onnx_layernorm_fuser.py 5.8 KB
Newer Older
W
wjj19950828 已提交
1
#   Copyright (c) 2022  PaddlePaddle Authors. All Rights Reserved.
W
wjj19950828 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import numpy as np
from collections import OrderedDict
from x2paddle.optimizer.pattern_matcher import FuseBase
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *


class LayerNormFuser(FuseBase):
    def __init__(self):
        super(LayerNormFuser, self).__init__()

    def build_pattern(self):
        """
        code describe:
            x2paddle_ln_pre_weight = self.x2paddle_ln_pre_weight
            x2paddle_ln_pre_bias = self.x2paddle_ln_pre_bias
            x2paddle_166 = paddle.full(dtype='float32', shape=[1], fill_value=2.0)
            x2paddle_169 = paddle.full(dtype='float32', shape=[1], fill_value=9.999999747378752e-06)
            x2paddle_164 = paddle.mean(x=x2paddle_162, axis=[-1], keepdim=True)
            x2paddle_165 = paddle.subtract(x=x2paddle_162, y=x2paddle_164)
            x2paddle_167 = paddle.pow(x=x2paddle_165, y=x2paddle_166)
            x2paddle_168 = paddle.mean(x=x2paddle_167, axis=[-1], keepdim=True)
            x2paddle_170 = paddle.add(x=x2paddle_168, y=x2paddle_169)
            x2paddle_171 = paddle.sqrt(x=x2paddle_170)
            x2paddle_172 = paddle.divide(x=x2paddle_165, y=x2paddle_171)
            x2paddle_173 = paddle.multiply(x=x2paddle_172, y=x2paddle_ln_pre_weight)
            x2paddle_174 = paddle.add(x=x2paddle_173, y=x2paddle_ln_pre_bias)
        """

        def gen_name(id):
            return "x" + str(id)

        self.pattern.add_layer(
            "self.create_parameter", inputs={}, outputs=[gen_name(0)])
        self.pattern.add_layer(
            "self.create_parameter", inputs={}, outputs=[gen_name(1)])
        self.pattern.add_layer(
            "paddle.full",
            inputs={},
            outputs=[gen_name(2)],
            shape=[1],
            fill_value=0.5)
        self.pattern.add_layer(
            "paddle.full",
            inputs={},
            outputs=[gen_name(3)],
W
wjj19950828 已提交
62
            shape=[1])
W
wjj19950828 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        self.pattern.add_layer(
            "paddle.mean",
            inputs={"x": "layernorm-input-0"},
            outputs=[gen_name(4)],
            axis=[-1],
            keep_dim=True)
        self.pattern.add_layer(
            "paddle.subtract",
            inputs={"x": "layernorm-input-0",
                    "y": gen_name(4)},
            outputs=[gen_name(5)])
        self.pattern.add_layer(
            "paddle.pow",
            inputs={"x": gen_name(5),
                    "y": gen_name(2)},
            outputs=[gen_name(6)])
        self.pattern.add_layer(
            "paddle.mean",
            inputs={"x": gen_name(6)},
            outputs=[gen_name(7)],
            axis=[-1],
            keep_dim=True)
        self.pattern.add_layer(
            "paddle.add",
            inputs={"x": gen_name(7),
                    "y": gen_name(3)},
            outputs=[gen_name(8)])
        self.pattern.add_layer(
            "paddle.sqrt", inputs={"x": gen_name(8)}, outputs=[gen_name(9)])
        self.pattern.add_layer(
            "paddle.divide",
            inputs={"x": gen_name(5),
                    "y": gen_name(9)},
            outputs=[gen_name(10)])
        self.pattern.add_layer(
            "paddle.multiply",
            inputs={"x": gen_name(10),
                    "y": gen_name(0)},
            outputs=[gen_name(11)])
        self.pattern.add_layer(
            "paddle.add",
            inputs={"x": gen_name(11),
                    "y": gen_name(1)},
            outputs=[gen_name(12)])
        self.pattern.build(inputs={"input-0": "layernorm-input-0", })

    def insert_new_layer(self, graph, parameters, matches):
        new_layer, new_layer_id = self.gen_new_layer(parameters, matches)
        graph.layers[new_layer_id] = new_layer
        matches_copy = copy.deepcopy(matches)
        for layer_id, layer in matches_copy.items():
            if layer.kernel in ["self.create_parameter", "paddle.full"]:
                matches.pop(layer_id)
        matches.pop(new_layer_id)

    def gen_new_layer(self, parameters, matches):
        layer_id_list = list(matches.keys())
        layer_id_list.sort(key=int)
        layer_inputs = list()
        layer_inputs_ids = list()
        param_name = list()
W
wjj19950828 已提交
124
        fill_value_list = list()
W
wjj19950828 已提交
125 126 127 128 129 130 131 132
        for layer_id, layer in matches.items():
            if layer.kernel == "paddle.mean":
                layer_inputs.append(layer.inputs)
                layer_inputs_ids.append(layer_id)
            if layer.kernel == "self.create_parameter":
                param_name.append(layer.outputs[0])
            if layer.kernel == "paddle.add":
                output_name = layer.outputs[0]
W
wjj19950828 已提交
133 134
            if layer.kernel == "paddle.full":
                fill_value_list.append(layer.attrs["fill_value"])
W
wjj19950828 已提交
135 136 137 138 139 140 141 142 143 144 145
        param = parameters[param_name[0]]
        c = param.shape[0]
        weight_param = parameters.pop(param_name[0])
        parameters["{}.weight".format(output_name)] = weight_param
        bias_param = parameters.pop(param_name[1])
        parameters["{}.bias".format(output_name)] = bias_param
        new_layer = PaddleLayer(
            layer_id_list[0],
            "paddle.nn.LayerNorm",
            inputs=layer_inputs[0],
            outputs=[output_name],
W
wjj19950828 已提交
146 147
            normalized_shape=[c],
            epsilon=fill_value_list[-1])
W
wjj19950828 已提交
148
        return new_layer, layer_inputs_ids[0]