layers.py 7.3 KB
Newer Older
R
Renwb1991 已提交
1 2 3
import re
import numbers
from collections import namedtuple
4 5
import sys
from . import custom_layers
R
Renwb1991 已提交
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
from .shapes import *

LAYER_DESCRIPTORS = {

    # Caffe Types
    'AbsVal': shape_identity,
    'Accuracy': shape_scalar,
    'ArgMax': shape_not_implemented,
    'BatchNorm': shape_identity,
    'BNLL': shape_not_implemented,
    'Concat': shape_concat,
    'ContrastiveLoss': shape_scalar,
    'Convolution': shape_convolution,
    'Deconvolution': shape_deconvolution,
    'Data': shape_data,
    'Dropout': shape_identity,
    'DummyData': shape_data,
    'Crop': shape_crop,
    'EuclideanLoss': shape_scalar,
    'Eltwise': shape_identity,
    'Exp': shape_identity,
    'Flatten': shape_not_implemented,
    'HDF5Data': shape_data,
    'HDF5Output': shape_identity,
    'HingeLoss': shape_scalar,
    'Im2col': shape_not_implemented,
    'ImageData': shape_data,
    'InfogainLoss': shape_scalar,
    'InnerProduct': shape_inner_product,
    'Input': shape_data,
    'LRN': shape_identity,
    'MemoryData': shape_mem_data,
    'MultinomialLogisticLoss': shape_scalar,
    'MVN': shape_not_implemented,
    'Pooling': shape_pool,
    'Power': shape_power,
    'ReLU': shape_identity,
    'PReLU': shape_identity,
    'Scale': shape_identity,
    'Sigmoid': shape_identity,
    'SigmoidCrossEntropyLoss': shape_scalar,
    'Silence': shape_not_implemented,
    'Softmax': shape_identity,
    'SoftmaxWithLoss': shape_scalar,
    'Split': shape_not_implemented,
    'Slice': shape_not_implemented,
    'TanH': shape_identity,
    'WindowData': shape_not_implemented,
    'Threshold': shape_identity,
}

# layer types in 'V1LayerParameter'
# (v1layertype name, enum value, mapped to layer type)
v1_layertypes = [
    ('ABSVAL', 35),
    ('ACCURACY', 1),
    ('ARGMAX', 30),
    ('BNLL', 2),
    ('CONCAT', 3),
    ('CONVOLUTION', 4),
    ('DATA', 5),
    ('DECONVOLUTION', 39),
    ('DROPOUT', 6),
    ('ELTWISE', 25),
    ('EXP', 38),
    ('FLATTEN', 8),
    ('IM2COL', 11),
    ('INNERPRODUCT', 14),
    ('LRN', 15),
    ('MEMORYDATA', 29),
    ('MULTINOMIALLOGISTICLOSS', 16),
    ('MVN', 34),
    ('POOLING', 17),
    ('POWER', 26),
    ('RELU', 18),
    ('SIGMOID', 19),
    ('SIGMOIDCROSSENTROPYLOSS', 27),
    ('SILENCE', 36),
    ('SOFTMAX', 20),
    ('SPLIT', 22),
    ('SLICE', 33),
    ('TANH', 23),
    ('WINDOWDATA', 24),
    ('THRESHOLD', 31),
]

LAYER_TYPES = LAYER_DESCRIPTORS.keys()
LayerType = type('LayerType', (), {t: t for t in LAYER_TYPES})

#map the layer name in V1 to standard name
V1_LAYER_MAP = {'_not_init_': True}


def get_v1_layer_map():
    global V1_LAYER_MAP
    if '_not_init_' not in V1_LAYER_MAP:
        return V1_LAYER_MAP
    else:
        del V1_LAYER_MAP['_not_init_']

    name2layer = {}
    for n in LAYER_TYPES:
        name2layer[n.upper()] = n

    for l in v1_layertypes:
        n, v = l
        if n in name2layer and v not in V1_LAYER_MAP:
            V1_LAYER_MAP[v] = name2layer[n]
        else:
            raise KaffeError('not found v1 layer type %s' % n)
    return V1_LAYER_MAP


class NodeKind(LayerType):
    @staticmethod
    def map_raw_kind(kind):
        if custom_layers.has_layer(kind):
            return kind

        if kind in LAYER_TYPES:
            return kind

        v1_layers = get_v1_layer_map()
        if kind in v1_layers:
            return v1_layers[kind]
        else:
            return None

    @staticmethod
    def compute_output_shape(node):
        if custom_layers.has_layer(node.kind):
            return custom_layers.compute_output_shape(node.kind, node)

        try:
            val = LAYER_DESCRIPTORS[node.kind](node)
            return val
        except NotImplementedError:
            raise KaffeError(
                'Output shape computation not implemented for type: %s' %
                node.kind)


class NodeDispatchError(KaffeError):
    pass


class NodeDispatch(object):
    @staticmethod
    def get_handler_name(node_kind):
        if len(node_kind) <= 6:
            # A catch-all for things like ReLU and tanh
            return node_kind.lower()
        # Convert from CamelCase to under_scored
        name = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', node_kind)
        return re.sub('([a-z0-9])([A-Z])', r'\1_\2', name).lower()

    def get_handler(self, node_kind, prefix):
        if custom_layers.has_layer(node_kind):
            return getattr(self, 'map_custom')

        name = self.get_handler_name(node_kind)
        name = '_'.join((prefix, name))
        try:
            return getattr(self, name)
        except AttributeError:
            raise NodeDispatchError(
                'No handler found for node kind: %s (expected: %s)' %
                (node_kind, name))


class LayerAdapter(object):
    def __init__(self, layer, kind):
        self.layer = layer
        self.kind = kind

    @property
    def parameters(self):
        name = NodeDispatch.get_handler_name(self.kind)
        if self.kind.lower() == "normalize":
            name = "norm"
        elif self.kind.lower() == "deconvolution":
            name = "convolution"

        name = '_'.join((name, 'param'))
        try:
            return getattr(self.layer, name)
        except AttributeError:
            print(dir(self.layer))
            raise NodeDispatchError(
                'Caffe parameters not found attr[%s] for layer kind[%s]' %
                (name, self.kind))

    @staticmethod
    def get_kernel_value(scalar, repeated, idx, default=None):
        if scalar:
            return scalar
        if repeated:
            if isinstance(repeated, numbers.Number):
                return repeated
            if len(repeated) == 1:
                # Same value applies to all spatial dimensions
                return int(repeated[0])
            assert idx < len(repeated)
            # Extract the value for the given spatial dimension
            return repeated[idx]
        if default is None:
            raise ValueError('Unable to determine kernel parameter!')
        return default

    @property
    def kernel_parameters(self):
        assert self.kind in (NodeKind.Convolution, NodeKind.Pooling,\
                    NodeKind.Deconvolution)

        params = self.parameters
        k_h = self.get_kernel_value(params.kernel_h, params.kernel_size, 0)
        k_w = self.get_kernel_value(params.kernel_w, params.kernel_size, 1)
        s_h = self.get_kernel_value(
            params.stride_h, params.stride, 0, default=1)
        s_w = self.get_kernel_value(
            params.stride_w, params.stride, 1, default=1)
        p_h = self.get_kernel_value(params.pad_h, params.pad, 0, default=0)
        p_w = self.get_kernel_value(params.pad_w, params.pad, 1, default=0)

        dila_h = dila_w = 1
        if self.kind in (NodeKind.Convolution, NodeKind.Deconvolution):
            dila_len = len(params.dilation)
            if dila_len == 2:
                dila_h = params.dilation[0]
                dila_w = params.dilation[1]
            elif dila_len == 1:
                dila_h = dila_w = params.dilation[0]
            else:
                assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
                    dila_len)

        return KernelParameters(k_h, k_w, s_h, s_w, p_h, p_w, dila_h, dila_w)


KernelParameters = namedtuple(
    'KernelParameters',
    [
        'kernel_h', 'kernel_w', 'stride_h', 'stride_w', 'pad_h', 'pad_w',
        'dila_h', 'dila_w'
    ], )