tf_emitter.py 9.0 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

J
jiangjiajun 已提交
15 16
from x2paddle.parser.tf_parser import TFGraph
from x2paddle.core.emitter import Emitter
17
from x2paddle.core.fluid_code import FluidCode
J
jiangjiajun 已提交
18
from x2paddle.core.util import *
19

J
jiangjiajun 已提交
20

J
jiangjiajun 已提交
21
class TFEmitter(Emitter):
22
    def __init__(self, parser):
J
jiangjiajun 已提交
23
        super(TFEmitter, self).__init__()
24 25
        self.parser = parser
        self.graph = parser.tf_graph
J
jiangjiajun 已提交
26 27 28
        # attr_node is used to record nodes that
        # only for define attribute of op
        self.attr_node = list()
J
jiangjiajun 已提交
29
        self.weights = dict()
30 31 32 33 34 35 36 37 38 39

    def run(self):
        print("Total nodes: {}".format(len(self.graph.topo_sort)))
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                emit_func = getattr(self, op)
                emit_func(node)

J
jiangjiajun 已提交
40 41 42 43 44 45
        for i in range(len(self.graph.topo_sort)):
            node_name = self.graph.topo_sort[i]
            node = self.graph.get_node(node_name)
            for layer in node.fluid_code.layers:
                print(layer.get_code())

46 47 48 49
    def Placeholder(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        attr = {
J
jiangjiajun 已提交
50
            'dtype': string(dtype),
51
            'shape': shape,
J
jiangjiajun 已提交
52
            'name': string(node.layer_name)
53
        }
J
jiangjiajun 已提交
54 55 56 57 58 59
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Const(self, node):
J
jiangjiajun 已提交
60 61 62
        ## TODO
        return

J
jiangjiajun 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': initializer
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
J
jiangjiajun 已提交
84 85 86
        return
        input = self.graph.get_node(node.layer.input[0], copy=True)
        perm = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
87 88 89 90 91 92
        perm.fluid_code.clear()
        perm = perm.value.tolist()

        attr = {'perm': perm}
        node.fluid_code.add_layer("transpose",
                                  inputs=input,
93 94
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
95 96

    def RealDiv(self, node):
J
jiangjiajun 已提交
97 98 99
        return
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
100 101 102 103 104 105
        inputs = {'x': x, 'y': y}
        node.fluid_code.add_layer("elementwise_div",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

J
jiangjiajun 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    def Relu(self, node):
        return
        input = self.graph.get_node(node.layer.input[0], copy=True)
        node.fluid_code.add_layer("relu",
                                  inputs=input,
                                  output=node,
                                  param_attr=None)

    def Squeeze(self, node):
        return
        input = self.graph.get_node(node.layer.input[0], copy=True)
        squeeze_dims = node.get_attr('squeeze_dims')
        print(squeeze_dims)
        attr = {'squeeze_dims': squeeze_dims}
        node.fluid_code.add_layer("squeeze",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def BiasAdd(self, node):
        return
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {'x': x, 'y': y}
        node.fluid_code.add_layer("elementwise_add",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

    def Identity(self, node):
        return
        input = self.graph.get_node(node.layer.input[0], copy=True)
        node.fluid_code.add_layer("assign",
                                  inputs=input,
                                  output=node,
                                  param_attr=None)

    def MaxPool(self, node):
        return
        input = self.graph.get_node(node.layer.input[0], copy=True)
        in_shape = input.out_shapes[0]
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        if data_format == "NHWC":
            attr = {"perm": [0, 3, 1, 2]}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]

        if pad_mode == "SAME":
            pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
            pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
            pad_h = pad_h[0] + pad_h[1]
            pad_w = pad_w[0] + pad_w[1]
            attr = {"paddings": [0, pad_h, 0, pad_w], "pad_value": -10000.0}
            node.fluid_code.add_layer("pad2d",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        attr = {
            "pool_size": k_size[1:3],
            "pool_type": string("max"),
            "pool_stride": strides[1:3]
        }
        node.fluid_code.add_layer("pool2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

        if data_format == "NHWC":
            attr = {"perm": [0, 2, 3, 1]}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)


#    def Conv2D(self, node):
#        input = self.graph.get_node(node.layer.input[0], copy=True)
#        in_shape = input.out_shapes[0]
#        k_size = node.get_attr("ksize")
#        strides = node.get_attr("strides")
#        dilations = node.get_attr("dilations")
#        data_format = node.get_attr("data_format").decode()
#        pad_mode = node.get_attr("padding").decode()
#
#        if data_format == "NHWC":
#            attr = {"perm": [0, 3, 1, 2]}
#            node.fluid_code.add_layer("transpose",
#                                      inputs=input,
#                                      output=node,
#                                      param_attr=attr)
#            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
#            k_size = [k_size[i] for i in [0, 3, 1, 2]]
#            strides = [strides[i] for i in [0, 3, 1, 2]]
#            dilations = [dilations[i] for i in [0, 3, 1, 2]]
#
#        if pad_mode == "SAME":
#            pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
#            pad_w = get_same_padding(in_shape[3], k_size[3], strides[3])
#            pad_h = pad_h[0] + pad_h[1]
#            pad_w = pad_w[0] + pad_w[1]
#            attr = {"paddings": pad_h+pad_w, "pad_value": 0.0}
#            node.fluid_code.add_layer("pad2d",
#                                inputs=input,
#                                output=node,
#                                param_attr=attr)
#        attr = {
#            "pool_stride": strides[1:3],
#            "bias_attr": False,
#            "param_attr":,
#            "num_filters":,
#            "filter_size":,
#            "stride":,
#            "dilation":
#            }
#        node.fluid_code.add_layer("conv2d",
#                            inputs=input,
#                            output=node,
#                            param_attr=attr)
#
#        if data_format == "NHWC":
#            attr = {"perm": [0, 2, 3, 1]}
#            node.fluid_code.add_layer("transpose",
#                                      inputs=input,
#                                      output=node,
#                                      param_attr=attr)