onnx_decoder.py 20.0 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
from x2paddle.core.fluid_code import FluidCode
17
from x2paddle.decoder.onnx_shape_inference import SymbolicShapeInference
C
update  
channingss 已提交
18 19 20
from onnx.checker import ValidationError
from onnx.checker import check_model
from onnx.utils import polish_model
C
Channingss 已提交
21
from onnx import helper, shape_inference
C
update  
channingss 已提交
22 23 24 25
from onnx.helper import get_attribute_value, make_attribute
from onnx.shape_inference import infer_shapes
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
from onnx.numpy_helper import to_array
C
channingss 已提交
26
from onnx import AttributeProto, TensorProto, GraphProto
C
update  
channingss 已提交
27 28
from collections import OrderedDict as Dict
import onnx
C
channingss 已提交
29
from onnx.helper import ValueInfoProto
C
update  
channingss 已提交
30 31
import numpy as np
from copy import deepcopy
C
channingss 已提交
32
import logging as _logging
C
channingss 已提交
33
import os
C
update  
channingss 已提交
34 35

default_op_domain = 'ai.onnx'
C
channingss 已提交
36
_logger = _logging.getLogger(__name__)
C
update  
channingss 已提交
37 38 39 40 41 42 43 44 45 46 47


class ONNXGraphNode(GraphNode):
    def __init__(self, layer, layer_name=None):
        if layer_name is None:
            super(ONNXGraphNode, self).__init__(layer, layer.name)
        else:
            super(ONNXGraphNode, self).__init__(layer, layer_name)
        self.layer_type = layer.op_type
        self.fluid_code = FluidCode()
        self.attr_map = self.get_attr_map()
C
channingss 已提交
48
        self.out_shapes = list()
C
update  
channingss 已提交
49
        self.dtype = None
C
channingss 已提交
50
        self.which_child = {}
C
update  
channingss 已提交
51 52 53 54 55 56

    def get_attr_map(self):
        """
        convert ONNX node attributes to dict
        """
        return {
57
            attr.name: self.get_attribute_value(attr)
C
update  
channingss 已提交
58 59 60 61 62
            for attr in self.layer.attribute
        }

    @property
    def value(self):
C
channingss 已提交
63 64 65
        assert 'Constant' in self.layer_type, "Only Constant | ConstantOfShape node has value."
        if 'value' not in self.attr_map:
            return None
C
channingss 已提交
66
        return self.attr_map['value']
C
update  
channingss 已提交
67

68
    def get_attribute_value(self, attr):
C
update  
channingss 已提交
69 70 71 72 73 74
        """
        get_attribute_value enhanced
        """
        if attr.type == onnx.AttributeProto.TENSOR:
            dtype = np.dtype(TENSOR_TYPE_TO_NP_TYPE[attr.t.data_type])
            data = attr.t.raw_data
75 76
            value = np.frombuffer(
                data, dtype=dtype, count=(len(data) // dtype.itemsize))
C
update  
channingss 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        elif attr.type == onnx.AttributeProto.STRING:
            value = attr.s
            value = value.decode() if isinstance(value, bytes) else value
        else:
            value = get_attribute_value(attr)
        return value

    def get_attr(self, name, default=None):
        """
        get_attribute_value from attr_map
        """
        if name not in self.attr_map:
            return default
        return self.attr_map[name]


class ONNXGraphDataNode(GraphNode):
    def __init__(self, layer, layer_name=None, is_global_input=False):
        if layer_name is None:
            super(ONNXGraphDataNode, self).__init__(layer, layer.name)
        else:
            super(ONNXGraphDataNode, self).__init__(layer, layer_name)
        if is_global_input:
            self.layer_type = 'place_holder'
        else:
            self.layer_type = 'create_parameter'
        self.layer_name = layer_name
        self.fluid_code = FluidCode()
        self.weight = None
        self.embeded_as = None
C
channingss 已提交
107
        self.which_child = {}
C
update  
channingss 已提交
108 109 110

    @property
    def out_shapes(self):
C
channingss 已提交
111 112 113 114 115 116 117 118 119 120
        if isinstance(self.layer, ValueInfoProto):
            values = self.layer.type.tensor_type.shape.dim
            out_shapes = list()
            out_shapes.append([dim.dim_value for dim in values])
            return out_shapes
        else:
            values = self.layer.dims
            out_shapes = list()
            out_shapes.append(values)
            return out_shapes
C
update  
channingss 已提交
121 122 123

    @property
    def dtype(self):
C
channingss 已提交
124 125 126 127 128 129
        if isinstance(self.layer, ValueInfoProto):
            dtype = self.layer.type.tensor_type.elem_type
            return TENSOR_TYPE_TO_NP_TYPE[dtype]
        else:
            dtype = self.layer.data_type
            return TENSOR_TYPE_TO_NP_TYPE[dtype]
C
update  
channingss 已提交
130 131 132


class ONNXGraph(Graph):
C
channingss 已提交
133
    def __init__(self, onnx_model):
134 135
        super(ONNXGraph, self).__init__(onnx_model)
        self.fixed_input_shape = {}
C
update  
channingss 已提交
136 137
        self.initializer = {}
        self.place_holder_nodes = list()
138 139
        self.value_infos = {}
        self.graph = onnx_model.graph
C
update  
channingss 已提交
140
        self.get_place_holder_nodes()
141 142 143
        print("shape inferencing ...")
        self.graph = SymbolicShapeInference.infer_shapes(
            onnx_model, fixed_input_shape=self.fixed_input_shape)
C
Channingss 已提交
144 145 146 147
        if self.graph is None:
            print('[WARNING] Shape inference by ONNX offical interface.')
            onnx_model = shape_inference.infer_shapes(onnx_model)
            self.graph = onnx_model.graph 
148 149 150 151
        print("shape inferenced.")
        self.build()
        self.collect_value_infos()
        self.allocate_shapes()
C
update  
channingss 已提交
152 153 154 155 156 157

    def get_inner_nodes(self):
        """
        generate inner node of ONNX model
        """
        inner_nodes = []
158
        if not isinstance(self.graph, onnx.GraphProto):
C
update  
channingss 已提交
159 160
            logger.error('graph is not a GraphProto instance')
            return
161
        for initializer in self.graph.initializer:
C
update  
channingss 已提交
162 163 164 165
            name = initializer.name
            inner_nodes.append(name)
        return inner_nodes

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def get_symbolic_shape(self, dims):
        shape = []
        for dim in dims:
            if dim.HasField('dim_param'):
                shape.append(dim.dim_param)
            else:
                shape.append(dim.dim_value)
        return shape

    def check_input_shape(self, vi):
        if vi.type.HasField('tensor_type'):
            for dim in vi.type.tensor_type.shape.dim:
                if dim.HasField(
                        'dim_param') and vi.name not in self.fixed_input_shape:
                    shape = self.get_symbolic_shape(
                        vi.type.tensor_type.shape.dim)
                    print(
                        "Unknown shape for input tensor[tensor name: '{}'] -> shape: {}, Please define shape of input here,\nNote:you can use visualization tools like Netron to check input shape."
                        .format(vi.name, shape))
                    right_shape_been_input = False
                    while not right_shape_been_input:
                        try:
                            shape = raw_input(
                                "Shape of Input(e.g. -1,3,224,224), enter 'N' to skip: "
                            )
                        except:
                            shape = input(
                                "Shape of Input(e.g. -1,3,224,224), enter 'N' to skip: "
                            )
                        if shape.count("-1") > 1:
                            print("Only 1 dimension can be -1, type again:)")
                        else:
                            right_shape_been_input = True
                    if shape == 'N':
                        break
                    shape = [int(dim) for dim in shape.strip().split(',')]
                    assert shape.count(-1) <= 1, "Only one dimension can be -1"
                    self.fixed_input_shape[vi.name] = shape
                    break

C
update  
channingss 已提交
206 207 208 209 210
    def get_place_holder_nodes(self):
        """
        generate place_holder node of ONNX model
        """
        inner_nodes = self.get_inner_nodes()
211 212 213 214
        for ipt_vi in self.graph.input:
            if ipt_vi.name not in inner_nodes:
                self.check_input_shape(ipt_vi)
                self.place_holder_nodes.append(ipt_vi.name)
C
update  
channingss 已提交
215

C
channingss 已提交
216 217 218 219 220
    def get_output_nodes(self):
        """
        generate output_nodes node of ONNX model
        """
        inner_nodes = self.get_inner_nodes()
221
        output_nodes = [value.name for value in self.graph.output]
C
channingss 已提交
222 223 224 225
        for opt_data in output_nodes:
            if opt_data not in inner_nodes:
                self.output_nodes.append(opt_data)

C
update  
channingss 已提交
226 227 228 229 230 231 232 233 234 235 236 237
    def is_place_holder_nodes(self, layer):
        """
        return layer is or not place_holder node
        """
        if layer in self.place_holder_nodes:
            return True
        return False

    def build(self):
        """
        build topo_sort of ONNX model
        """
238
        for layer in self.graph.node:
C
channingss 已提交
239 240
            node = ONNXGraphNode(layer)
            self.node_map[layer.name] = node
C
update  
channingss 已提交
241

242
        for layer in self.graph.input:
C
update  
channingss 已提交
243 244 245 246 247 248
            if layer.name not in self.node_map:
                is_place_holder = self.is_place_holder_nodes(layer.name)
                self.node_map[layer.name] = ONNXGraphDataNode(
                    layer,
                    layer_name=layer.name,
                    is_global_input=is_place_holder)
C
channingss 已提交
249

C
update  
channingss 已提交
250
        #set data node's weight
251
        for initializer in self.graph.initializer:
C
channingss 已提交
252 253
            name = initializer.name
            weight = to_array(initializer)
C
update  
channingss 已提交
254 255 256 257
            if name in self.node_map:
                if isinstance(self.node_map[name], ONNXGraphDataNode):
                    self.node_map[name].weight = weight
                    self.node_map[name].embeded_as = []
C
channingss 已提交
258
            else:
259 260
                self.node_map[name] = ONNXGraphDataNode(
                    initializer, layer_name=name, is_global_input=False)
C
channingss 已提交
261 262
                self.node_map[name].weight = weight
                self.node_map[name].embeded_as = []
C
update  
channingss 已提交
263 264 265 266

        #generate connection between nodes for topo
        for layer_name, node in self.node_map.items():
            if isinstance(node, ONNXGraphNode):
267 268
                self.build_connection(layer_name, node)

C
channingss 已提交
269
        #generate topo
C
update  
channingss 已提交
270 271 272 273
        super(ONNXGraph, self).build()

        self.input_nodes = self.place_holder_nodes

274 275 276 277 278 279 280 281 282
    def build_connection(self, layer_name, node):
        """
        find connection for nodes
        """
        for idx, in_node in enumerate(node.layer.input):
            if in_node == '':
                continue
            if in_node not in self.node_map:
                flag = 0
283
                for nd in self.graph.node:
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
                    for idx, opt in enumerate(nd.output):
                        if opt == in_node:
                            self.connect(nd.name, layer_name)
                            flag = 1
                            node.which_child[nd.name] = idx
                            self.node_map[nd.name].index = 0
                            break
                    if flag == 1:
                        break
                if flag == 0:
                    raise Exception(
                        'input[{}] of node[{}] does not exist in node_map'.
                        format(in_node, layer_name))
            else:
                self.connect(in_node, layer_name)

C
channingss 已提交
300 301
    def get_input_node(self, node, idx=0, copy=False):
        if len(node.which_child) == 0:
C
channingss 已提交
302 303 304
            ipt_node = super(ONNXGraph, self).get_node(node.inputs[idx], copy)
            return ipt_node

C
channingss 已提交
305 306 307 308 309
        else:
            ipt_node = super(ONNXGraph, self).get_node(node.inputs[idx], copy)
            if ipt_node.layer_name in node.which_child:
                ipt_node.index = node.which_child[ipt_node.layer_name]
            return ipt_node
C
update  
channingss 已提交
310

311
    def graph_weights(self):
C
update  
channingss 已提交
312 313 314 315
        """
        generator for weights
        """

316
        if not isinstance(self.graph, onnx.GraphProto):
C
update  
channingss 已提交
317 318 319
            logger.error('graph is not a GraphProto instance')
            return

320
        for initializer in self.graph.initializer:
C
update  
channingss 已提交
321 322 323 324
            name = initializer.name
            weight = to_array(initializer)
            yield name, weight

325
    def collect_value_infos(self):
C
channingss 已提交
326 327 328
        """
        collect value/type info for an ONNX model
        """
329
        assert isinstance(self.graph,
C
channingss 已提交
330 331
                          onnx.GraphProto), 'model is not a ModelProto instance'

332 333
        for item in self.graph.value_info:
            self.value_infos[item.name] = {
C
channingss 已提交
334 335 336 337 338 339
                'dtype':
                TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
                'shape':
                [dim.dim_value for dim in item.type.tensor_type.shape.dim],
                'external': False
            }
340 341 342 343 344 345 346 347 348 349 350 351 352

    def allocate_shapes(self):
        """
        run shape inference
        """
        for layer in self.graph.node:
            node = self.node_map[layer.name]
            for opt in layer.output:
                if opt in self.value_infos:
                    value_info = self.value_infos[opt]
                    #if len(value_info['shape']) == 0 or value_info[
                    #        'dtype'] is None or 0 in value_info['shape']:
                    #    #TODO add node shape inference
353 354 355 356 357
                    shape = value_info['shape']
                    for idx in range(len(shape)):
                        if shape[idx] == 0:
                            shape[idx] = -1
                    node.out_shapes.append(shape)
358 359 360
                    node.dtype = value_info['dtype']
                else:
                    node.out_shapes.append([])
C
channingss 已提交
361

C
update  
channingss 已提交
362 363

class ONNXDecoder(object):
C
channingss 已提交
364
    def __init__(self, onnx_model):
365
        onnx_model = onnx.load(onnx_model)
C
update  
channingss 已提交
366
        print('model ir_version: {}, op version: {}'.format(
367 368 369 370 371 372 373 374 375 376
            onnx_model.ir_version, onnx_model.opset_import[0].version))
        self.op_set = onnx_model.opset_import[0].version

        check_model(onnx_model)

        onnx_model = self.optimize_model_skip_op(onnx_model)
        onnx_model = self.optimize_model_strip_initializer(onnx_model)
        onnx_model = self.optimize_node_name(onnx_model)
        self.graph = ONNXGraph(onnx_model)
        #self.onnx_model = onnx_model
C
update  
channingss 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

    def build_value_refs(self, nodes):
        """
        build op reference of inputs and outputs
        """
        input_refs = Dict()
        output_refs = Dict()
        for idx, node in enumerate(nodes):
            for val_name in node.input:
                input_refs.setdefault(val_name, set()).add(idx)
            for val_name in node.output:
                output_refs.setdefault(val_name, set()).add(idx)
        return input_refs, output_refs

    def skip_node_forward(self, nodes, src_output_name, dst_input_name,
                          input_refs):
        """
        skip nodes between src_output_name -> dst_input_name and connect this pair
        """
        processed = 0
        for next_idx in input_refs[src_output_name]:
            next_node = nodes[next_idx]
            for val_idx, next_input_name in enumerate(next_node.input):
                if next_input_name == src_output_name:
                    next_node.input[val_idx] = dst_input_name
                    processed += 1
        return processed

    def skip_node_backward(self, nodes, src_input_name, dst_output_name,
                           output_refs):
        """
        skip nodes between dst_output_name -> src_input_name and connect this pair
        """
        processed = 0
        for prev_idx in output_refs[src_input_name]:
            prev_node = nodes[prev_idx]
            for val_idx, prev_output_name in enumerate(prev_node.output):
                if prev_output_name == src_input_name:
                    prev_node.output[val_idx] = dst_output_name
                    processed += 1
        return processed

419
    def optimize_model_skip_op(self, model, op_list=None):
C
update  
channingss 已提交
420 421 422
        """
        skip ops can be bypassed for inference
        """
423
        nodes = model.graph.node
C
update  
channingss 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
        if op_list is None:
            op_list = ['Dropout']
        input_refs, output_refs = self.build_value_refs(nodes)
        ret = type(model)()
        ret.CopyFrom(model)
        ret_nodes = ret.graph.node
        nodes_to_remove = []
        for node_idx, node in enumerate(nodes):
            if not (node.domain == default_op_domain or node.domain == ''):
                continue
            op_type = node.op_type
            if not (op_type in op_list):
                continue
            if op_type in ['Dropout']:
                input_name = node.input[0]
                output_name = node.output[0]
            elif not (len(node.input) == 1 and len(node.output) == 1):
                print(
                    'currently only 1-input-1-output op supported, skip required %d: %s',
                    node_idx, node.op_type)
                continue
            else:
                input_name = node.input[0]
                output_name = node.output[0]

            if output_name in input_refs:
                processed = self.skip_node_forward(ret_nodes, output_name,
                                                   input_name, input_refs)
            elif input_name in output_refs:
                processed = self.skip_node_backward(ret_nodes, input_name,
                                                    output_name, output_refs)
            else:
                processed = -1
            if processed > 0:
                nodes_to_remove.append(node_idx)
C
channingss 已提交
459 460 461 462 463
                for value_info in ret.graph.value_info:
                    for output in node.output:
                        if value_info.name == output:
                            ret.graph.value_info.remove(value_info)

C
update  
channingss 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
                print('skip op {}: {} -> {} -> {}'.format(
                    node_idx, input_name, node.op_type, output_name))
            elif processed == 0:
                print('weird, no node processed')
            else:
                print('standalone op {}: {} -> {} -> {} not skipped'.format(
                    node_idx, input_name, node.op_type, output_name))

        nodes_to_remove.sort(reverse=True)
        for node_idx in nodes_to_remove:
            ret_nodes.pop(node_idx)
        return ret

    def optimize_model_strip_initializer(self, model, keep_input_only=True):
        """
        strip weights for inference
        """
        nodes = model.graph.node
        input_refs, output_refs = self.build_value_refs(nodes)
        out_names = [val.name for val in model.graph.output]

        ret = type(model)()
        ret.CopyFrom(model)
        # strip initializers
        ret.graph.ClearField('initializer')
        ret_initializers = ret.graph.initializer
        for initializer in model.graph.initializer:
            name = initializer.name
            if name in input_refs:
                ret_initializers.add().CopyFrom(initializer)
            elif not keep_input_only and name in output_refs:
                ret_initializers.add().CopyFrom(initializer)
            else:
                dtype = TENSOR_TYPE_TO_NP_TYPE[initializer.data_type]

        # strip inputs
        ret.graph.ClearField('input')
        ret_inputs = ret.graph.input
        for item in model.graph.input:
            name = item.name
            if name in input_refs or name in out_names:
                ret_inputs.add().CopyFrom(item)
        return ret

    def make_variable_name(self, name):
        """
        make a valid code name for ParamAttr
        """
        if name == '':
            raise ValueError('name should not be empty')
C
channingss 已提交
514
        for s in ' .*?\\/-:':
C
update  
channingss 已提交
515
            name = name.replace(s, '_')
516 517
        return 'x2paddle_' + name

518
    def optimize_node_name(self, model):
C
update  
channingss 已提交
519 520 521
        """
        standardize variable name for paddle's code
        """
522
        graph = model.graph
C
update  
channingss 已提交
523 524 525 526 527 528 529 530 531
        for initializer in graph.initializer:
            initializer.name = self.make_variable_name(initializer.name)
        for ipt in graph.input:
            ipt.name = self.make_variable_name(ipt.name)
        for output in graph.output:
            output.name = self.make_variable_name(output.name)
        for item in graph.value_info:
            item.name = self.make_variable_name(item.name)
        for node in graph.node:
C
channingss 已提交
532
            node.name = node.output[0]
C
update  
channingss 已提交
533 534
            node.name = self.make_variable_name(node.name)
            for i in range(len(node.input)):
535 536 537 538
                if node.input[i] == '':
                    continue
                else:
                    node.input[i] = self.make_variable_name(node.input[i])
C
update  
channingss 已提交
539 540
            for i in range(len(node.output)):
                node.output[i] = self.make_variable_name(node.output[i])
541
        return model