tf_op_mapper.py 34.5 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

J
jiangjiajun 已提交
15 16
from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
17
from x2paddle.core.util import *
J
jiangjiajun 已提交
18
import numpy
19

J
jiangjiajun 已提交
20

J
jiangjiajun 已提交
21
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Shape': ['shape'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
        'Rsqrt': ['rsqrt'],
        'Squeeze': ['squeeze', {
            'squeeze_dims': 'axes'
        }],
        'Softmax': ['softmax', {
            'axis': 'axis'
        }],
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
        'RealDiv': 'elementwise_div',
        'BiasAdd': 'elementwise_add',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
        'Mul': 'elementwise_mul'
    }

J
jiangjiajun 已提交
47 48
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
49
        self.decoder = decoder
J
jiangjiajun 已提交
50 51
        self.graph = decoder.tf_graph
        self.weights = dict()
J
jiangjiajun 已提交
52
        self.omit_nodes = list()
53 54 55

    def run(self):
        print("Total nodes: {}".format(len(self.graph.topo_sort)))
J
jiangjiajun 已提交
56 57

        # check if ops in model are all supported
J
jiangjiajun 已提交
58
        # TODO
J
jiangjiajun 已提交
59

60 61 62
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
63 64 65 66 67
            if op in self.directly_map_ops:
                self.directly_map(node)
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
            elif hasattr(self, op):
J
jiangjiajun 已提交
68 69
                func = getattr(self, op)
                func(node)
J
jiangjiajun 已提交
70 71
            else:
                raise Exception("OP: [{}] not support yet".format(op))
72

J
jiangjiajun 已提交
73 74
        for i in range(len(self.graph.topo_sort)):
            node_name = self.graph.topo_sort[i]
J
jiangjiajun 已提交
75 76
            if node_name in self.omit_nodes:
                continue
J
jiangjiajun 已提交
77
            node = self.graph.get_node(node_name)
78
            self.net_code += node.fluid_code.gen_codes()
J
jiangjiajun 已提交
79

J
jiangjiajun 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_node(node.layer.input[0], copy=True)
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
        node.fluid_code.add_layer(op_info[0],
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
        # incomplement broadcasting support for paddle
        x_input = x
        y_input = y
        if len(x_shape) < len(y_shape):
            unrevertable_ops = [
                "elementwise_sub", "elementwise_div", "elementwise_floordiv",
                "elementwise_mod", "elementwise_pow"
            ]
            if op_type not in unrevertable_ops:
                x_input = y
                y_input = x
                x_shape = y.out_shapes[0]
                y_shape = x.out_shapes[0]
            else:
                raise Exception("Unexpected situation happend")

        is_sub_seq = True
        for i in range(len(y_shape)):
            index = -1 * i - 1
            if y_shape[index] != x_shape[index]:
                is_sub_seq = False
        if not is_sub_seq:
            x_expand_times = [1] * len(x_shape)
            y_expand_times = [1] * len(y_shape)
            x_need_expand = False
            y_need_expand = False
            for i in range(len(y_shape)):
                index = -1 * i - 1
                if y_shape[index] != x_shape[index]:
                    if y_shape[index] == 1:
                        y_expand_times[index] = x_shape[index]
                        y_need_expand = True
                    elif x_shape[index] == 1:
                        x_expand_times[index] = y_shape[index]
                        x_need_expand = True
                    else:
                        raise Exception("Unexpected situation happend")
            if x_need_expand:
                attr = {"expand_times": x_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=x_input,
                                          output="x_tmp",
                                          param_attr=attr)
                x_input = "x_tmp"
            if y_need_expand:
                attr = {"expand_times": y_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=y_input,
                                          output="y_tmp",
                                          param_attr=attr)
                y_input = "y_tmp"
        inputs = {"x": x_input, "y": y_input}
        node.fluid_code.add_layer(op_type,
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

159 160
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
161 162
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
163 164
        dtype = node.dtype
        attr = {
J
jiangjiajun 已提交
165
            'dtype': string(dtype),
166
            'shape': shape,
J
jiangjiajun 已提交
167 168
            'name': string(node.layer_name),
            'append_batch_size': False
169
        }
J
jiangjiajun 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': initializer
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)
195
        self.weights[node.layer_name.replace('/', '_')] = node.value
J
jiangjiajun 已提交
196 197

    def Transpose(self, node):
J
jiangjiajun 已提交
198 199
        input = self.graph.get_node(node.layer.input[0], copy=True)
        perm = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
200
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
201
        del self.weights[perm.layer_name.replace('/', '_')]
J
jiangjiajun 已提交
202 203 204 205 206 207
        perm.fluid_code.clear()
        perm = perm.value.tolist()

        attr = {'perm': perm}
        node.fluid_code.add_layer("transpose",
                                  inputs=input,
208 209
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
210

J
jiangjiajun 已提交
211 212
    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
213

J
jiangjiajun 已提交
214
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
215 216 217
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
218 219 220 221
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
222
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
223

J
jiangjiajun 已提交
224
        if not channel_first:
J
jiangjiajun 已提交
225 226 227 228 229 230 231
            attr = {"perm": [0, 3, 1, 2]}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
232
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
233 234

        if pad_mode == "SAME":
J
jiangjiajun 已提交
235 236
            pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
J
jiangjiajun 已提交
237 238 239
            pad_h = pad_h[0] + pad_h[1]
            pad_w = pad_w[0] + pad_w[1]
            attr = {"paddings": [0, pad_h, 0, pad_w], "pad_value": -10000.0}
J
jiangjiajun 已提交
240 241 242 243 244 245
            if pad_h + pad_w != 0:
                node.fluid_code.add_layer(
                    "pad2d",
                    inputs=input if channel_first else node,
                    output=node,
                    param_attr=attr)
J
jiangjiajun 已提交
246
        attr = {
J
jiangjiajun 已提交
247
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
248
            "pool_type": string("max"),
J
jiangjiajun 已提交
249
            "pool_stride": strides[2:4]
J
jiangjiajun 已提交
250
        }
J
jiangjiajun 已提交
251 252 253 254 255
        node.fluid_code.add_layer(
            "pool2d",
            inputs=input if channel_first and pad_mode != "SAME" else node,
            output=node,
            param_attr=attr)
J
jiangjiajun 已提交
256

J
jiangjiajun 已提交
257
        if not channel_first:
J
jiangjiajun 已提交
258
            attr = {"perm": [0, 2, 3, 1]}
J
jiangjiajun 已提交
259 260 261 262 263 264 265 266 267 268 269
            node.fluid_code.add_layer("transpose",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)

    def Conv2D(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of Conv2D should be Const"
        self.omit_nodes.append(kernel.layer_name)

J
jiangjiajun 已提交
270 271 272
        node.fluid_code.add_note("#{} : {}".format(node.layer.name,
                                                   node.layer_name))

J
jiangjiajun 已提交
273
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
274 275
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
276
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
277 278 279
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
280 281 282 283 284 285 286
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        if not channel_first:
287
            self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
J
jiangjiajun 已提交
288 289
                kernel.value, (3, 2, 0, 1))
            attr = {"perm": [0, 3, 1, 2]}
J
jiangjiajun 已提交
290 291 292 293
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
J
jiangjiajun 已提交
294 295 296
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
297

J
jiangjiajun 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        if pad_mode == "SAME":
            pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
            if pad_h[0] + pad_h[1] + pad_w[0] + pad_w[1] != 0:
                node.fluid_code.add_layer(
                    "pad2d",
                    inputs=input if channel_first else node,
                    output=node,
                    param_attr=attr)
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": k_size[3],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
            "dilation": dilations[2:4]
        }
J
jiangjiajun 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
        node.fluid_code.add_layer(
            "conv2d",
            inputs=input if channel_first and pad_mode != "SAME" else node,
            output=node,
            param_attr=attr)

        if not channel_first:
            attr = {"perm": [0, 2, 3, 1]}
            node.fluid_code.add_layer("transpose",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)

    def FusedBatchNorm(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        gamma = self.graph.get_node(node.layer.input[1], copy=True)
        beta = self.graph.get_node(node.layer.input[2], copy=True)
        moving_mean = self.graph.get_node(node.layer.input[3], copy=True)
        moving_var = self.graph.get_node(node.layer.input[4], copy=True)
J
jiangjiajun 已提交
335 336
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
337 338 339 340 341 342 343 344 345 346

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
        self.omit_nodes.append(gamma.layer_name)
        self.omit_nodes.append(beta.layer_name)
        self.omit_nodes.append(moving_mean.layer_name)
        self.omit_nodes.append(moving_var.layer_name)

J
jiangjiajun 已提交
347 348 349 350 351 352 353
        if not channel_first:
            attr = {"perm": [0, 3, 1, 2]}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)

J
jiangjiajun 已提交
354 355 356
        attr = {
            "epsilon": node.get_attr("epsilon"),
            "param_attr": string(gamma.layer_name),
J
jiangjiajun 已提交
357
            #            "data_layout": string(node.get_attr("data_format").decode()),
J
jiangjiajun 已提交
358 359 360 361 362 363 364
            "bias_attr": string(beta.layer_name),
            "moving_mean_name": string(moving_mean.layer_name),
            "moving_variance_name": string(moving_var.layer_name),
            "is_test": True
        }

        node.fluid_code.add_layer("batch_norm",
J
jiangjiajun 已提交
365
                                  inputs=input if channel_first else node,
J
jiangjiajun 已提交
366 367 368
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
369 370 371 372 373 374 375
        if not channel_first:
            attr = {"perm": [0, 2, 3, 1]}
            node.fluid_code.add_layer("transpose",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)

J
jiangjiajun 已提交
376 377 378 379 380 381
    def DepthwiseConv2dNative(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
        self.omit_nodes.append(kernel.layer_name)

J
jiangjiajun 已提交
382 383 384
        node.fluid_code.add_note("#{} : {}".format(node.layer.name,
                                                   node.layer_name))

J
jiangjiajun 已提交
385
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
386 387
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
388
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
389 390 391
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        if not channel_first:
            self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
                kernel.value, (2, 3, 0, 1))
            attr = {"perm": [0, 3, 1, 2]}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]

        if pad_mode == "SAME":
            pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
            if pad_h[0] + pad_h[1] + pad_w[0] + pad_w[1] != 0:
                node.fluid_code.add_layer("pad2d",
                                          inputs=input if channel_first
                                          and pad_mode != "SAME" else node,
                                          output=node,
                                          param_attr=attr)
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": in_shape[1],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
            "dilation": dilations[2:4],
            "groups": k_size[3] * in_shape[1]
        }
J
jiangjiajun 已提交
429 430 431 432
        node.fluid_code.add_layer("conv2d",
                                  inputs=input if channel_first else node,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
433

J
jiangjiajun 已提交
434 435 436 437 438 439
        if not channel_first:
            attr = {"perm": [0, 2, 3, 1]}
            node.fluid_code.add_layer("transpose",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)
J
jiangjiajun 已提交
440 441 442 443 444 445

    def Reshape(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        param = self.graph.get_node(node.layer.input[1], copy=True)
        if param.layer_type == "Const":
            attr = {"shape": param.value.tolist()}
J
jiangjiajun 已提交
446
            self.omit_nodes.append(param.layer_name)
J
jiangjiajun 已提交
447 448
        else:
            # Here is a trick method to solove tensor parameter in tensorflow
J
jiangjiajun 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
            shape = self.decoder.infer_shape_tensor(param, node.out_shapes[0])
            if shape.count(-1) <= 1:
                attr = {"shape": shape}
                self.omit_nodes.append(param.layer_name)
            else:
                assert len(param.out_shapes[0]
                           ) == 1, "Unexpected situation of shape parameter"
                attr = {"shape": [-1]}
                node.fluid_code.add_layer("reshape",
                                          inputs=param,
                                          output="shape_param",
                                          param_attr=attr)
                attr = {"num_or_sections": param.out_shapes[0][0], "dim": 0}
                node.fluid_code.add_layer("split",
                                          inputs="shape_param",
                                          output=node,
                                          param_attr=attr)
                new_param = "["
                for i in range(param.out_shapes[0][0]):
                    new_param += (node.layer_name + "[{}]".format(i) + ", ")
                new_param = new_param.strip(", ") + "]"
                attr = {"shape": new_param}
J
jiangjiajun 已提交
471 472 473 474 475 476 477
        node.fluid_code.add_layer("reshape",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def AvgPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
478

J
jiangjiajun 已提交
479
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
480 481 482
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        if not channel_first:
            attr = {"perm": [0, 3, 1, 2]}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
497
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
498 499

        attr = {
J
jiangjiajun 已提交
500
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
501 502 503 504
            "pool_type": string("avg"),
            "pool_stride": strides[2:4]
        }
        if pad_mode == "SAME":
J
jiangjiajun 已提交
505 506
            pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
J
jiangjiajun 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
            assert pad_h[0] == pad_h[1] and pad_w[0] == pad_w[
                1], "Cannot map AvgPool"
            attr["pool_padding"] = [pad_h[0], pad_w[0]]
        node.fluid_code.add_layer("pool2d",
                                  inputs=input if channel_first else node,
                                  output=node,
                                  param_attr=attr)

        if not channel_first:
            attr = {"perm": [0, 2, 3, 1]}
            node.fluid_code.add_layer("transpose",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)

J
jiangjiajun 已提交
522 523 524 525 526 527 528 529
    def SplitV(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        num_sections = self.graph.get_node(node.layer.input[1], copy=True)
        dim = self.graph.get_node(node.layer.input[2], copy=True)
        assert num_sections.layer_type == "Const"
        assert dim.layer_type == "Const"
        self.omit_nodes.append(num_sections.layer_name)
        self.omit_nodes.append(dim.layer_name)
J
jiangjiajun 已提交
530 531 532 533 534 535 536 537
        attr = {
            "num_or_sections": num_sections.value.tolist(),
            "dim": dim.value
        }
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
538 539

    def ConcatV2(self, node):
J
jiangjiajun 已提交
540 541 542 543
        inputs = [
            self.graph.get_node(name, copy=True)
            for name in node.layer.input[:-1]
        ]
J
jiangjiajun 已提交
544 545 546 547
        axis = self.graph.get_node(node.layer.input[-1], copy=True)
        assert axis.layer_type == "Const"
        self.omit_nodes.append(axis.layer_name)
        attr = {"axis": axis.value}
J
jiangjiajun 已提交
548 549 550 551
        node.fluid_code.add_layer("concat",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
552 553 554 555 556 557 558

    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        expand_times = self.graph.get_node(node.layer.input[1], copy=True)
        assert expand_times.layer_type == "Const"
        self.omit_nodes.append(expand_times.layer_name)
        attr = {"expand_times": expand_times.value.tolist()}
J
jiangjiajun 已提交
559 560 561 562
        node.fluid_code.add_layer("expand",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
563 564

    def Pack(self, node):
J
jiangjiajun 已提交
565 566 567
        inputs = [
            self.graph.get_node(name, copy=True) for name in node.layer.input
        ]
J
jiangjiajun 已提交
568
        attr = {"axis": node.get_attr("axis")}
J
jiangjiajun 已提交
569 570 571
        node.fluid_code.add_layer("stack",
                                  inputs=inputs,
                                  output=node,
J
jiangjiajun 已提交
572
                                  param_attr=attr)
J
jiangjiajun 已提交
573 574 575

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
576
        paddings = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
577 578 579
        assert paddings.layer_type == "Const", "Padding should be Const"
        self.omit_nodes.append(paddings.layer_name)
        attr = {"paddings": paddings.value.tolist()}
J
jiangjiajun 已提交
580 581 582 583
        node.fluid_code.add_layer("pad",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597

    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0], copy=True)
        limit = self.graph.get_node(node.layer.input[1], copy=True)
        delta = self.graph.get_node(node.layer.input[2], copy=True)
        if start.layer_type == "Const":
            self.omit_nodes.append(start.layer_name)
            start = start.value
        if limit.layer_type == "Const":
            self.omit_nodes.append(limit.layer_name)
            limit = limit.value
        if delta.layer_type == "Const":
            self.omit_nodes.append(delta.layer_name)
            delta = delta.value
J
jiangjiajun 已提交
598
        inputs = {"start": start, "end": limit, "step": delta}
J
jiangjiajun 已提交
599
        attr = {"dtype": string(node.dtype)}
J
jiangjiajun 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
        node.fluid_code.append("range",
                               inputs=inputs,
                               output=node,
                               param_attr=None)

    def swish_f32(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        node.fluid_code.add_layer("sigmoid",
                                  inputs=input,
                                  output=node,
                                  param_attr=None)
        inputs = {"x": input, "y": node}
        node.fluid_code.add_layer("elementwise_mul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        attr = {"dim": reduce_idx.value.tolist(), "keep_dim": keep_dims}
        node.fluid_code.add_layer("reduce_mean",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def MatMul(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        inputs = {"x": x, "y": y}
J
jiangjiajun 已提交
634 635 636 637 638 639 640 641 642 643
        # fix paddle shape infer problem
        # should be removed after paddle 1.6
        if x.out_shapes[0][-1] < 0 and y.out_shapes[0][0] > 0:
            shape = x.out_shapes[0]
            shape[-1] = y.out_shapes[0][0]
            attr = {"shape": shape}
            node.fluid_code.add_layer("reshape",
                                      inputs=x,
                                      output=x,
                                      param_attr=attr)
J
jiangjiajun 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        attr = {"transpose_x": transpose_a, "transpose_y": transpose_b}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = self.graph.get_node(node.layer.input[1], copy=True)
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        self.omit_nodes.append(axis.layer_name)
        attr = {"axis": axis.value}
        node.fluid_code.add_layer("argmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def StridedSlice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        end = self.graph.get_node(node.layer.input[2], copy=True)
        strides = self.graph.get_node(node.layer.input[3], copy=True)
        assert begin.layer_type == "Const"
        assert end.layer_type == "Const"
        assert strides.layer_type == "Const"
        self.omit_nodes.append(begin.layer_name)
        self.omit_nodes.append(end.layer_name)
        self.omit_nodes.append(strides.layer_name)
        strides = strides.value.tolist()
        assert len(set(strides)) == 1 and strides[0] == 1

675 676 677 678 679
        attr = {
            "axes": range(len(strides)),
            "starts": begin.value.tolist(),
            "ends": end.value.tolist()
        }
J
jiangjiajun 已提交
680 681 682 683
        node.fluid_code.add_layer("slice",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
684 685 686 687 688

    def Slice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        size = self.graph.get_node(node.layer.input[2], copy=True)
J
jiangjiajun 已提交
689 690
        #        assert begin.layer_type == "Const"
        #        assert size.layer_type == "Const"
691 692
        self.omit_nodes.append(begin.layer_name)
        self.omit_nodes.append(size.layer_name)
J
jiangjiajun 已提交
693 694 695 696 697 698 699 700
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
        else:
            begin = self.decoder.infer_tensor(begin).tolist()
        if size.layer_type == "const":
            size = size.value.tolist()
        else:
            size = self.decoder.infer_tensor(size).tolist()
701

J
jiangjiajun 已提交
702 703 704 705 706
        attr = {"shape": size, "offsets": begin}
        node.fluid_code.add_layer("crop",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
707 708 709 710 711 712 713

    def Conv2DBackpropInput(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
        self.omit_nodes.append(kernel.layer_name)

J
jiangjiajun 已提交
714 715 716
        node.fluid_code.add_note("#{} : {}".format(node.layer.name,
                                                   node.layer_name))

717
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
718 719
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
720
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
721 722 723
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        if not channel_first:
            self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
                kernel.value, (3, 2, 0, 1))
            attr = {"perm": [0, 3, 1, 2]}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]

        if pad_mode == "SAME":
            pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
            if pad_h[0] + pad_h[1] + pad_w[0] + pad_w[1] != 0:
                node.fluid_code.add_layer(
                    "pad2d",
                    inputs=input if channel_first else node,
                    output=node,
                    param_attr=attr)
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": k_size[3],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
            "dilation": dilations[2:4]
        }
        node.fluid_code.add_layer(
            "conv2d_transpose",
            inputs=input if channel_first and pad_mode != "SAME" else node,
            output=node,
            param_attr=attr)

        if not channel_first:
            attr = {"perm": [0, 2, 3, 1]}
            node.fluid_code.add_layer("transpose",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)

    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        attr = {"dim": reduce_idx.value.tolist(), "keep_dim": keep_dims}
        node.fluid_code.add_layer("reduce_max",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        attr = {"dim": reduce_idx.value.tolist(), "keep_dim": keep_dims}
        node.fluid_code.add_layer("reduce_sum",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
795 796 797 798 799 800 801 802
    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        dtype = node.dtype_map[node.get_attr('DstT')]
        attr = {"dtype": string(dtype)}
        node.fluid_code.add_layer("cast",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
803 804 805 806 807 808 809 810 811 812 813 814 815

    def FloorDiv(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {'x': x, 'y': y}
        node.fluid_code.add_layer("elementwise_div",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
        node.fluid_code.add_layer("floor",
                                  inputs=node,
                                  output=node,
                                  param_attr=None)
J
jiangjiajun 已提交
816 817 818 819 820 821 822 823 824 825 826 827

    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0], copy=True)
        input = self.graph.get_node(node.layer.input[1], copy=True)
        assert dim.layer_type == "Const"
        self.omit_nodes.append(dim.layer_name)
        num_split = node.get_attr('num_split')
        attr = {"num_or_sections": num_split, "dim": dim.value}
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)