topk_boxes_id
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_gather_topk_boxes_id
,
outputs
=
outputs_squeeze_topk_boxes_id
,
axes
=
[
0
,
2
])
node_list
.
append
(
node_squeeze_topk_boxes_id
)
outputs_gather_select_boxes
=
[
result_name
+
"@gather_select_boxes"
]
node_gather_select_boxes
=
onnx
.
helper
.
make_node
(
'Gather'
,
inputs
=
inputs
[
'BBoxes'
]
+
outputs_squeeze_topk_boxes_id
,
outputs
=
outputs_gather_select_boxes
,
axis
=
1
)
node_list
.
append
(
node_gather_select_boxes
)
# concat the final result
# before concat need to cast the class to float
outputs_cast_topk_class
=
[
result_name
+
"@cast_topk_class"
]
node_cast_topk_class
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_gather_topk_class
,
outputs
=
outputs_cast_topk_class
,
to
=
1
)
node_list
.
append
(
node_cast_topk_class
)
outputs_unsqueeze_topk_scores
=
[
result_name
+
"@unsqueeze_topk_scores"
]
node_unsqueeze_topk_scores
=
onnx
.
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
outputs_gather_topk_scores
,
outputs
=
outputs_unsqueeze_topk_scores
,
axes
=
[
0
,
2
])
node_list
.
append
(
node_unsqueeze_topk_scores
)
inputs_concat_final_results
=
outputs_cast_topk_class
+
outputs_unsqueeze_topk_scores
+
\
outputs_gather_select_boxes
outputs_concat_final_results
=
outputs
[
'Out'
]
node_concat_final_results
=
onnx
.
helper
.
make_node
(
'Concat'
,
inputs
=
inputs_concat_final_results
,
outputs
=
outputs_concat_final_results
,
axis
=
2
)
node_list
.
append
(
node_concat_final_results
)
return
node_list
x2paddle/op_mapper/paddle_custom_layer/yolo_box.py
已删除
100644 → 0
浏览文件 @
bbc964e8
import
onnx
import
numpy
as
np
from
onnx
import
onnx_pb
,
helper
def
get_old_name
(
arg
,
name_prefix
=
''
):
prefix_index
=
arg
.
find
(
name_prefix
)
if
prefix_index
!=
-
1
:
last_prefix
=
arg
[
len
(
name_prefix
):]
else
:
last_prefix
=
arg
idx
=
last_prefix
.
find
(
'@'
)
if
idx
!=
-
1
:
last_prefix
=
last_prefix
[:
idx
]
return
name_prefix
+
last_prefix
def
yolo_box
(
op
,
block
):
inputs
=
dict
()
outputs
=
dict
()
attrs
=
dict
()
for
name
in
op
.
input_names
:
inputs
[
name
]
=
op
.
input
(
name
)
for
name
in
op
.
output_names
:
outputs
[
name
]
=
op
.
output
(
name
)
for
name
in
op
.
attr_names
:
attrs
[
name
]
=
op
.
attr
(
name
)
model_name
=
outputs
[
'Boxes'
][
0
]
input_shape
=
block
.
vars
[
get_old_name
(
inputs
[
'X'
][
0
])].
shape
image_size
=
inputs
[
'ImgSize'
]
input_height
=
input_shape
[
2
]
input_width
=
input_shape
[
3
]
class_num
=
attrs
[
'class_num'
]
anchors
=
attrs
[
'anchors'
]
num_anchors
=
int
(
len
(
anchors
))
//
2
downsample_ratio
=
attrs
[
'downsample_ratio'
]
input_size
=
input_height
*
downsample_ratio
conf_thresh
=
attrs
[
'conf_thresh'
]
conf_thresh_mat
=
np
.
ones
([
num_anchors
*
input_height
*
input_width
])
*
conf_thresh
node_list
=
[]
im_outputs
=
[]
x_shape
=
[
1
,
num_anchors
,
5
+
class_num
,
input_height
,
input_width
]
name_x_shape
=
[
model_name
+
"@x_shape"
]
node_x_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_x_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_x_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
5
],
vals
=
x_shape
))
node_list
.
append
(
node_x_shape
)
outputs_x_reshape
=
[
model_name
+
"@reshape"
]
node_x_reshape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
inputs
[
'X'
]
+
name_x_shape
,
outputs
=
outputs_x_reshape
)
node_list
.
append
(
node_x_reshape
)
outputs_x_transpose
=
[
model_name
+
"@x_transpose"
]
node_x_transpose
=
onnx
.
helper
.
make_node
(
'Transpose'
,
inputs
=
outputs_x_reshape
,
outputs
=
outputs_x_transpose
,
perm
=
[
0
,
1
,
3
,
4
,
2
])
node_list
.
append
(
node_x_transpose
)
range_x
=
[]
range_y
=
[]
for
i
in
range
(
0
,
input_width
):
range_x
.
append
(
i
)
for
j
in
range
(
0
,
input_height
):
range_y
.
append
(
j
)
name_range_x
=
[
model_name
+
"@range_x"
]
node_range_x
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_range_x
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_range_x
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
[
input_width
],
vals
=
range_x
))
node_list
.
append
(
node_range_x
)
name_range_y
=
[
model_name
+
"@range_y"
]
node_range_y
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_range_y
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_range_y
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
[
input_height
],
vals
=
range_y
))
node_list
.
append
(
node_range_y
)
range_x_new_shape
=
[
1
,
input_width
]
range_y_new_shape
=
[
input_height
,
1
]
name_range_x_new_shape
=
[
model_name
+
"@range_x_new_shape"
]
node_range_x_new_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_range_x_new_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_range_x_new_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
range_x_new_shape
)],
vals
=
range_x_new_shape
))
node_list
.
append
(
node_range_x_new_shape
)
name_range_y_new_shape
=
[
model_name
+
"@range_y_new_shape"
]
node_range_y_new_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_range_y_new_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_range_y_new_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
range_y_new_shape
)],
vals
=
range_y_new_shape
))
node_list
.
append
(
node_range_y_new_shape
)
outputs_range_x_reshape
=
[
model_name
+
"@range_x_reshape"
]
node_range_x_reshape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
name_range_x
+
name_range_x_new_shape
,
outputs
=
outputs_range_x_reshape
)
node_list
.
append
(
node_range_x_reshape
)
outputs_range_y_reshape
=
[
model_name
+
"@range_y_reshape"
]
node_range_y_reshape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
name_range_y
+
name_range_y_new_shape
,
outputs
=
outputs_range_y_reshape
)
node_list
.
append
(
node_range_y_reshape
)
outputs_grid_x
=
[
model_name
+
"@grid_x"
]
node_grid_x
=
onnx
.
helper
.
make_node
(
"Tile"
,
inputs
=
outputs_range_x_reshape
+
name_range_y_new_shape
,
outputs
=
outputs_grid_x
)
node_list
.
append
(
node_grid_x
)
outputs_grid_y
=
[
model_name
+
"@grid_y"
]
node_grid_y
=
onnx
.
helper
.
make_node
(
"Tile"
,
inputs
=
outputs_range_y_reshape
+
name_range_x_new_shape
,
outputs
=
outputs_grid_y
)
node_list
.
append
(
node_grid_y
)
outputs_box_x
=
[
model_name
+
"@box_x"
]
outputs_box_y
=
[
model_name
+
"@box_y"
]
outputs_box_w
=
[
model_name
+
"@box_w"
]
outputs_box_h
=
[
model_name
+
"@box_h"
]
outputs_conf
=
[
model_name
+
"@conf"
]
outputs_prob
=
[
model_name
+
"@prob"
]
node_split_input
=
onnx
.
helper
.
make_node
(
"Split"
,
inputs
=
outputs_x_transpose
,
outputs
=
outputs_box_x
+
outputs_box_y
+
outputs_box_w
\
+
outputs_box_h
+
outputs_conf
+
outputs_prob
,
axis
=-
1
,
split
=
[
1
,
1
,
1
,
1
,
1
,
class_num
])
node_list
.
append
(
node_split_input
)
outputs_box_x_sigmoid
=
[
model_name
+
"@box_x_sigmoid"
]
outputs_box_y_sigmoid
=
[
model_name
+
"@box_y_sigmoid"
]
node_box_x_sigmoid
=
onnx
.
helper
.
make_node
(
"Sigmoid"
,
inputs
=
outputs_box_x
,
outputs
=
outputs_box_x_sigmoid
)
node_list
.
append
(
node_box_x_sigmoid
)
node_box_y_sigmoid
=
onnx
.
helper
.
make_node
(
"Sigmoid"
,
inputs
=
outputs_box_y
,
outputs
=
outputs_box_y_sigmoid
)
node_list
.
append
(
node_box_y_sigmoid
)
outputs_box_x_squeeze
=
[
model_name
+
"@box_x_squeeze"
]
outputs_box_y_squeeze
=
[
model_name
+
"@box_y_squeeze"
]
node_box_x_squeeze
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_box_x_sigmoid
,
outputs
=
outputs_box_x_squeeze
,
axes
=
[
4
])
node_list
.
append
(
node_box_x_squeeze
)
node_box_y_squeeze
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_box_y_sigmoid
,
outputs
=
outputs_box_y_squeeze
,
axes
=
[
4
])
node_list
.
append
(
node_box_y_squeeze
)
outputs_box_x_add_grid
=
[
model_name
+
"@box_x_add_grid"
]
outputs_box_y_add_grid
=
[
model_name
+
"@box_y_add_grid"
]
node_box_x_add_grid
=
onnx
.
helper
.
make_node
(
"Add"
,
inputs
=
outputs_grid_x
+
outputs_box_x_squeeze
,
outputs
=
outputs_box_x_add_grid
)
node_list
.
append
(
node_box_x_add_grid
)
node_box_y_add_grid
=
onnx
.
helper
.
make_node
(
"Add"
,
inputs
=
outputs_grid_y
+
outputs_box_y_squeeze
,
outputs
=
outputs_box_y_add_grid
)
node_list
.
append
(
node_box_y_add_grid
)
name_input_h
=
[
model_name
+
"@input_h"
]
name_input_w
=
[
model_name
+
"@input_w"
]
node_input_h
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_input_h
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_input_w
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
input_height
]))
node_list
.
append
(
node_input_h
)
node_input_w
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_input_w
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_input_w
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
input_width
]))
node_list
.
append
(
node_input_w
)
outputs_box_x_encode
=
[
model_name
+
"@box_x_encode"
]
outputs_box_y_encode
=
[
model_name
+
"@box_y_encode"
]
node_box_x_encode
=
onnx
.
helper
.
make_node
(
'Div'
,
inputs
=
outputs_box_x_add_grid
+
name_input_w
,
outputs
=
outputs_box_x_encode
)
node_list
.
append
(
node_box_x_encode
)
node_box_y_encode
=
onnx
.
helper
.
make_node
(
'Div'
,
inputs
=
outputs_box_y_add_grid
+
name_input_h
,
outputs
=
outputs_box_y_encode
)
node_list
.
append
(
node_box_y_encode
)
name_anchor_tensor
=
[
model_name
+
"@anchor_tensor"
]
node_anchor_tensor
=
onnx
.
helper
.
make_node
(
"Constant"
,
inputs
=
[],
outputs
=
name_anchor_tensor
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_anchor_tensor
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
[
len
(
anchors
)],
vals
=
anchors
))
node_list
.
append
(
node_anchor_tensor
)
anchor_shape
=
[
int
(
num_anchors
),
2
]
name_anchor_shape
=
[
model_name
+
"@anchor_shape"
]
node_anchor_shape
=
onnx
.
helper
.
make_node
(
"Constant"
,
inputs
=
[],
outputs
=
name_anchor_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_anchor_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
2
],
vals
=
anchor_shape
))
node_list
.
append
(
node_anchor_shape
)
outputs_anchor_tensor_reshape
=
[
model_name
+
"@anchor_tensor_reshape"
]
node_anchor_tensor_reshape
=
onnx
.
helper
.
make_node
(
"Reshape"
,
inputs
=
name_anchor_tensor
+
name_anchor_shape
,
outputs
=
outputs_anchor_tensor_reshape
)
node_list
.
append
(
node_anchor_tensor_reshape
)
name_input_size
=
[
model_name
+
"@input_size"
]
node_input_size
=
onnx
.
helper
.
make_node
(
"Constant"
,
inputs
=
[],
outputs
=
name_input_size
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_input_size
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
input_size
]))
node_list
.
append
(
node_input_size
)
outputs_anchors_div_input_size
=
[
model_name
+
"@anchors_div_input_size"
]
node_anchors_div_input_size
=
onnx
.
helper
.
make_node
(
"Div"
,
inputs
=
outputs_anchor_tensor_reshape
+
name_input_size
,
outputs
=
outputs_anchors_div_input_size
)
node_list
.
append
(
node_anchors_div_input_size
)
outputs_anchor_w
=
[
model_name
+
"@anchor_w"
]
outputs_anchor_h
=
[
model_name
+
"@anchor_h"
]
node_anchor_split
=
onnx
.
helper
.
make_node
(
'Split'
,
inputs
=
outputs_anchors_div_input_size
,
outputs
=
outputs_anchor_w
+
outputs_anchor_h
,
axis
=
1
,
split
=
[
1
,
1
])
node_list
.
append
(
node_anchor_split
)
new_anchor_shape
=
[
1
,
int
(
num_anchors
),
1
,
1
]
name_new_anchor_shape
=
[
model_name
+
"@new_anchor_shape"
]
node_new_anchor_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_new_anchor_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_new_anchor_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
new_anchor_shape
)],
vals
=
new_anchor_shape
))
node_list
.
append
(
node_new_anchor_shape
)
outputs_anchor_w_reshape
=
[
model_name
+
"@anchor_w_reshape"
]
outputs_anchor_h_reshape
=
[
model_name
+
"@anchor_h_reshape"
]
node_anchor_w_reshape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_anchor_w
+
name_new_anchor_shape
,
outputs
=
outputs_anchor_w_reshape
)
node_list
.
append
(
node_anchor_w_reshape
)
node_anchor_h_reshape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_anchor_h
+
name_new_anchor_shape
,
outputs
=
outputs_anchor_h_reshape
)
node_list
.
append
(
node_anchor_h_reshape
)
outputs_box_w_squeeze
=
[
model_name
+
"@box_w_squeeze"
]
node_box_w_squeeze
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_box_w
,
outputs
=
outputs_box_w_squeeze
,
axes
=
[
4
])
node_list
.
append
(
node_box_w_squeeze
)
outputs_box_h_squeeze
=
[
model_name
+
"@box_h_squeeze"
]
node_box_h_squeeze
=
onnx
.
helper
.
make_node
(
'Squeeze'
,
inputs
=
outputs_box_h
,
outputs
=
outputs_box_h_squeeze
,
axes
=
[
4
])
node_list
.
append
(
node_box_h_squeeze
)
outputs_box_w_exp
=
[
model_name
+
"@box_w_exp"
]
node_box_w_exp
=
onnx
.
helper
.
make_node
(
"Exp"
,
inputs
=
outputs_box_w_squeeze
,
outputs
=
outputs_box_w_exp
)
node_list
.
append
(
node_box_w_exp
)
outputs_box_h_exp
=
[
model_name
+
"@box_h_exp"
]
node_box_h_exp
=
onnx
.
helper
.
make_node
(
"Exp"
,
inputs
=
outputs_box_h_squeeze
,
outputs
=
outputs_box_h_exp
)
node_list
.
append
(
node_box_h_exp
)
outputs_box_w_encode
=
[
model_name
+
"box_w_encode"
]
outputs_box_h_encode
=
[
model_name
+
"box_h_encode"
]
node_box_w_encode
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_box_w_exp
+
outputs_anchor_w_reshape
,
outputs
=
outputs_box_w_encode
)
node_list
.
append
(
node_box_w_encode
)
node_box_h_encode
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_box_h_exp
+
outputs_anchor_h_reshape
,
outputs
=
outputs_box_h_encode
)
node_list
.
append
(
node_box_h_encode
)
outputs_conf_sigmoid
=
[
model_name
+
"@conf_sigmoid"
]
node_conf_sigmoid
=
onnx
.
helper
.
make_node
(
'Sigmoid'
,
inputs
=
outputs_conf
,
outputs
=
outputs_conf_sigmoid
)
node_list
.
append
(
node_conf_sigmoid
)
name_conf_thresh
=
[
model_name
+
"@conf_thresh"
]
node_conf_thresh
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_conf_thresh
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_conf_thresh
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
[
num_anchors
*
input_height
*
input_width
],
vals
=
conf_thresh_mat
))
node_list
.
append
(
node_conf_thresh
)
conf_shape
=
[
1
,
int
(
num_anchors
),
input_height
,
input_width
,
1
]
name_conf_shape
=
[
model_name
+
"@conf_shape"
]
node_conf_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_conf_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_conf_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
conf_shape
)],
vals
=
conf_shape
))
node_list
.
append
(
node_conf_shape
)
outputs_conf_thresh_reshape
=
[
model_name
+
"@conf_thresh_reshape"
]
node_conf_thresh_reshape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
name_conf_thresh
+
name_conf_shape
,
outputs
=
outputs_conf_thresh_reshape
)
node_list
.
append
(
node_conf_thresh_reshape
)
outputs_conf_sub
=
[
model_name
+
"@conf_sub"
]
node_conf_sub
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_conf_sigmoid
+
outputs_conf_thresh_reshape
,
outputs
=
outputs_conf_sub
)
node_list
.
append
(
node_conf_sub
)
outputs_conf_clip
=
[
model_name
+
"@conf_clip"
]
node_conf_clip
=
onnx
.
helper
.
make_node
(
'Clip'
,
inputs
=
outputs_conf_sub
,
outputs
=
outputs_conf_clip
)
node_list
.
append
(
node_conf_clip
)
zeros
=
[
0
]
name_zeros
=
[
model_name
+
"@zeros"
]
node_zeros
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_zeros
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_zeros
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
zeros
))
node_list
.
append
(
node_zeros
)
outputs_conf_clip_bool
=
[
model_name
+
"@conf_clip_bool"
]
node_conf_clip_bool
=
onnx
.
helper
.
make_node
(
'Greater'
,
inputs
=
outputs_conf_clip
+
name_zeros
,
outputs
=
outputs_conf_clip_bool
)
node_list
.
append
(
node_conf_clip_bool
)
outputs_conf_clip_cast
=
[
model_name
+
"@conf_clip_cast"
]
node_conf_clip_cast
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_conf_clip_bool
,
outputs
=
outputs_conf_clip_cast
,
to
=
1
)
node_list
.
append
(
node_conf_clip_cast
)
outputs_conf_set_zero
=
[
model_name
+
"@conf_set_zero"
]
node_conf_set_zero
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_conf_sigmoid
+
outputs_conf_clip_cast
,
outputs
=
outputs_conf_set_zero
)
node_list
.
append
(
node_conf_set_zero
)
outputs_prob_sigmoid
=
[
model_name
+
"@prob_sigmoid"
]
node_prob_sigmoid
=
onnx
.
helper
.
make_node
(
'Sigmoid'
,
inputs
=
outputs_prob
,
outputs
=
outputs_prob_sigmoid
)
node_list
.
append
(
node_prob_sigmoid
)
new_shape
=
[
1
,
int
(
num_anchors
),
input_height
,
input_width
,
1
]
name_new_shape
=
[
model_name
+
"@new_shape"
]
node_new_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_new_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_new_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
new_shape
)],
vals
=
new_shape
))
node_list
.
append
(
node_new_shape
)
outputs_conf_new_shape
=
[
model_name
+
"@_conf_new_shape"
]
node_conf_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_conf_set_zero
+
name_new_shape
,
outputs
=
outputs_conf_new_shape
)
node_list
.
append
(
node_conf_new_shape
)
outputs_score
=
[
model_name
+
"@score"
]
node_score
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_prob_sigmoid
+
outputs_conf_new_shape
,
outputs
=
outputs_score
)
node_list
.
append
(
node_score
)
outputs_conf_bool
=
[
model_name
+
"@conf_bool"
]
node_conf_bool
=
onnx
.
helper
.
make_node
(
'Greater'
,
inputs
=
outputs_conf_new_shape
+
name_zeros
,
outputs
=
outputs_conf_bool
)
node_list
.
append
(
node_conf_bool
)
outputs_box_x_new_shape
=
[
model_name
+
"@box_x_new_shape"
]
node_box_x_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_box_x_encode
+
name_new_shape
,
outputs
=
outputs_box_x_new_shape
)
node_list
.
append
(
node_box_x_new_shape
)
outputs_box_y_new_shape
=
[
model_name
+
"@box_y_new_shape"
]
node_box_y_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_box_y_encode
+
name_new_shape
,
outputs
=
outputs_box_y_new_shape
)
node_list
.
append
(
node_box_y_new_shape
)
outputs_box_w_new_shape
=
[
model_name
+
"@box_w_new_shape"
]
node_box_w_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_box_w_encode
+
name_new_shape
,
outputs
=
outputs_box_w_new_shape
)
node_list
.
append
(
node_box_w_new_shape
)
outputs_box_h_new_shape
=
[
model_name
+
"@box_h_new_shape"
]
node_box_h_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_box_h_encode
+
name_new_shape
,
outputs
=
outputs_box_h_new_shape
)
node_list
.
append
(
node_box_h_new_shape
)
outputs_pred_box
=
[
model_name
+
"@pred_box"
]
node_pred_box
=
onnx
.
helper
.
make_node
(
'Concat'
,
inputs
=
outputs_box_x_new_shape
+
outputs_box_y_new_shape
+
\
outputs_box_w_new_shape
+
outputs_box_h_new_shape
,
outputs
=
outputs_pred_box
,
axis
=
4
)
node_list
.
append
(
node_pred_box
)
outputs_conf_cast
=
[
model_name
+
"conf_cast"
]
node_conf_cast
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
outputs_conf_bool
,
outputs
=
outputs_conf_cast
,
to
=
1
)
node_list
.
append
(
node_conf_cast
)
outputs_pred_box_mul_conf
=
[
model_name
+
"@pred_box_mul_conf"
]
node_pred_box_mul_conf
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_pred_box
+
outputs_conf_cast
,
outputs
=
outputs_pred_box_mul_conf
)
node_list
.
append
(
node_pred_box_mul_conf
)
box_shape
=
[
1
,
int
(
num_anchors
)
*
input_height
*
input_width
,
4
]
name_box_shape
=
[
model_name
+
"@box_shape"
]
node_box_shape
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_box_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_box_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
box_shape
)],
vals
=
box_shape
))
node_list
.
append
(
node_box_shape
)
outputs_pred_box_new_shape
=
[
model_name
+
"@pred_box_new_shape"
]
node_pred_box_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_pred_box_mul_conf
+
name_box_shape
,
outputs
=
outputs_pred_box_new_shape
)
node_list
.
append
(
node_pred_box_new_shape
)
outputs_pred_box_x
=
[
model_name
+
"@_pred_box_x"
]
outputs_pred_box_y
=
[
model_name
+
"@_pred_box_y"
]
outputs_pred_box_w
=
[
model_name
+
"@_pred_box_w"
]
outputs_pred_box_h
=
[
model_name
+
"@_pred_box_h"
]
node_pred_box_split
=
onnx
.
helper
.
make_node
(
'Split'
,
inputs
=
outputs_pred_box_new_shape
,
outputs
=
outputs_pred_box_x
+
outputs_pred_box_y
+
outputs_pred_box_w
+
outputs_pred_box_h
,
axis
=
2
)
node_list
.
append
(
node_pred_box_split
)
name_number_two
=
[
model_name
+
"@number_two"
]
node_number_two
=
onnx
.
helper
.
make_node
(
"Constant"
,
inputs
=
[],
outputs
=
name_number_two
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_number_two
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
2
]))
node_list
.
append
(
node_number_two
)
outputs_half_w
=
[
model_name
+
"@half_w"
]
node_half_w
=
onnx
.
helper
.
make_node
(
"Div"
,
inputs
=
outputs_pred_box_w
+
name_number_two
,
outputs
=
outputs_half_w
)
node_list
.
append
(
node_half_w
)
outputs_half_h
=
[
model_name
+
"@half_h"
]
node_half_h
=
onnx
.
helper
.
make_node
(
"Div"
,
inputs
=
outputs_pred_box_h
+
name_number_two
,
outputs
=
outputs_half_h
)
node_list
.
append
(
node_half_h
)
outputs_pred_box_x1
=
[
model_name
+
"@pred_box_x1"
]
node_pred_box_x1
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_pred_box_x
+
outputs_half_w
,
outputs
=
outputs_pred_box_x1
)
node_list
.
append
(
node_pred_box_x1
)
outputs_pred_box_y1
=
[
model_name
+
"@pred_box_y1"
]
node_pred_box_y1
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_pred_box_y
+
outputs_half_h
,
outputs
=
outputs_pred_box_y1
)
node_list
.
append
(
node_pred_box_y1
)
outputs_pred_box_x2
=
[
model_name
+
"@pred_box_x2"
]
node_pred_box_x2
=
onnx
.
helper
.
make_node
(
'Add'
,
inputs
=
outputs_pred_box_x
+
outputs_half_w
,
outputs
=
outputs_pred_box_x2
)
node_list
.
append
(
node_pred_box_x2
)
outputs_pred_box_y2
=
[
model_name
+
"@pred_box_y2"
]
node_pred_box_y2
=
onnx
.
helper
.
make_node
(
'Add'
,
inputs
=
outputs_pred_box_y
+
outputs_half_h
,
outputs
=
outputs_pred_box_y2
)
node_list
.
append
(
node_pred_box_y2
)
outputs_sqeeze_image_size
=
[
model_name
+
"@sqeeze_image_size"
]
node_sqeeze_image_size
=
onnx
.
helper
.
make_node
(
"Squeeze"
,
axes
=
[
0
],
inputs
=
image_size
,
outputs
=
outputs_sqeeze_image_size
)
node_list
.
append
(
node_sqeeze_image_size
)
output_img_height
=
[
model_name
+
"@img_height"
]
output_img_width
=
[
model_name
+
"@img_width"
]
node_image_size_split
=
onnx
.
helper
.
make_node
(
"Split"
,
inputs
=
outputs_sqeeze_image_size
,
outputs
=
output_img_height
+
output_img_width
,
axis
=-
1
,
split
=
[
1
,
1
])
node_list
.
append
(
node_image_size_split
)
output_img_width_cast
=
[
model_name
+
"@img_width_cast"
]
node_img_width_cast
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
output_img_width
,
outputs
=
output_img_width_cast
,
to
=
1
)
node_list
.
append
(
node_img_width_cast
)
output_img_height_cast
=
[
model_name
+
"@img_height_cast"
]
node_img_height_cast
=
onnx
.
helper
.
make_node
(
'Cast'
,
inputs
=
output_img_height
,
outputs
=
output_img_height_cast
,
to
=
1
)
node_list
.
append
(
node_img_height_cast
)
outputs_pred_box_x1_decode
=
[
model_name
+
"@pred_box_x1_decode"
]
outputs_pred_box_y1_decode
=
[
model_name
+
"@pred_box_y1_decode"
]
outputs_pred_box_x2_decode
=
[
model_name
+
"@pred_box_x2_decode"
]
outputs_pred_box_y2_decode
=
[
model_name
+
"@pred_box_y2_decode"
]
node_pred_box_x1_decode
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_pred_box_x1
+
output_img_width_cast
,
outputs
=
outputs_pred_box_x1_decode
)
node_list
.
append
(
node_pred_box_x1_decode
)
node_pred_box_y1_decode
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_pred_box_y1
+
output_img_height_cast
,
outputs
=
outputs_pred_box_y1_decode
)
node_list
.
append
(
node_pred_box_y1_decode
)
node_pred_box_x2_decode
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_pred_box_x2
+
output_img_width_cast
,
outputs
=
outputs_pred_box_x2_decode
)
node_list
.
append
(
node_pred_box_x2_decode
)
node_pred_box_y2_decode
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
outputs_pred_box_y2
+
output_img_height_cast
,
outputs
=
outputs_pred_box_y2_decode
)
node_list
.
append
(
node_pred_box_y2_decode
)
name_number_one
=
[
model_name
+
"@one"
]
node_number_one
=
onnx
.
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
name_number_one
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_number_one
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
1
]))
node_list
.
append
(
node_number_one
)
output_new_img_height
=
[
model_name
+
"@new_img_height"
]
node_new_img_height
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
output_img_height_cast
+
name_number_one
,
outputs
=
output_new_img_height
)
node_list
.
append
(
node_new_img_height
)
output_new_img_width
=
[
model_name
+
"@new_img_width"
]
node_new_img_width
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
output_img_width_cast
+
name_number_one
,
outputs
=
output_new_img_width
)
node_list
.
append
(
node_new_img_width
)
outputs_pred_box_x2_sub_w
=
[
model_name
+
"@pred_box_x2_sub_w"
]
node_pred_box_x2_sub_w
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_pred_box_x2_decode
+
output_new_img_width
,
outputs
=
outputs_pred_box_x2_sub_w
)
node_list
.
append
(
node_pred_box_x2_sub_w
)
outputs_pred_box_y2_sub_h
=
[
model_name
+
"@pred_box_y2_sub_h"
]
node_pred_box_y2_sub_h
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_pred_box_y2_decode
+
output_new_img_height
,
outputs
=
outputs_pred_box_y2_sub_h
)
node_list
.
append
(
node_pred_box_y2_sub_h
)
outputs_pred_box_x1_clip
=
[
model_name
+
"@pred_box_x1_clip"
]
outputs_pred_box_y1_clip
=
[
model_name
+
"@pred_box_y1_clip"
]
outputs_pred_box_x2_clip
=
[
model_name
+
"@pred_box_x2_clip"
]
outputs_pred_box_y2_clip
=
[
model_name
+
"@pred_box_y2_clip"
]
node_pred_box_x1_clip
=
onnx
.
helper
.
make_node
(
'Clip'
,
inputs
=
outputs_pred_box_x1_decode
,
outputs
=
outputs_pred_box_x1_clip
,
min
=
0.0
,
max
=
float
(
np
.
inf
))
node_list
.
append
(
node_pred_box_x1_clip
)
node_pred_box_y1_clip
=
onnx
.
helper
.
make_node
(
'Clip'
,
inputs
=
outputs_pred_box_y1_decode
,
outputs
=
outputs_pred_box_y1_clip
,
min
=
0.0
,
max
=
float
(
np
.
inf
))
node_list
.
append
(
node_pred_box_y1_clip
)
node_pred_box_x2_clip
=
onnx
.
helper
.
make_node
(
'Clip'
,
inputs
=
outputs_pred_box_x2_sub_w
,
outputs
=
outputs_pred_box_x2_clip
,
min
=
0.0
,
max
=
float
(
np
.
inf
))
node_list
.
append
(
node_pred_box_x2_clip
)
node_pred_box_y2_clip
=
onnx
.
helper
.
make_node
(
'Clip'
,
inputs
=
outputs_pred_box_y2_sub_h
,
outputs
=
outputs_pred_box_y2_clip
,
min
=
0.0
,
max
=
float
(
np
.
inf
))
node_list
.
append
(
node_pred_box_y2_clip
)
outputs_pred_box_x2_res
=
[
model_name
+
"@box_x2_res"
]
node_pred_box_x2_res
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_pred_box_x2_decode
+
outputs_pred_box_x2_clip
,
outputs
=
outputs_pred_box_x2_res
)
node_list
.
append
(
node_pred_box_x2_res
)
outputs_pred_box_y2_res
=
[
model_name
+
"@box_y2_res"
]
node_pred_box_y2_res
=
onnx
.
helper
.
make_node
(
'Sub'
,
inputs
=
outputs_pred_box_y2_decode
+
outputs_pred_box_y2_clip
,
outputs
=
outputs_pred_box_y2_res
)
node_list
.
append
(
node_pred_box_y2_res
)
node_pred_box_result
=
onnx
.
helper
.
make_node
(
'Concat'
,
inputs
=
outputs_pred_box_x1_clip
+
outputs_pred_box_y1_clip
+
outputs_pred_box_x2_res
+
outputs_pred_box_y2_res
,
outputs
=
outputs
[
'Boxes'
],
axis
=-
1
)
node_list
.
append
(
node_pred_box_result
)
score_shape
=
[
1
,
input_height
*
input_width
*
int
(
num_anchors
),
class_num
]
name_score_shape
=
[
model_name
+
"@score_shape"
]
node_score_shape
=
onnx
.
helper
.
make_node
(
"Constant"
,
inputs
=
[],
outputs
=
name_score_shape
,
value
=
onnx
.
helper
.
make_tensor
(
name
=
name_score_shape
[
0
]
+
"@const"
,
data_type
=
onnx
.
TensorProto
.
INT64
,
dims
=
[
len
(
score_shape
)],
vals
=
score_shape
))
node_list
.
append
(
node_score_shape
)
node_score_new_shape
=
onnx
.
helper
.
make_node
(
'Reshape'
,
inputs
=
outputs_score
+
name_score_shape
,
outputs
=
outputs
[
'Scores'
])
node_list
.
append
(
node_score_new_shape
)
return
node_list
x2paddle/op_mapper/paddle_op_mapper.py
已删除
100644 → 0
浏览文件 @
bbc964e8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
sys
import
x2paddle
import
os
import
numpy
as
np
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
import
onnx
from
onnx
import
helper
,
onnx_pb
class
PaddleOpMapper
(
object
):
def
__init__
(
self
):
self
.
paddle_onnx_dtype_map
=
{
core
.
VarDesc
.
VarType
.
FP32
:
onnx_pb
.
TensorProto
.
FLOAT
,
core
.
VarDesc
.
VarType
.
FP64
:
onnx_pb
.
TensorProto
.
DOUBLE
,
core
.
VarDesc
.
VarType
.
INT32
:
onnx_pb
.
TensorProto
.
INT32
,
core
.
VarDesc
.
VarType
.
INT16
:
onnx_pb
.
TensorProto
.
INT16
,
core
.
VarDesc
.
VarType
.
INT16
:
onnx_pb
.
TensorProto
.
UINT16
,
core
.
VarDesc
.
VarType
.
INT64
:
onnx_pb
.
TensorProto
.
INT64
,
core
.
VarDesc
.
VarType
.
BOOL
:
onnx_pb
.
TensorProto
.
BOOL
}
self
.
name_counter
=
dict
()
def
convert
(
self
,
program
,
save_dir
,
opset
=
10
):
weight_nodes
=
self
.
convert_weights
(
program
)
op_nodes
=
list
()
input_nodes
=
list
()
output_nodes
=
list
()
unsupported_ops
=
set
()
print
(
"Translating PaddlePaddle to ONNX...
\n
"
)
for
block
in
program
.
blocks
:
for
i
,
op
in
enumerate
(
block
.
ops
):
sys
.
stdout
.
write
(
"
\r
Total:{}, Current:{} : {} "
.
format
(
len
(
block
.
ops
),
i
+
1
,
op
.
type
))
sys
.
stdout
.
flush
()
if
not
hasattr
(
self
,
op
.
type
):
unsupported_ops
.
add
(
op
.
type
)
continue
if
len
(
unsupported_ops
)
>
0
:
continue
node
=
getattr
(
self
,
op
.
type
)(
op
,
block
)
if
op
.
type
==
'feed'
:
input_nodes
.
append
(
node
)
elif
op
.
type
==
'fetch'
:
output_nodes
.
append
(
node
)
else
:
if
isinstance
(
node
,
list
):
op_nodes
=
op_nodes
+
node
else
:
op_nodes
.
append
(
node
)
if
len
(
unsupported_ops
)
>
0
:
print
(
"
\n
There's {} ops are not supported yet"
.
format
(
len
(
unsupported_ops
)))
for
op
in
unsupported_ops
:
print
(
"=========== {} ==========="
.
format
(
op
))
return
graph
=
helper
.
make_graph
(
nodes
=
weight_nodes
+
op_nodes
,
name
=
'onnx_model_from_paddle'
,
initializer
=
[],
inputs
=
input_nodes
,
outputs
=
output_nodes
)
opset_imports
=
[
helper
.
make_opsetid
(
""
,
opset
)]
model
=
helper
.
make_model
(
graph
,
producer_name
=
'X2Paddle'
,
opset_imports
=
opset_imports
)
onnx
.
checker
.
check_model
(
model
)
if
not
os
.
path
.
isdir
(
save_dir
):
os
.
makedirs
(
save_dir
)
with
open
(
os
.
path
.
join
(
save_dir
,
'x2paddle_model.onnx'
),
'wb'
)
as
f
:
f
.
write
(
model
.
SerializeToString
())
print
(
"
\n
Translated model saved in {}"
.
format
(
os
.
path
.
join
(
save_dir
,
'x2paddle_model.onnx'
)))
def
get_name
(
self
,
op_name
,
var_name
):
name
=
'p2o.{}.{}'
.
format
(
op_name
,
var_name
)
if
name
not
in
self
.
name_counter
:
self
.
name_counter
[
name
]
=
0
else
:
self
.
name_counter
[
name
]
+=
1
return
name
+
'.{}'
.
format
(
self
.
name_counter
[
name
])
def
convert_weights
(
self
,
program
):
var_names
=
program
.
global_block
().
vars
nodes
=
list
()
for
name
in
var_names
:
var
=
program
.
global_block
().
var
(
name
)
if
name
.
endswith
(
'feed'
)
or
name
.
endswith
(
'fetch'
):
continue
if
not
var
.
persistable
:
continue
weight
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
name
).
get_tensor
())
tensor
=
helper
.
make_tensor
(
name
=
name
,
dims
=
var
.
shape
,
data_type
=
self
.
paddle_onnx_dtype_map
[
var
.
dtype
],
vals
=
weight
.
flatten
().
tolist
())
node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
name
],
value
=
tensor
)
nodes
.
append
(
node
)
return
nodes
def
make_constant_node
(
self
,
name
,
dtype
,
value
=
None
):
if
isinstance
(
value
,
list
):
dims
=
(
len
(
value
),
)
elif
value
is
None
:
dims
=
()
value
=
[]
else
:
dims
=
()
value
=
[
value
]
tensor
=
helper
.
make_tensor
(
name
=
name
,
data_type
=
dtype
,
dims
=
dims
,
vals
=
value
)
node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
[
name
],
value
=
tensor
)
return
node
def
conv2d
(
self
,
op
,
block
):
kernel_shape
=
block
.
var
(
op
.
input
(
'Filter'
)[
0
]).
shape
node
=
helper
.
make_node
(
'Conv'
,
inputs
=
op
.
input
(
'Input'
)
+
op
.
input
(
'Filter'
),
outputs
=
op
.
output
(
'Output'
),
dilations
=
op
.
attr
(
'dilations'
),
kernel_shape
=
kernel_shape
[
-
2
:],
strides
=
op
.
attr
(
'strides'
),
group
=
op
.
attr
(
'groups'
),
pads
=
op
.
attr
(
'paddings'
)
+
op
.
attr
(
'paddings'
))
return
node
def
conv2d_transpose
(
self
,
op
,
block
):
kernel_shape
=
block
.
var
(
op
.
input
(
'Filter'
)[
0
]).
shape
node
=
helper
.
make_node
(
'ConvTranspose'
,
inputs
=
op
.
input
(
'Input'
)
+
op
.
input
(
'Filter'
),
outputs
=
op
.
output
(
'Output'
),
dilations
=
op
.
attr
(
'dilations'
),
kernel_shape
=
kernel_shape
[
-
2
:],
strides
=
op
.
attr
(
'strides'
),
group
=
1
,
pads
=
op
.
attr
(
'paddings'
)
+
op
.
attr
(
'paddings'
))
return
node
def
relu
(
self
,
op
,
block
):
node
=
helper
.
make_node
(
'Relu'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
))
return
node
def
sigmoid
(
self
,
op
,
block
):
node
=
helper
.
make_node
(
'Sigmoid'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
))
return
node
def
exp
(
self
,
op
,
block
):
node
=
helper
.
make_node
(
'Exp'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
))
return
node
def
leaky_relu
(
self
,
op
,
block
):
node
=
helper
.
make_node
(
'LeakyRelu'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
alpha
=
op
.
attr
(
'alpha'
))
return
node
def
swish
(
self
,
op
,
block
):
"""
The activation swish, y = x / (1 + exp(-beta * x))
"""
beta
=
op
.
attr
(
'beta'
)
beta_name
=
self
.
get_name
(
op
.
type
,
'beta'
)
beta_node
=
onnx
.
helper
.
make_node
(
'Constant'
,
name
=
beta_name
,
inputs
=
[],
outputs
=
[
beta_name
],
value
=
onnx
.
helper
.
make_tensor
(
name
=
beta_name
,
data_type
=
onnx
.
TensorProto
.
FLOAT
,
dims
=
(),
vals
=
[
beta
]))
beta_x_name
=
self
.
get_name
(
op
.
type
,
'beta_x'
)
beta_x_node
=
onnx
.
helper
.
make_node
(
'Mul'
,
name
=
beta_x_name
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
beta_name
],
outputs
=
[
beta_x_name
])
sigmoid_name
=
self
.
get_name
(
op
.
type
,
'sigmoid'
)
sigmoid_node
=
onnx
.
helper
.
make_node
(
'Sigmoid'
,
name
=
sigmoid_name
,
inputs
=
[
beta_x_name
],
outputs
=
[
sigmoid_name
])
swish_node
=
onnx
.
helper
.
make_node
(
'Mul'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
sigmoid_name
],
outputs
=
op
.
output
(
'Out'
))
return
[
beta_node
,
beta_x_node
,
sigmoid_node
,
swish_node
]
def
elementwise_add
(
self
,
op
,
block
):
axis
=
op
.
attr
(
'axis'
)
x_shape
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
y_shape
=
block
.
var
(
op
.
input
(
'Y'
)[
0
]).
shape
if
len
(
y_shape
)
==
1
and
axis
==
1
:
shape_name
=
self
.
get_name
(
op
.
type
,
'shape'
)
shape_value
=
[
1
]
*
len
(
x_shape
)
shape_value
[
axis
]
=
y_shape
[
0
]
shape_node
=
self
.
make_constant_node
(
shape_name
,
onnx_pb
.
TensorProto
.
INT64
,
shape_value
)
temp_value
=
self
.
get_name
(
op
.
type
,
'temp'
)
y_node
=
helper
.
make_node
(
'Reshape'
,
inputs
=
[
op
.
input
(
'Y'
)[
0
],
shape_name
],
outputs
=
[
temp_value
])
node
=
helper
.
make_node
(
'Add'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
temp_value
],
outputs
=
op
.
output
(
'Out'
))
return
[
shape_node
,
y_node
,
node
]
elif
len
(
x_shape
)
==
len
(
y_shape
):
node
=
helper
.
make_node
(
'Add'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
op
.
input
(
'Y'
)[
0
]],
outputs
=
op
.
output
(
'Out'
))
return
node
else
:
raise
Excpetion
(
"Unexpected situation happend in elementwise_add"
)
def
elementwise_sub
(
self
,
op
,
block
):
axis
=
op
.
attr
(
'axis'
)
x_shape
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
y_shape
=
block
.
var
(
op
.
input
(
'Y'
)[
0
]).
shape
if
len
(
y_shape
)
==
1
and
axis
==
1
:
shape_name
=
self
.
get_name
(
op
.
type
,
'shape'
)
shape_value
=
[
1
]
*
len
(
x_shape
)
shape_value
[
axis
]
=
y_shape
[
0
]
shape_node
=
self
.
make_constant_node
(
shape_name
,
onnx_pb
.
TensorProto
.
INT64
,
shape_value
)
temp_value
=
self
.
get_name
(
op
.
type
,
'temp'
)
y_node
=
helper
.
make_node
(
'Reshape'
,
inputs
=
[
op
.
input
(
'Y'
)[
0
],
shape_name
],
outputs
=
[
temp_value
])
node
=
helper
.
make_node
(
'Sub'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
temp_value
],
outputs
=
op
.
output
(
'Out'
))
return
[
shape_node
,
y_node
,
node
]
elif
len
(
x_shape
)
==
len
(
y_shape
):
node
=
helper
.
make_node
(
'Sub'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
op
.
input
(
'Y'
)[
0
]],
outputs
=
op
.
output
(
'Out'
))
return
node
else
:
raise
Excpetion
(
"Unexpected situation happend in elementwise_sub"
)
def
pool2d
(
self
,
op
,
block
):
pool_type
=
{
'max'
:
(
'MaxPool'
,
'GlobalMaxPool'
),
'avg'
:
(
'AveragePool'
,
'GlobalAveragePool'
)
}
if
op
.
attr
(
'global_pooling'
):
node
=
helper
.
make_node
(
pool_type
[
op
.
attr
(
'pooling_type'
)][
1
],
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
)
else
:
input_shape
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
k_size
=
op
.
attr
(
'ksize'
)
paddings
=
op
.
attr
(
'paddings'
)
if
input_shape
[
2
]
>
0
and
input_shape
[
2
]
+
paddings
[
0
]
<
k_size
[
0
]:
k_size
[
0
]
=
input_shape
[
2
]
+
paddings
[
0
]
if
input_shape
[
3
]
>
0
and
input_shape
[
3
]
+
paddings
[
1
]
<
k_size
[
1
]:
k_size
[
1
]
=
input_shape
[
3
]
+
paddings
[
1
]
node
=
helper
.
make_node
(
pool_type
[
op
.
attr
(
'pooling_type'
)][
0
],
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
kernel_shape
=
k_size
,
strides
=
op
.
attr
(
'strides'
),
pads
=
op
.
attr
(
'paddings'
)
+
op
.
attr
(
'paddings'
))
return
node
def
softmax
(
self
,
op
,
block
):
axis
=
op
.
attr
(
'axis'
)
shape
=
block
.
var
(
op
.
output
(
'Out'
)[
0
]).
shape
if
axis
<
0
:
axis
+=
len
(
shape
)
if
axis
==
len
(
shape
)
-
1
:
node
=
helper
.
make_node
(
'Softmax'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
axis
=
op
.
attr
(
'axis'
))
return
node
else
:
perm
=
[
i
for
i
in
range
(
len
(
shape
))]
perm
[
-
1
]
=
axis
perm
[
axis
]
=
len
(
shape
)
-
1
transpose_name0
=
self
.
get_name
(
op
.
type
,
'transpose'
)
transpose_node0
=
helper
.
make_node
(
'Transpose'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
[
transpose_name0
],
perm
=
perm
)
softmax_name
=
self
.
get_name
(
op
.
type
,
'softmax'
)
softmax_node
=
helper
.
make_node
(
'Softmax'
,
inputs
=
[
transpose_name0
],
outputs
=
[
softmax_name
],
axis
=-
1
)
transpose_name1
=
self
.
get_name
(
op
.
type
,
'transpose'
)
transpose_node1
=
helper
.
make_node
(
'Transpose'
,
inputs
=
[
softmax_name
],
outputs
=
op
.
output
(
'Out'
),
perm
=
perm
)
return
[
transpose_node0
,
softmax_node
,
transpose_node1
]
def
scale
(
self
,
op
,
block
):
scale
=
op
.
attr
(
'scale'
)
bias
=
op
.
attr
(
'bias'
)
if
math
.
fabs
(
scale
-
1.0
)
<
1e-06
and
math
.
fabs
(
bias
-
0.0
)
<
1e-06
:
name
=
op
.
output
(
'Out'
)[
0
]
var
=
block
.
var
(
name
)
dtype
=
self
.
paddle_onnx_dtype_map
[
var
.
dtype
]
node
=
helper
.
make_node
(
'Cast'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
to
=
dtype
)
#node = helper.make_node(
# 'Identity', inputs=op.input('X'), outputs=op.output('Out'))
return
node
else
:
scale_name
=
self
.
get_name
(
op
.
type
,
'scale'
)
bias_name
=
self
.
get_name
(
op
.
type
,
'bias'
)
scale_node
=
self
.
make_constant_node
(
scale_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
scale
)
bias_node
=
self
.
make_constant_node
(
bias_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
bias
)
temp_tensor_name
=
self
.
get_name
(
op
.
type
,
'temporary'
)
if
op
.
attr
(
'bias_after_scale'
):
node1
=
helper
.
make_node
(
'Mul'
,
inputs
=
[
scale_name
,
op
.
input
(
'X'
)[
0
]],
outputs
=
[
temp_tensor_name
])
node2
=
helper
.
make_node
(
'Add'
,
inputs
=
[
bias_name
,
temp_tensor_name
],
outputs
=
op
.
output
(
'Out'
))
else
:
node1
=
helper
.
make_node
(
'Add'
,
inputs
=
[
bias_name
,
op
.
input
(
'X'
)[
0
]],
outputs
=
temp_tensor_name
)
node2
=
helper
.
make_node
(
'Mul'
,
inputs
=
[
scale_name
,
temp_tensor_name
],
outputs
=
[
op
.
output
(
'Out'
)])
return
[
scale_node
,
bias_node
,
node1
,
node2
]
def
mul
(
self
,
op
,
block
):
x_shape
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
y_shape
=
block
.
var
(
op
.
input
(
'Y'
)[
0
]).
shape
out_shape
=
list
(
block
.
var
(
op
.
output
(
'Out'
)[
0
]).
shape
)
x_num_col_dims
=
op
.
attr
(
'x_num_col_dims'
)
y_num_col_dims
=
op
.
attr
(
'y_num_col_dims'
)
flatten_x_name
=
'flatten_{}'
.
format
(
op
.
input
(
'X'
)[
0
])
flatten_y_name
=
'flatten_{}'
.
format
(
op
.
input
(
'Y'
)[
0
])
shape_name
=
'temp_shape_{}'
.
format
(
op
.
output
(
'Out'
)[
0
])
temp_out_name
=
'temp_{}'
.
format
(
op
.
output
(
'Out'
)[
0
])
flatten_x
=
helper
.
make_node
(
'Flatten'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
[
flatten_x_name
],
axis
=
x_num_col_dims
)
flatten_y
=
helper
.
make_node
(
'Flatten'
,
inputs
=
op
.
input
(
'Y'
),
outputs
=
[
flatten_y_name
],
axis
=
y_num_col_dims
)
shape_node
=
self
.
make_constant_node
(
shape_name
,
onnx_pb
.
TensorProto
.
INT64
,
out_shape
)
node
=
helper
.
make_node
(
'MatMul'
,
inputs
=
[
flatten_x_name
,
flatten_y_name
],
outputs
=
[
temp_out_name
])
reshape_out
=
helper
.
make_node
(
'Reshape'
,
inputs
=
[
temp_out_name
,
shape_name
],
outputs
=
op
.
output
(
'Out'
))
return
[
flatten_x
,
flatten_y
,
shape_node
,
node
,
reshape_out
]
def
batch_norm
(
self
,
op
,
block
):
kwargs
=
{
'epsilon'
:
op
.
attr
(
'epsilon'
),
'momentum'
:
op
.
attr
(
'momentum'
)
}
inputs
=
op
.
input
(
'X'
)
+
op
.
input
(
'Scale'
)
+
op
.
input
(
'Bias'
)
+
op
.
input
(
'Mean'
)
+
op
.
input
(
'Variance'
)
node
=
helper
.
make_node
(
'BatchNormalization'
,
inputs
=
inputs
,
outputs
=
op
.
output
(
'Y'
),
**
kwargs
)
return
node
def
concat
(
self
,
op
,
block
):
node
=
helper
.
make_node
(
'Concat'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
axis
=
op
.
attr
(
'axis'
))
return
node
def
depthwise_conv2d
(
self
,
op
,
block
):
return
self
.
conv2d
(
op
,
block
)
def
relu6
(
self
,
op
,
block
):
min_name
=
self
.
get_name
(
op
.
type
,
'min'
)
max_name
=
self
.
get_name
(
op
.
type
,
'max'
)
min_node
=
self
.
make_constant_node
(
min_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
0
)
max_node
=
self
.
make_constant_node
(
max_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
op
.
attr
(
'threshold'
))
node
=
helper
.
make_node
(
'Clip'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
min_name
,
max_name
],
outputs
=
op
.
output
(
'Out'
),
)
return
[
min_node
,
max_node
,
node
]
def
shape
(
self
,
op
,
block
):
node
=
helper
.
make_node
(
'Shape'
,
inputs
=
op
.
input
(
'Input'
),
outputs
=
op
.
output
(
'Out'
))
return
node
def
split
(
self
,
op
,
block
):
sections
=
op
.
attr
(
'sections'
)
if
len
(
sections
)
>
0
:
node
=
helper
.
make_node
(
'Split'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
axis
=
op
.
attr
(
'axis'
),
split
=
sections
)
else
:
node
=
helper
.
make_node
(
'Split'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
axis
=
op
.
attr
(
'axis'
))
return
node
def
slice
(
self
,
op
,
block
):
axes
=
op
.
attr
(
'axes'
)
starts
=
op
.
attr
(
'starts'
)
ends
=
op
.
attr
(
'ends'
)
axes_name
=
self
.
get_name
(
op
.
type
,
'axes'
)
starts_name
=
self
.
get_name
(
op
.
type
,
'starts'
)
ends_name
=
self
.
get_name
(
op
.
type
,
'ends'
)
axes_node
=
self
.
make_constant_node
(
axes_name
,
onnx_pb
.
TensorProto
.
INT64
,
axes
)
starts_node
=
self
.
make_constant_node
(
starts_name
,
onnx_pb
.
TensorProto
.
INT64
,
starts
)
ends_node
=
self
.
make_constant_node
(
ends_name
,
onnx_pb
.
TensorProto
.
INT64
,
ends
)
node
=
helper
.
make_node
(
"Slice"
,
inputs
=
[
op
.
input
(
'Input'
)[
0
],
starts_name
,
ends_name
,
axes_name
],
outputs
=
op
.
output
(
'Out'
),
)
return
[
starts_node
,
ends_node
,
axes_node
,
node
]
def
fill_constant
(
self
,
op
,
block
):
value
=
op
.
attr
(
'value'
)
dtype
=
op
.
attr
(
'dtype'
)
shape
=
op
.
attr
(
'shape'
)
value
=
np
.
ones
(
shape
)
*
value
if
dtype
==
2
:
value
=
value
.
astype
(
'int32'
)
node
=
helper
.
make_node
(
'Constant'
,
inputs
=
[],
outputs
=
op
.
output
(
'Out'
),
value
=
helper
.
make_tensor
(
name
=
op
.
output
(
'Out'
)[
0
],
data_type
=
self
.
paddle_onnx_dtype_map
[
dtype
],
dims
=
shape
,
vals
=
value
.
tolist
()))
return
node
def
transpose2
(
self
,
op
,
block
):
node
=
helper
.
make_node
(
'Transpose'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
perm
=
op
.
attr
(
'axis'
))
return
node
def
reshape2
(
self
,
op
,
block
):
input_names
=
op
.
input_names
if
len
(
op
.
input
(
'ShapeTensor'
))
>
1
:
cast_shape_nodes
=
list
()
cast_shape_names
=
list
()
for
i
in
range
(
len
(
op
.
input
(
'ShapeTensor'
))):
dim
=
op
.
input
(
'ShapeTensor'
)[
i
]
temp_name
=
self
.
get_name
(
op
.
type
,
'shape.cast'
)
node
=
helper
.
make_node
(
'Cast'
,
inputs
=
[
dim
],
outputs
=
[
temp_name
],
to
=
onnx_pb
.
TensorProto
.
INT64
)
cast_shape_nodes
.
append
(
node
)
cast_shape_names
.
append
(
temp_name
)
temp_name
=
self
.
get_name
(
op
.
type
,
'shape.concat'
)
shape_node
=
helper
.
make_node
(
'Concat'
,
inputs
=
cast_shape_names
,
outputs
=
[
temp_name
],
axis
=-
1
)
node
=
helper
.
make_node
(
'Reshape'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
temp_name
],
outputs
=
op
.
output
(
'Out'
))
return
cast_shape_nodes
+
[
shape_node
,
node
]
else
:
temp_name
=
self
.
get_name
(
op
.
type
,
'shape.cast'
)
cast_shape_node
=
helper
.
make_node
(
'Cast'
,
inputs
=
op
.
input
(
'ShapeTensor'
),
outputs
=
[
temp_name
],
to
=
onnx_pb
.
TensorProto
.
INT64
)
node
=
helper
.
make_node
(
'Reshape'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
temp_name
],
outputs
=
op
.
output
(
'Out'
))
return
[
cast_shape_node
,
node
]
def
dropout
(
self
,
op
,
block
):
dropout_mode
=
op
.
attr
(
'dropout_implementation'
)
dropout_prob
=
op
.
attr
(
'dropout_prob'
)
if
dropout_mode
==
'upscale_in_train'
:
node
=
helper
.
make_node
(
'Identity'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
))
return
node
elif
dropout_mode
==
'downgrade_in_infer'
:
scale_name
=
self
.
get_name
(
op
.
type
,
'scale'
)
scale_node
=
self
.
make_constant_node
(
scale_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
1
-
dropout_prob
)
node
=
helper
.
make_node
(
"Mul"
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
scale_name
],
outputs
=
op
.
output
(
'Out'
))
return
[
scale_node
,
node
]
else
:
raise
Exception
(
"Unexpected situation happend"
)
def
reduce_mean
(
self
,
op
,
block
):
node
=
helper
.
make_node
(
'ReduceMean'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
axes
=
op
.
attr
(
'dim'
),
keepdims
=
op
.
attr
(
'keep_dim'
))
return
node
def
bilinear_interp
(
self
,
op
,
block
):
input_names
=
op
.
input_names
input_shape
=
block
.
vars
[
op
.
input
(
'X'
)[
0
]].
shape
if
(
'OutSize'
in
input_names
and
len
(
op
.
input
(
'OutSize'
))
>
0
)
or
(
'SizeTensor'
in
input_names
and
len
(
op
.
input
(
'SizeTensor'
))
>
0
):
node_list
=
list
()
shape_name0
=
self
.
get_name
(
op
.
type
,
'shape'
)
shape_node0
=
helper
.
make_node
(
'Shape'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
[
shape_name0
])
starts_name
=
self
.
get_name
(
op
.
type
,
'slice.starts'
)
starts_node
=
self
.
make_constant_node
(
starts_name
,
onnx_pb
.
TensorProto
.
INT64
,
[
0
])
ends_name
=
self
.
get_name
(
op
.
type
,
'slice.ends'
)
ends_node
=
self
.
make_constant_node
(
ends_name
,
onnx_pb
.
TensorProto
.
INT64
,
[
2
])
shape_name1
=
self
.
get_name
(
op
.
type
,
'shape'
)
shape_node1
=
helper
.
make_node
(
'Slice'
,
inputs
=
[
shape_name0
,
starts_name
,
ends_name
],
outputs
=
[
shape_name1
])
node_list
.
extend
([
shape_node0
,
starts_node
,
ends_node
,
shape_node1
])
if
'OutSize'
in
input_names
and
len
(
op
.
input
(
'OutSize'
))
>
0
:
cast_shape_name
=
self
.
get_name
(
op
.
type
,
"shape.cast"
)
cast_shape_node
=
helper
.
make_node
(
'Cast'
,
inputs
=
op
.
input
(
'OutSize'
),
outputs
=
[
cast_shape_name
],
to
=
onnx_pb
.
TensorProto
.
INT64
)
node_list
.
append
(
cast_shape_node
)
else
:
concat_shape_name
=
self
.
get_name
(
op
.
type
,
op
.
output
(
'Out'
)[
0
]
+
"shape.concat"
)
concat_shape_node
=
helper
.
make_node
(
"Concat"
,
inputs
=
op
.
input
(
'SizeTensor'
),
outputs
=
[
concat_shape_name
],
axis
=
0
)
cast_shape_name
=
self
.
get_name
(
op
.
type
,
"shape.cast"
)
cast_shape_node
=
helper
.
make_node
(
'Cast'
,
inputs
=
[
concat_shape_name
],
outputs
=
[
cast_shape_name
],
to
=
onnx_pb
.
TensorProto
.
INT64
)
node_list
.
extend
([
concat_shape_node
,
cast_shape_node
])
shape_name2
=
self
.
get_name
(
op
.
type
,
"shape.concat"
)
shape_node2
=
helper
.
make_node
(
'Concat'
,
inputs
=
[
shape_name1
,
cast_shape_name
],
outputs
=
[
shape_name2
],
axis
=
0
)
node_list
.
append
(
shape_node2
)
cast_shape_name2
=
self
.
get_name
(
op
.
type
,
"shape.cast"
)
cast_shape_node2
=
helper
.
make_node
(
'Cast'
,
inputs
=
[
shape_name2
],
outputs
=
[
cast_shape_name2
],
to
=
onnx_pb
.
TensorProto
.
FLOAT
)
node_list
.
append
(
cast_shape_node2
)
cast_shape_name0
=
self
.
get_name
(
op
.
type
,
"shape.cast"
)
cast_shape_node0
=
helper
.
make_node
(
'Cast'
,
inputs
=
[
shape_name0
],
outputs
=
[
cast_shape_name0
],
to
=
onnx_pb
.
TensorProto
.
FLOAT
)
node_list
.
append
(
cast_shape_node0
)
outputs_h_w_scales
=
op
.
output
(
'Out'
)[
0
]
+
"@out_hw_scales"
node_h_w_scales
=
helper
.
make_node
(
'Div'
,
inputs
=
[
cast_shape_name2
,
cast_shape_name0
],
outputs
=
[
outputs_h_w_scales
])
node_list
.
append
(
node_h_w_scales
)
result_node
=
helper
.
make_node
(
'Resize'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
outputs_h_w_scales
],
outputs
=
op
.
output
(
'Out'
),
mode
=
'linear'
)
node_list
.
extend
([
result_node
])
return
node_list
elif
'Scale'
in
input_names
and
len
(
op
.
input
(
'Scale'
))
>
0
:
node
=
helper
.
make_node
(
'Resize'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
op
.
input
(
'Scale'
)[
0
]],
outputs
=
op
.
output
(
'Out'
),
mode
=
'linear'
)
else
:
out_shape
=
[
op
.
attr
(
'out_h'
),
op
.
attr
(
'out_w'
)]
scale
=
op
.
attr
(
'scale'
)
if
out_shape
.
count
(
-
1
)
>
0
:
scale_name
=
self
.
get_name
(
op
.
type
,
'scale'
)
scale_node
=
self
.
make_constant_node
(
scale_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
[
1
,
1
,
scale
,
scale
])
node
=
helper
.
make_node
(
'Resize'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
scale_name
],
outputs
=
op
.
output
(
'Out'
),
mode
=
'linear'
)
return
[
scale_node
,
node
]
else
:
raise
Exception
(
"Unexpected situation happend"
)
return
node
def
nearest_interp
(
self
,
op
,
block
):
input_names
=
op
.
input_names
if
'OutSize'
in
input_names
and
len
(
op
.
input
(
'OutSize'
))
>
0
:
node
=
helper
.
make_node
(
'Resize'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
op
.
input
(
'OutSize'
)[
0
]],
outputs
=
op
.
output
(
'Out'
),
mode
=
'nearest'
)
elif
'Scale'
in
input_names
and
len
(
op
.
input
(
'Scale'
))
>
0
:
node
=
helper
.
make_node
(
'Resize'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
op
.
input
(
'Scale'
)[
0
]],
outputs
=
op
.
output
(
'Out'
),
mode
=
'nearest'
)
else
:
out_shape
=
[
op
.
attr
(
'out_h'
),
op
.
attr
(
'out_w'
)]
scale
=
op
.
attr
(
'scale'
)
if
out_shape
.
count
(
-
1
)
>
0
:
scale_name
=
self
.
get_name
(
op
.
type
,
'scale'
)
scale_node
=
self
.
make_constant_node
(
scale_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
[
1
,
1
,
scale
,
scale
])
node
=
helper
.
make_node
(
'Resize'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
scale_name
],
outputs
=
op
.
output
(
'Out'
),
mode
=
'nearest'
)
return
[
scale_node
,
node
]
else
:
raise
Exception
(
"Unexpected situation happend"
)
return
node
def
hard_sigmoid
(
self
,
op
,
block
):
slope
=
op
.
attr
(
'slope'
)
offset
=
op
.
attr
(
'offset'
)
node
=
helper
.
make_node
(
'HardSigmoid'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
alpha
=
slope
,
beta
=
offset
)
return
node
def
hard_swish
(
self
,
op
,
block
):
min_name
=
self
.
get_name
(
op
.
type
,
'min'
)
max_name
=
self
.
get_name
(
op
.
type
,
'max'
)
scale_name
=
self
.
get_name
(
op
.
type
,
'scale'
)
offset_name
=
self
.
get_name
(
op
.
type
,
'offset'
)
min_node
=
self
.
make_constant_node
(
min_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
0
)
max_node
=
self
.
make_constant_node
(
max_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
op
.
attr
(
'threshold'
))
scale_node
=
self
.
make_constant_node
(
scale_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
op
.
attr
(
'scale'
))
offset_node
=
self
.
make_constant_node
(
offset_name
,
onnx_pb
.
TensorProto
.
FLOAT
,
op
.
attr
(
'offset'
))
name0
=
self
.
get_name
(
op
.
type
,
'add'
)
node0
=
helper
.
make_node
(
'Add'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
offset_name
],
outputs
=
[
name0
])
name1
=
self
.
get_name
(
op
.
type
,
'relu'
)
node1
=
helper
.
make_node
(
'Clip'
,
inputs
=
[
name0
,
min_name
,
max_name
],
outputs
=
[
name1
],
)
name2
=
self
.
get_name
(
op
.
type
,
'mul'
)
node2
=
helper
.
make_node
(
'Mul'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
name1
],
outputs
=
[
name2
])
node3
=
helper
.
make_node
(
'Div'
,
inputs
=
[
name2
,
scale_name
],
outputs
=
op
.
output
(
'Out'
))
return
[
min_node
,
max_node
,
scale_node
,
offset_node
,
node0
,
node1
,
node2
,
node3
]
def
elementwise_mul
(
self
,
op
,
block
):
axis
=
op
.
attr
(
'axis'
)
x_shape
=
block
.
var
(
op
.
input
(
'X'
)[
0
]).
shape
y_shape
=
block
.
var
(
op
.
input
(
'Y'
)[
0
]).
shape
if
len
(
y_shape
)
==
1
and
axis
==
1
:
shape_name
=
self
.
get_name
(
op
.
type
,
'shape'
)
shape_value
=
[
1
]
*
len
(
x_shape
)
shape_value
[
axis
]
=
y_shape
[
0
]
shape_node
=
self
.
make_constant_node
(
shape_name
,
onnx_pb
.
TensorProto
.
INT64
,
shape_value
)
temp_value
=
self
.
get_name
(
op
.
type
,
'temp'
)
y_node
=
helper
.
make_node
(
'Reshape'
,
inputs
=
[
op
.
input
(
'Y'
)[
0
],
shape_name
],
outputs
=
[
temp_value
])
node
=
helper
.
make_node
(
'Mul'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
temp_value
],
outputs
=
op
.
output
(
'Out'
))
return
[
shape_node
,
y_node
,
node
]
elif
len
(
x_shape
)
==
len
(
y_shape
):
node
=
helper
.
make_node
(
'Mul'
,
inputs
=
[
op
.
input
(
'X'
)[
0
],
op
.
input
(
'Y'
)[
0
]],
outputs
=
op
.
output
(
'Out'
))
return
node
else
:
raise
Excpetion
(
"Unexpected situation happend in elementwise_add"
)
return
node
def
feed
(
self
,
op
,
block
):
name
=
op
.
output
(
'Out'
)[
0
]
var
=
block
.
var
(
name
)
tensor_info
=
helper
.
make_tensor_value_info
(
name
=
name
,
shape
=
var
.
shape
,
elem_type
=
self
.
paddle_onnx_dtype_map
[
var
.
dtype
])
return
tensor_info
def
fetch
(
self
,
op
,
block
):
name
=
op
.
input
(
'X'
)[
0
]
var
=
block
.
var
(
name
)
tensor_info
=
helper
.
make_tensor_value_info
(
name
=
name
,
shape
=
var
.
shape
,
elem_type
=
self
.
paddle_onnx_dtype_map
[
var
.
dtype
])
return
tensor_info
def
unsqueeze2
(
self
,
op
,
block
):
node
=
helper
.
make_node
(
'Unsqueeze'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
axes
=
op
.
attr
(
'axes'
))
return
node
def
arg_max
(
self
,
op
,
block
):
node
=
helper
.
make_node
(
'ArgMax'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
axis
=
op
.
attr
(
'axis'
),
keepdims
=
0
)
return
node
def
reciprocal
(
self
,
op
,
block
):
inputs
=
op
.
input
(
op
.
input_names
[
0
])
outputs
=
op
.
output
(
op
.
output_names
[
0
])
node
=
helper
.
make_node
(
'Reciprocal'
,
inputs
=
inputs
,
outputs
=
outputs
)
return
node
def
im2sequence
(
self
,
op
,
block
):
from
.paddle_custom_layer.im2sequence
import
im2sequence
return
im2sequence
(
op
,
block
)
def
yolo_box
(
self
,
op
,
block
):
from
.paddle_custom_layer.yolo_box
import
yolo_box
return
yolo_box
(
op
,
block
)
def
multiclass_nms
(
self
,
op
,
block
):
from
.paddle_custom_layer.multiclass_nms
import
multiclass_nms
return
multiclass_nms
(
op
,
block
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录