prim.py 22.2 KB
Newer Older
S
SunAhong1993 已提交
1
# -*- coding:UTF-8 -*-
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import numpy as np
from x2paddle.core.util import *


def prim_Constant(mapper, graph, node):
    """ 构造constant的PaddleLayer,该节点实现常量赋值。

    TorchScript示例:
        %2 : int = prim::Constant[value=-1]()
        参数含义:
        %2 (常量类型由赋值类型定义,该示例中为int型): 常量赋值结果输出。
    """
S
SunAhong1993 已提交
29
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
30 31 32 33 34 35 36
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    value = output.toIValue()
    output_type = output.type()
    if isinstance(value, str):
        value = string(value)
    if str(output_type) == "Tensor":
S
SunAhong1993 已提交
37
        tensor_value = value
S
SunAhong1993 已提交
38
        value = "{}".format(value)
S
SunAhong1993 已提交
39 40
        if "tensor" in value:
            mapper.pytorch_params[output_name] = tensor_value.cpu().detach().numpy()
S
SunAhong1993 已提交
41 42 43 44 45 46 47 48 49 50 51 52

    if "inf" in str(value):
        t = str(type(value)).split("'")[1]
        if str(value).startswith("-"):
            value = "-{}({})".format(t, string(str(value)[1:]))
        else:
            value = "{}({})".format(t, string(str(value)))
    if "9223372036854775807" in str(value):
        import math
        value = int(math.pow(2, 31) - 1)
    mapper.attrs[output_name] = value
    graph.add_layer(
S
SunAhong1993 已提交
53
        "prim.constant", inputs={}, outputs=[output_name], scope_name=scope_name, value=value)
S
SunAhong1993 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67
    return [], [output_name]


def prim_data(mapper, graph, node):
    """ 构造Tensor的PaddleLayer。

    TorchScript示例:
        %4336 : Tensor = prim::data(%out.6)
        参数含义:
        %4336 (Tensor): 输出Tensor。
        %out.6 (Tensor): 原始Tensor。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
68
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
69 70 71 72 73 74 75 76
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4336
S
SunAhong1993 已提交
77
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
78 79 80 81
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
82
    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
83 84 85
    return current_inputs, current_outputs


S
SunAhong1993 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def prim_DictConstruct(mapper, graph, node):
    """ 构建dict。
    
    TorchScript示例:
        %32 : Dict(str, Tensor) = prim::DictConstruct(%30, %23, %31, %29)
        参数含义:
        %32 (dict): 组成的字典。
        %30 (str): key。
        %23 (-): value。
        %31 (str): key。
        %29 (-): value。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        if i%2 == 0:
            layer_attrs["key{}".format(int(i/2))] = mapper.attrs[input_name]
        else:
            layer_inputs["value{}".format(int(i/2))] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.dict_construct", 
                    inputs=layer_inputs, 
                    outputs=layer_outputs, 
                    scope_name=scope_name,
                    **layer_attrs)
    return current_inputs, current_outputs



S
SunAhong1993 已提交
124 125 126 127 128 129 130 131 132
def prim_GetAttr(mapper, graph, node):
    """ 获取attribute信息。

    TorchScript示例:
        %27 : Tensor? = prim::GetAttr[name="bias"](%7)
        参数含义:
        %7 (Tensor): 输入Tensor。
        %27 (Tensor): 输入Tensor。
    """
S
SunAhong1993 已提交
133
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    current_node = node
    field_name_list = [node.s('name')]
    while True:
        input_node = list(node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            node = input_node
        except Exception:
            break
    attr_name = ".".join(field_name_list)
    output_name = mapper._get_outputs_name(current_node, attr_name)[0]
    part_script = mapper.script
    for field_name in field_name_list:
        if hasattr(part_script, field_name):
            param = getattr(part_script, field_name)
            if isinstance(param, torch.Tensor):
S
SunAhong1993 已提交
150
                param = param.cpu().detach().numpy()
S
SunAhong1993 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                if len(param.shape) == 0:
                    param = np.reshape(param, 1)
                if str(param.dtype) == "uint8":
                    param = param.astype("int32")
            mapper.pytorch_params[output_name] = param
            part_script = param
    return [], [output_name]


def prim_If(mapper, graph, node):
    """ 构造if控制流的PaddleLayer。

    TorchScript示例:
        %input.5 : Tensor = prim::If(%107)
          block0():
            %109 : Tensor = aten::t(%102)
            %ret.2 : Tensor = aten::addmm(%103, %101, %109, %104, %104)
            -> (%ret.2)
          block1():
            %111 : Tensor = aten::t(%102)
            ...
            -> (%output.4)
        参数含义:
        %107 (bool): if判断条件。
        %input.5 (Tensor): if控制流的输出,与%output.4对应。
    """
S
SunAhong1993 已提交
177
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
178 179 180 181 182 183
    outputs_name = mapper._get_outputs_name(node)
    node_outputs = outputs_name.copy()
    current_outputs = outputs_name.copy()
    input_node = list(node.inputs())[0].node()
    script_input_unique_id = list(node.inputs())[0].unique()
    input_node_name = mapper.outputs_info[script_input_unique_id]
S
SunAhong1993 已提交
184 185
    mapper._check_input(graph, input_node, input_node_name, current_outputs, scope_name)
    graph.add_layer("prim.if", inputs={'input': input_node_name}, outputs=node_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    current_layer = list(graph.layers.values())[-1]
    block0 = list(node.blocks())[0]
    block0_graph, graph_inputs0 = mapper.traverse(block0, current_layer)
    len0 = 0
    for i, input_name in enumerate(graph_inputs0):
        current_layer.inputs['input-{}'.format(i)] = input_name
        len0 = i
    current_layer.add_block(block0_graph)
    block1 = list(node.blocks())[1]
    block1_graph, graph_inputs1 = mapper.traverse(block1, current_layer)
    for i, input_name in enumerate(graph_inputs1):
        current_layer.inputs['input-{}'.format(len0 + 1 + i)] = input_name
    current_layer.add_block(block1_graph)
    return list(current_layer.inputs.values()), current_outputs


def prim_ListConstruct(mapper, graph, node):
    """ 构造list的PaddleLayer。

    TorchScript示例:
        %86 : int[] = prim::ListConstruct(%84, %85)
        参数含义:
        %86 (list): list节点输出。
        %84 (int/其他): list第一个元素信息。
        %85 (int/其他): list第二个元素信息。
    """
S
SunAhong1993 已提交
212
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
213 214 215 216 217 218 219 220 221 222 223 224
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        layer_inputs["input{}".format(i)] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
225
    graph.add_layer("prim.list", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238
    return current_inputs, current_outputs


def prim_ListUnpack(mapper, graph, node):
    """ 构造获取list中元素的PaddleLayer。

    TorchScript示例:
        %x1.4 : Tensor, %x2.4 : Tensor = prim::ListUnpack(%4354)
        参数含义:
        %x1.4 (Tensor): 输出,list的第一个元素。
        %x2.4 (Tensor): 输出,list的第二个元素。
        %4354 (list): 列表。
    """
S
SunAhong1993 已提交
239
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
240 241 242 243 244 245 246
    outputs_name = mapper._get_outputs_name(node)
    layer_outputs = outputs_name.copy()
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = layer_outputs.copy()
    # 处理输入0,即%4354
S
SunAhong1993 已提交
247
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
248 249 250 251 252
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
253
        "prim.list_unpack", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    mapper.split_len[list(layer_inputs.values())[0]] = len(layer_outputs)
    return current_inputs, current_outputs


def prim_Loop(mapper, graph, node):
    """ 构造loop循环的PaddleLayer。

    TorchScript示例:
        %x : Tensor = prim::Loop(%4, %3, %x.3)
        block0(%i : int, %x.12 : Tensor):
          %72 : int[] = prim::Constant[value=[6, 6]]()
          ...
          %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.12, %_output_size.1)
          -> (%3, %x.5)
       参数含义:
       %4 (int): 循环次数。
       %3 (bool): 是否进入退出。
       %x.3 (Tensor): 循环中修改的Tensor。
       %x (Tensor): loop循环的输出,与%x.5对应。
    """
S
SunAhong1993 已提交
274
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    node_outputs = mapper._get_outputs_name(node)
    loop_inputs = {}
    block = list(node.blocks())[0]
    loop_outputs = node_outputs.copy()
    for i, block_input_ivalue in enumerate(block.inputs()):
        if i == 0:
            block_input_node_name = '_x' + str(mapper.output_index)
        else:
            block_input_node_name = 'x' + str(mapper.output_index)
        unique_id = block_input_ivalue.unique()
        if unique_id not in mapper.outputs_info:
            mapper.outputs_info[unique_id] = block_input_node_name
            mapper.output_index += 1
        if i == 0:
            loop_input_node = list(node.inputs())[0].node()
            script_loop_input_unique_id = list(node.inputs())[0].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
S
SunAhong1993 已提交
294
                                node_outputs, scope_name)
S
SunAhong1993 已提交
295 296 297 298 299 300 301 302 303
            loop_inputs['input'] = loop_input_node_name
            loop_outputs.append(block_input_node_name)
            node_outputs.append(block_input_node_name)
        else:
            loop_input_node = list(node.inputs())[i + 1].node()
            script_loop_input_unique_id = list(node.inputs())[i + 1].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
S
SunAhong1993 已提交
304
                                node_outputs, scope_name)
S
SunAhong1993 已提交
305 306 307
            graph.add_layer(
                "prim.equal",
                inputs={'input': loop_input_node_name},
S
SunAhong1993 已提交
308 309
                outputs=[block_input_node_name],
                scope_name=scope_name)
S
SunAhong1993 已提交
310 311
            node_outputs.append(block_input_node_name)

S
SunAhong1993 已提交
312
    graph.add_layer("prim.loop", inputs=loop_inputs, outputs=loop_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    current_layer = list(graph.layers.values())[-1]
    block_graph, graph_inputs = mapper.traverse(block, current_layer)
    for i, input_name in enumerate(graph_inputs):
        if input_name == loop_outputs[1]:
            continue
        current_layer.inputs['input-{}'.format(i)] = input_name
    current_layer.add_block(block_graph)
    return list(current_layer.inputs.values()), node_outputs


def prim_min(mapper, graph, node):
    """ 构造min的PaddleLayer。

    TorchScript示例:
        %87 : int = prim::min(%86)
        参数含义:
        %86 (list): 输入。
        %87 (int): 输出。
    """
S
SunAhong1993 已提交
332
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
333 334 335 336 337 338 339
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
S
SunAhong1993 已提交
340
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
341 342 343 344
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
345
    graph.add_layer("prim.min", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
346 347 348 349 350 351 352 353 354 355 356 357
    return current_inputs, current_outputs


def prim_NumToTensor(mapper, graph, node):
    """ 构造转为Tensor的PaddleLayer。

    TorchScript示例:
        %other.2 : Tensor = prim::NumToTensor(%1736)
        参数含义:
        %other.2 (Tensor): 输出。
        %1736 (-): 输入。
    """
S
SunAhong1993 已提交
358
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
359 360 361 362 363 364 365 366
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
S
SunAhong1993 已提交
367 368 369
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    inputs_inputs_name, inputs_inputs_node = mapper._get_inputs_name(inputs_node[0])
    if inputs_node[0].kind() == "aten::size" and len(inputs_inputs_name) > 1:
S
SunAhong1993 已提交
370 371 372 373
        layer_inputs["input"] = inputs_name[0]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
374
            "prim_equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
375
    else:
S
SunAhong1993 已提交
376
        layer_inputs["fill_value"] = inputs_name[0]
S
SunAhong1993 已提交
377 378 379 380 381 382
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        input_type = list(node.inputs())[0].type()
        layer_attrs["dtype"] = input_type
        layer_attrs["shape"] = [1]
        graph.add_layer(
S
SunAhong1993 已提交
383
            "paddle.full",
S
SunAhong1993 已提交
384 385
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
386
            scope_name=scope_name,
S
SunAhong1993 已提交
387 388 389 390 391 392 393 394 395 396 397 398
            **layer_attrs)
    return current_inputs, current_outputs


def prim_RaiseException(mapper, graph, node):
    """ 构造抛出异常的PaddleLayer。

    TorchScript示例:
        = prim::RaiseException(%76)
        参数含义:
        %76 (str): 异常信息。
    """
S
SunAhong1993 已提交
399
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
400 401 402 403 404 405 406
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%76
S
SunAhong1993 已提交
407
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
408 409 410 411 412
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
413
        "prim.exception", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
414 415 416 417 418 419 420 421 422 423 424 425
    return current_inputs, current_outputs


def prim_requires_grad(mapper, graph, node):
    """ 构造是否计算梯度的PaddleLayer。

    TorchScript示例:
        %356 : bool = prim::requires_grad(%tensor.31)
        参数含义:
        %356 (bool): 输出,当前Tensor是否计算梯度。
        %tensor.31 (Tensor): 输入的Tensor。
    """
S
SunAhong1993 已提交
426
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
427 428 429 430 431 432 433
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
S
SunAhong1993 已提交
434
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
435 436 437 438 439
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
440
        "prim.requires_grad", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
441 442 443 444 445 446 447 448 449 450 451 452
    return current_inputs, current_outputs


def prim_SetAttr(mapper, graph, node):
    """ 设置attribute信息。

    TorchScript示例:
        = prim::SetAttr[name="num_batches_tracked"](%260, %277)
        参数含义:
        %260 (-): 属性名前缀。
        %277 (-): 需要设置的值。
    """
S
SunAhong1993 已提交
453
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    output_name = mapper._get_outputs_name(node)[0]
    field_name_list = []
    tmp_node = node
    while True:
        input_node = list(tmp_node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            tmp_node = input_node
        except Exception:
            break
    field_name_list.append(node.s('name'))

    inputs_name, inputs_node = mapper._get_inputs_name(node)
    param = {
        "Tensor": "self." + ".".join(field_name_list).replace(".", "_"),
        "parent_layer_id": graph.parent_layer.id
    }
    mapper.pytorch_params[".".join(field_name_list)] = param
    graph.add_layer(
        "prim.set_attr",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
475 476
        outputs=["self." + ".".join(field_name_list).replace(".", "_")],
        scope_name=scope_name)
S
SunAhong1993 已提交
477 478 479 480 481 482 483 484 485 486 487 488
    return [], [output_name]


def prim_shape(mapper, graph, node):
    """ 构造获取shape的PaddleLayer。

    TorchScript示例:
        %4701 : int[] = prim::shape(%result.1)
        参数含义:
        %4701 (list): 输出,shape信息。
        %result.1 (Tensor): 需要获取shape的值。
    """
S
SunAhong1993 已提交
489
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
490 491 492 493 494 495 496
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
497
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
498 499 500 501 502
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
503
        "paddle.shape", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516
    return current_inputs, current_outputs


def prim_TupleConstruct(mapper, graph, node):
    """ 构造tuple的PaddleLayer。

    TorchScript示例:
        %4492 : (Tensor, Tensor?) = prim::TupleConstruct(%x.46, %aux)
        参数含义:
        %4492 (tuple): 输出,tuple。
        %x.46 (Tensor/其他): tuple第一个元素信息。
        %aux (Tensor/其他): tuple第二个元素信息。
    """
S
SunAhong1993 已提交
517
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
518 519 520 521 522 523 524 525 526 527 528 529
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        layer_inputs["input{}".format(i)] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
530
    graph.add_layer("prim.tuple", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543
    return current_inputs, current_outputs


def prim_TupleUnpack(mapper, graph, node):
    """ 构造获取tuple元素的PaddleLayer。

    TorchScript示例:
        %x.223 : Tensor, %aux.3 : Tensor? = prim::TupleUnpack(%4492)
        参数含义:
        %x.223 (Tensor/其他): 输出,tuple第一个元素信息。
        %aux.3 (Tensor/其他): 输出,tuple第二个元素信息。
        %4492 (tuple): 需要获取元素的tuple。
    """
S
SunAhong1993 已提交
544
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
545 546 547 548 549 550 551 552 553 554 555
    outputs_name = mapper._get_outputs_name(node)
    layer_outputs = outputs_name
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = outputs_name
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
556
        "prim.tuple_unpack", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570
    return current_inputs, current_outputs


def prim_unchecked_cast(mapper, graph, node):
    """ 构造确认类型的PaddleLayer。

    TorchScript示例:
        %size.64 : int[] = prim::unchecked_cast(%size.63)
        参数含义:
        %size.64 (-): 输出。
        %size.63 (-): 输入。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
571
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
572 573 574 575 576 577 578 579
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.63
S
SunAhong1993 已提交
580
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
581 582 583 584
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
585
    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
586 587 588 589 590 591 592 593 594 595 596
    return current_inputs, current_outputs


def prim_Uninitialized(mapper, graph, node):
    """ 构造表示编译器永远不会使用的值的PaddleLayer,该节点转换为None。

    TorchScript示例:
        %345 : bool = prim::Uninitialized()
        参数含义:
        %345 (bool): 输出,为赋值的bool。
    """
S
SunAhong1993 已提交
597
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
598 599 600 601
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    mapper.attrs[output_name] = None
    graph.add_layer(
S
SunAhong1993 已提交
602
        "prim.constant", inputs={}, outputs=[output_name], scope_name=scope_name, value=None)
S
SunAhong1993 已提交
603
    return [], [output_name]