opset.py 69.3 KB
Newer Older
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
update  
channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Channingss 已提交
15
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
C
update  
channingss 已提交
16
from x2paddle.core.graph import GraphNode
C
channingss 已提交
17
from x2paddle.core.util import string
C
Channingss 已提交
18
from functools import reduce
C
update  
channingss 已提交
19
import numpy as np
C
channingss 已提交
20
import onnx
C
channingss 已提交
21
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
22
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
23
import logging as _logging
24
from collections import OrderedDict
C
channingss 已提交
25
import math
C
channingss 已提交
26
import os
S
SunAhong1993 已提交
27 28
import copy
import sys
C
channingss 已提交
29
import shutil
30

C
update  
channingss 已提交
31 32 33
_logger = _logging.getLogger(__name__)


C
Channingss 已提交
34
def _const_weight_or_none(node, necessary=False):
C
channings 已提交
35
    if 'Constant' in node.layer_type:
C
channingss 已提交
36
        return node.value
C
update  
channingss 已提交
37 38
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
C
Channingss 已提交
39 40 41
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
            node.layer_name)
C
update  
channingss 已提交
42 43 44
    return None


C
Channingss 已提交
45 46 47 48 49 50
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
C
update  
Channingss 已提交
51
        if dim < -1:
C
Channingss 已提交
52 53 54 55 56 57 58
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True

59

C
Channingss 已提交
60
def _get_same_padding(in_size, kernel_size, stride):
C
channingss 已提交
61 62 63 64 65 66 67
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
                node.layer_name[9:], node.layer_type))
            raise
        else:
            #print("convert successfully node:{}, op_type is {}".format(
            #    node.layer_name[9:], node.layer_type))
            return res

    return run_mapping


C
Channingss 已提交
85
class OpSet9():
86
    elementwise_ops = {
S
SunAhong1993 已提交
87 88
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
fix  
SunAhong1993 已提交
89
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
90 91
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
R
root 已提交
92
    }
93

S
SunAhong1993 已提交
94 95 96 97 98
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
        'ReduceMean': ['paddle.mean',
                       dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
99
                       dict(axes=None, keepdims=1)],
S
SunAhong1993 已提交
100 101
        'ReduceSum': ['paddle.sum', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
102
                      dict(axes=None, keepdims=1)],
S
SunAhong1993 已提交
103 104
        'ReduceMin': ['paddle.min', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
105
                      dict(axes=None, keepdim=1)],
S
SunAhong1993 已提交
106 107
        'ReduceMax': ['paddle.max', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
108
                      dict(axes=None, keepdim=1)],
S
for pad  
SunAhong1993 已提交
109 110
        'ReduceProd': ['paddle.prod', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
111
                      dict(axes=None, keepdim=1)],
S
SunAhong1993 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        # active function
        'Relu': ['paddle.nn.functional.relu'],
        'LeakyRelu': ['paddle.nn.functional.leaky_relu', 
                      dict(alpha='negative_slope'), 
                      dict(negative_slope=.01)],
        'Elu': ['paddle.nn.functional.elu', 
                dict(alpha='alpha'), 
                dict(alpha=1.)],
        'ThresholdedRelu': ['paddle.nn.functional.thresholded_relu', 
                            dict(alpha='threshold'),
                            dict(alpha=1.)],
        'Tanh': ['paddle.nn.functional.tanh'],
        'Sigmoid': ['paddle.nn.functional.sigmoid'],
        'Softsign': ['paddle.nn.functional.softsign'],
        'Softplus': ['paddle.nn.functional.softplus', 
                     dict(threshold='threshold'), 
                     dict(threshold=float(sys.maxsize))],
        'Exp': ['paddle.exp'],
S
SunAhong1993 已提交
130
        'Log': ['paddle.log'],
S
SunAhong1993 已提交
131 132 133 134 135 136 137
        'Softmax': ['paddle.nn.functional.softmax', 
                    dict(axis='axis'), 
                    dict(axis=1)],
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
138 139
    }

S
SunAhong1993 已提交
140
    def __init__(self, decoder, paddle_graph):
C
Channingss 已提交
141
        super(OpSet9, self).__init__()
142
        self.graph = decoder.graph
S
SunAhong1993 已提交
143 144 145 146
        self.paddle_graph = paddle_graph
        self.input_index = 0
        self.inputs_info = dict()
        self.params = dict()
R
root 已提交
147

148
    @print_mapping_info
S
SunAhong1993 已提交
149
    def directly_map(self, node, *args, **kwargs):
C
update  
channingss 已提交
150
        inputs = node.layer.input
S
SunAhong1993 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
        self.paddle_graph.add_layer(
            kernel=paddle_op,
            inputs={"x": input.name},
            outputs=[node.name],
            **layer_attrs)
            
174
    @print_mapping_info
175 176 177 178
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
179 180 181 182 183 184 185
        inputs_dict = {'x': val_x.name, 
                       'y': val_y.name}
        self.paddle_graph.add_layer(
            op_type, 
            inputs=inputs_dict, 
            outputs=[node.name])
        
186
    @print_mapping_info
C
update  
channingss 已提交
187
    def place_holder(self, node):
C
channings 已提交
188 189
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
190 191 192
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
193
                assert 'shape of input is not assigned'
S
SunAhong1993 已提交
194 195 196 197 198 199 200 201 202
        self.paddle_graph.add_layer(
            kernel="paddle.static.data",
            inputs={},
            outputs=[node.name],
            dtype=string(node.dtype),
            shape=shape,
            name=string(node.name))
        self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype]
        self.input_index += 1
C
update  
channingss 已提交
203

204
    @print_mapping_info
C
update  
channingss 已提交
205 206 207 208
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
209
        shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
210
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
S
SunAhong1993 已提交
211 212 213 214 215 216 217
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
218
        else:
S
SunAhong1993 已提交
219 220 221 222 223 224 225 226 227
            self.params[node.name] = node.weight
            self.paddle_graph.add_layer(
                kernel="paddle.static.create_parameter",
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=shape,
                name=string(node.name),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
C
update  
channingss 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
242
    def _interpolate(self, node):
C
channingss 已提交
243
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
244
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
245
        attrs = dict()
246
        if node.layer_type == 'Resize':
C
Channingss 已提交
247 248 249
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
fix  
SunAhong1993 已提交
250 251 252 253
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
#                 inputs['scale_factor'] = val_scales.name
                attrs['scale_factor'] = self.params[val_scales.name].tolist()[2:]
C
Channingss 已提交
254 255 256
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
S
fix  
SunAhong1993 已提交
257 258 259 260
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
#                 inputs['scale_factor'] = val_scales.name
                attrs['scale_factor'] = self.params[val_scales.name].tolist()[2:]
C
Channingss 已提交
261 262 263
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
S
SunAhong1993 已提交
264 265 266 267 268 269 270 271 272 273 274 275
                var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_sizes.name},
                    outputs=[var_nc, var_hw],
                    num_or_sections=[2, 2],
                    axis=0)
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": var_hw},
                    outputs=[var_hw],
                    dtype=string('int32'))
S
SunAhong1993 已提交
276 277 278
                inputs['size'] = var_hw
                attrs = {"align_corners": False,
                         "mode": string(node.get_attr('mode', 'nearest'))}
S
SunAhong1993 已提交
279
                self.paddle_graph.add_layer(
S
docs  
SunAhong1993 已提交
280
                    kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
281 282 283 284
                    inputs=inputs,
                    outputs=[node.name],
                    **attrs)
                return
285 286
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
287 288 289 290 291 292 293 294
            self.paddle_graph.add_layer(
                "paddle.slice",
                inputs={"input": val_scales.name},
                outputs=[val_scales.name],
                axes=[0],
                starts=[2],
                ends=[4])
            inputs['scale_factor'] = val_scales.name
R
root 已提交
295

C
channingss 已提交
296
        mode = node.get_attr('mode', 'nearest')
S
fix  
SunAhong1993 已提交
297
        attrs.update({"align_corners": False,
S
SunAhong1993 已提交
298
                 "mode": string(mode),
S
fix  
SunAhong1993 已提交
299
                 "align_mode": 1})
S
SunAhong1993 已提交
300 301 302
        val_x_shape = val_x.out_shapes[0]
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
S
fix  
SunAhong1993 已提交
303
            attrs["align_corners"] = True
S
SunAhong1993 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
        
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
            min=0.0,
            max=1.0)  
        
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
                'paddle.cast',
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string('int64'))   
R
root 已提交
340

341
    @print_mapping_info
C
channings 已提交
342 343 344
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
345 346 347

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
348 349
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
S
SunAhong1993 已提交
350
        layer_attrs = {
R
root 已提交
351 352 353 354 355
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
S
SunAhong1993 已提交
356
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
357
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
358 359 360 361
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
            **layer_attrs)
362 363

    @print_mapping_info
C
channings 已提交
364 365 366
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
367

C
channings 已提交
368 369
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
S
SunAhong1993 已提交
370
        layer_attrs = {
R
root 已提交
371 372 373 374
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
S
SunAhong1993 已提交
375
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
376
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
377 378 379 380
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
            **layer_attrs)
381 382

    @print_mapping_info
C
update  
channingss 已提交
383
    def Pad(self, node, op_independent=True):
C
channingss 已提交
384
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
385
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
386 387 388 389 390 391 392 393
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
C
update  
channingss 已提交
394 395
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
396 397
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
for pad  
SunAhong1993 已提交
398
        assume_pad = False
S
SunAhong1993 已提交
399 400
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
for pad  
SunAhong1993 已提交
401 402 403
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
C
update  
channingss 已提交
404
        else:
S
for pad  
SunAhong1993 已提交
405 406
            output_name = node.name
        layer_outputs = [output_name]
S
SunAhong1993 已提交
407 408
        if is_pads_attr:
            paddings = []
S
for pad  
SunAhong1993 已提交
409 410
            paddle_op = 'paddle.nn.functional.pad'
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
411
                if data_shape:
S
for pad  
SunAhong1993 已提交
412
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2) == len(pads) # NCHW
S
SunAhong1993 已提交
413
                if output_shape:
S
for pad  
SunAhong1993 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2) == len(pads)  # NCHW
                if assume_pad:
                    if len(pads) == 2:
                        data_format = "NCL"
                    elif len(pads) == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    layer_attrs['pad'] = paddings
                    layer_attrs['data_format'] = data_format
                else:
                    if data_shape:
                        assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
                    if output_shape:
                        assume_pad |= output_shape and 2 * len(output_shape) == len(pads)  # NCHW
                    if assume_pad:
                        paddings = np.array(pads).reshape(
                            (2, -1)).transpose().astype("int32").flatten().tolist()
                        layer_attrs['pad'] = paddings
                    else:
                        raise Exception("The padding value {} is wrong!".format(pads))
S
SunAhong1993 已提交
439
            elif len(pads) == 8:
S
for pad  
SunAhong1993 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453
                if data_shape:
                    assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
                if output_shape:
                    assume_pad |= output_shape and 2 * len(output_shape) == len(pads)  # NCHW
                if assume_pad:
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    if sum(paddings[:4]) == 0:
                        paddings = paddings[4:]
                        layer_attrs['pad'] = paddings
                    else:
                        layer_attrs['pad'] = paddings
                        paddle_op = "custom_layer:pad_all_dim4_one_input"
S
SunAhong1993 已提交
454
            else:
S
for pad  
SunAhong1993 已提交
455
                 raise Exception("The padding value {} is wrong!".format(pads))
S
SunAhong1993 已提交
456 457 458
            self.paddle_graph.add_layer(
                paddle_op, 
                inputs={'x': val_x.name}, 
S
for pad  
SunAhong1993 已提交
459
                outputs=layer_outputs, 
S
SunAhong1993 已提交
460
                **layer_attrs)
S
for pad  
SunAhong1993 已提交
461
            if not op_independent:
S
SunAhong1993 已提交
462
                return node.name + '_paded'
C
update  
channingss 已提交
463
        else:
S
for pad  
SunAhong1993 已提交
464 465
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
466
                if data_shape:
S
for pad  
SunAhong1993 已提交
467
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2) == pads_len # NCHW
S
SunAhong1993 已提交
468
                if output_shape:
S
for pad  
SunAhong1993 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2) == pads_len  # NCHW 
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
                        "custom_layer:pad_with_two_input", 
                        inputs={'x': val_x.name, 'pad': val_pad.name}, 
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
                        assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
                    if output_shape:
                        assume_pad |= output_shape and 2 * len(output_shape) == pads_len  # NCHW
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
                                "custom_layer:pad_all_dim2", 
                                inputs={'x': val_x.name, 'pad': val_pad.name}, 
                                outputs=layer_outputs, 
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
                    assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
                if output_shape:
                    assume_pad |= output_shape and 2 * len(output_shape) == pads_len  # NCHW
                if assume_pad:
                    self.paddle_graph.add_layer(
                        "custom_layer:pad_all_dim4", 
                        inputs={'x': val_x.name, 'pad': val_pad.name}, 
                        outputs=layer_outputs, 
                        value=value,
                        mode=string(mode))
            else:
                print(pads_len)
                raise Exception("The padding value is wrong!")   
S
SunAhong1993 已提交
514 515
            if not op_independent:
                return node.name + '_paded'
C
update  
channingss 已提交
516

517
    @print_mapping_info
C
update  
channingss 已提交
518
    def Unsqueeze(self, node):
C
channingss 已提交
519
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
520
        axes = node.get_attr('axes')
S
SunAhong1993 已提交
521
        layer_attrs = {'axis': axes}
R
root 已提交
522
        if len(val_x.out_shapes[0]) == 0:
S
SunAhong1993 已提交
523 524 525 526 527 528
            if node.name:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    shape=[1])
529
        else:
S
SunAhong1993 已提交
530 531 532 533 534
            self.paddle_graph.add_layer(
                'paddle.unsqueeze', 
                inputs={"x": val_x.name}, 
                outputs=[node.name],
                **layer_attrs)
535

536
    @print_mapping_info
C
channingss 已提交
537
    def Shrink(self, node):
C
channingss 已提交
538
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
539 540 541
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
S
SunAhong1993 已提交
542 543 544 545 546
        self.paddle_graph.add_layer(
            'paddle.nn.functional.hardshrink', 
            inputs={"x": val_x.name}, 
            outputs=[node.name], 
            threshold=lambd)
C
channingss 已提交
547

548
    @print_mapping_info
C
update  
channingss 已提交
549 550 551 552 553 554 555 556
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
557

C
update  
channingss 已提交
558
        shape = node.get_attr('shape', None)
R
root 已提交
559

C
update  
channingss 已提交
560
        if shape is None:
C
channingss 已提交
561
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
562 563
        if shape is None:
            shape = list(value.shape)
564 565 566
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
567
                            val_output.name, val_output.name)
568
        if len(value) == 1:
C
channingss 已提交
569
            value = value.tolist()
C
update  
channingss 已提交
570
            value = value[0]
S
SunAhong1993 已提交
571 572 573 574 575 576 577
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
C
channingss 已提交
578 579
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
580 581 582 583 584 585 586 587 588
            self.params[node.name] = value
            self.paddle_graph.add_layer(
                kernel="paddle.static.create_parameter",
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=shape,
                name=string(node.name),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
C
update  
channingss 已提交
589

590
    @print_mapping_info
C
update  
channingss 已提交
591
    def Resize(self, node):
592 593
        self._interpolate(node)

594
    @print_mapping_info
595 596 597
    def Upsample(self, node):
        self._interpolate(node)

598 599 600 601 602 603
    @print_mapping_info
    def InstanceNormalization(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
S
SunAhong1993 已提交
604
        layer_attrs = {
S
fix  
SunAhong1993 已提交
605
            'eps': epsilon,
606
        }
S
SunAhong1993 已提交
607 608
        dim = len(val_x.out_shapes[0])
        if dim ==2 :
S
fix  
SunAhong1993 已提交
609
            layer_attrs["data_format"] = string("NC")
S
SunAhong1993 已提交
610
        elif dim == 3:
S
fix  
SunAhong1993 已提交
611
            layer_attrs["data_format"] = string("NCL")
S
SunAhong1993 已提交
612
        elif dim == 4:
S
fix  
SunAhong1993 已提交
613
            layer_attrs["data_format"] = string("NCHW")
S
SunAhong1993 已提交
614
        elif dim == 5:
S
fix  
SunAhong1993 已提交
615
            layer_attrs["data_format"] = string("NCDHW")
S
SunAhong1993 已提交
616 617 618
        else:
            raise Exception("The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization.")
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
619
            "paddle.nn.functional.instance_norm", 
S
SunAhong1993 已提交
620 621 622
            inputs={"x": val_x.name,
                    "weight": val_scale.name,
                    "bias": val_b.name}, 
S
fix  
SunAhong1993 已提交
623
            outputs=[node.name], 
S
SunAhong1993 已提交
624
            **layer_attrs)
625 626

    @print_mapping_info
627
    def Expand(self, node):
C
channingss 已提交
628
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
629
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
630
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
631
        name_ones = node.name + '_ones'
C
Channingss 已提交
632
        attr_ones = {
S
SunAhong1993 已提交
633
            'shape': val_shape.name,
C
Channingss 已提交
634
            'dtype': string(val_x_dtype),
S
SunAhong1993 已提交
635
            'fill_value': 1
C
Channingss 已提交
636
        }
S
SunAhong1993 已提交
637 638 639 640 641 642 643 644 645 646 647
        self.paddle_graph.add_layer(
            'paddle.full',
            inputs={},
            outputs=[name_ones],
            **attr_ones)
        inputs_dict = {'x': name_ones, 
                       'y': val_x.name}
        self.paddle_graph.add_layer(
            'paddle.multiply',
            inputs=inputs_dict,
            outputs=[node.name])
C
update  
channingss 已提交
648

649
    @print_mapping_info
C
channingss 已提交
650 651 652 653
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
654
        axis = node.get_attr('axis', 0)
655 656
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
657
        if axis == 0 and len(indices_shape) <= 1:
C
Channingss 已提交
658
            if len(val_x.out_shapes[0]) <= 1:
S
SunAhong1993 已提交
659 660 661 662 663
                self.paddle_graph.add_layer(
                    'paddle.gather',
                    inputs={'x': val_x.name,
                            'index': indices.name},
                    outputs=[node.name])
C
Channingss 已提交
664 665
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
S
SunAhong1993 已提交
666 667 668 669 670 671 672 673 674 675 676
                    gather_ = node.name + '_1'
                    self.paddle_graph.add_layer(
                        'paddle.gather',
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[gather_])
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={'x': gather_},
                        outputs=[node.name],
                        axis=[0])
C
Channingss 已提交
677
                else:
S
SunAhong1993 已提交
678 679 680 681 682
                    self.paddle_graph.add_layer(
                        'paddle.gather',
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[node.name])
C
channingss 已提交
683 684
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
685
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
            name_trans = val_x.name + '_trans'
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": val_x.name},
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
                        'index': indices.name},
                outputs=[node.name])
            self.paddle_graph.add_layer(
                'paddle.transpose', 
                inputs={"x": node.name}, 
                outputs=[node.name], 
                perm=perm)
C
Channingss 已提交
702
            if len(indices_shape) < 1:
S
SunAhong1993 已提交
703 704 705 706 707
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
                    inputs={'x': node.name},
                    outputs=[node.name],
                    axis=[axis])
708 709 710
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
711 712 713 714
                indices_cast = indices.name + '_cast'
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
715
                    outputs=[indices_cast],
S
SunAhong1993 已提交
716 717
                    dtype=string('int64'))
                self.paddle_graph.add_layer(
S
for pad  
SunAhong1993 已提交
718 719 720 721
                    'paddle.nn.functional.embedding',
                    inputs={"x": indices_cast,
                            "weight": val_x.name},
                    outputs=[node.name])
722 723 724
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
725 726 727 728 729 730
                indices_reshape = indices.name + '_shape'
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": indices.name},
                    outputs=[indices_reshape],
                    shape=[reshape_shape, ])
731 732

                perm = list(range(len(val_x.out_shapes[0])))
S
SunAhong1993 已提交
733 734 735
                self.paddle_graph.add_layer(
                    'paddle.gather',
                    inputs={'x': val_x.name,
736
                            'index': indices_reshape},
S
SunAhong1993 已提交
737
                    outputs=[node.name])
738 739 740 741 742 743
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
S
SunAhong1993 已提交
744 745 746 747 748
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=reshaped_shape)
749
        elif axis > 0 and len(indices_shape) > 1:
C
Channingss 已提交
750
            from functools import reduce
R
root 已提交
751
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
752 753 754 755 756 757
            indices_reshape = indices.name + '_shape'
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": indices.name},
                outputs=[indices_reshape],
                shape=[reshape_shape, ])
R
root 已提交
758

C
Channingss 已提交
759 760
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
761 762 763 764 765 766 767 768 769
            name_trans = val_x.name + '_transpose'
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": val_x.name},
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
770
                        'index': indices_reshape},
S
SunAhong1993 已提交
771 772 773 774 775 776 777
                outputs=[node.name])
            input_transpose = node.name + '_transpose'
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[input_transpose],
                perm=perm)
C
Channingss 已提交
778 779 780 781 782 783
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
S
SunAhong1993 已提交
784 785 786 787 788
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": input_transpose},
                outputs=[node.name],
                shape=reshaped_shape)
789

C
Channingss 已提交
790 791 792 793 794 795
    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
S
SunAhong1993 已提交
796 797 798 799 800 801
            self.paddle_graph.add_layer(
                'paddle.scatter',
                inputs={'x': val_x.name,
                        'index': indices.name,
                        'updates': updates.name},
                outputs=[node.name])
C
Channingss 已提交
802
        else:
S
SunAhong1993 已提交
803
            input_inner_indices = node.name + '_input_inner_indices'
804
            shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": indices.name},
                outputs=[indices.name],
                shape=indices.out_shapes[0])

            zeros_like_val_x = val_x.name + '_zeros'
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
                inputs={"x": val_x.name},
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
C
Channingss 已提交
818
                inputs={
S
SunAhong1993 已提交
819 820 821
                    'x': zeros_like_val_x,
                    'index': indices.name,
                    'updates': updates.name
C
Channingss 已提交
822
                },
S
SunAhong1993 已提交
823 824 825
                outputs=[input_inner_indices])
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
826
            # full_like support create tensor shape like input tensor
S
SunAhong1993 已提交
827 828 829 830 831 832 833 834
            self.paddle_graph.add_layer(
                'paddle.full_like',
                inputs={"x": updates.name},
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
C
Channingss 已提交
835
                inputs={
S
SunAhong1993 已提交
836 837
                    'x': zeros_like_val_x,
                    'index': indices.name,
C
Channingss 已提交
838 839
                    'updates': constant_minus_one
                },
S
SunAhong1993 已提交
840 841
                outputs=[indices_mask])
            constant_one = node.name + '_constant_1'
842
            # full_like support create tensor shape like input tensor
S
SunAhong1993 已提交
843 844 845 846 847 848 849 850 851
            self.paddle_graph.add_layer(
                'paddle.full_like',
                inputs={"x": val_x.name},
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
            input_out_indices_mask = node.name + '_input_out_indices_mask'
            self.paddle_graph.add_layer(
                "paddle.add",
C
Channingss 已提交
852
                inputs={"x": indices_mask,
853
                        "y": constant_one},
S
SunAhong1993 已提交
854
                outputs=[input_out_indices_mask])
C
Channingss 已提交
855

S
SunAhong1993 已提交
856 857 858 859
            input_out_indices = node.name + '_input_out_indices'
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs={"x": val_x.name,
C
Channingss 已提交
860
                        "y": input_out_indices_mask},
S
SunAhong1993 已提交
861
                outputs=[input_out_indices])
C
Channingss 已提交
862

S
SunAhong1993 已提交
863 864
            self.paddle_graph.add_layer(
                "paddle.add",
C
Channingss 已提交
865 866
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
867
                outputs=[node.name])
C
Channingss 已提交
868

869 870 871 872 873 874
    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
S
SunAhong1993 已提交
875 876 877 878 879
        inputs = {'start': val_start.name, 
                  'end': val_limit.name, 
                  'step': val_delta.name}
        self.paddle_graph.add_layer(
            'paddle.arange',
880
            inputs=inputs,
S
SunAhong1993 已提交
881 882
            outputs=[node.name],
            dtype=string(dtype))
883 884

    @print_mapping_info
C
channingss 已提交
885
    def Slice(self, node):
C
channingss 已提交
886
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
887
        starts, ends, axes, steps = None, None, None, None
S
SunAhong1993 已提交
888
        layer_attrs = {}
C
channingss 已提交
889 890 891
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
C
Channingss 已提交
892
            starts_value = _const_weight_or_none(starts)
S
for pad  
SunAhong1993 已提交
893 894
            if starts_value is not None:
                starts_value = starts_value.tolist()
C
Channingss 已提交
895
            ends_value = _const_weight_or_none(ends)
S
for pad  
SunAhong1993 已提交
896 897 898 899 900
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
R
root 已提交
901
            if len(node.inputs) > 3:
S
for pad  
SunAhong1993 已提交
902 903
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
R
root 已提交
904
            if len(node.inputs) > 4:
C
channings 已提交
905
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
for pad  
SunAhong1993 已提交
906 907
                steps = _const_weight_or_none(steps).tolist()
            
S
SunAhong1993 已提交
908
            layer_attrs = {
909
                "axes": axes,
S
SunAhong1993 已提交
910 911
                "starts": starts.name,
                "ends": ends.name
912
            }
S
SunAhong1993 已提交
913
            if starts_value is not None and ends_value is not None and axes is not None:
C
Channingss 已提交
914
                starts_value = starts_value.copy()
915
                ends_value = ends_value.copy()
916 917 918 919
                #for idx in range(len(ends_value)):
                #    if ends_value[idx] > 2**31 - 1:
                #        ends_value[idx] = 2**31 - 1
                #print(val_x.out_shapes)
920
                for idx in range(len(ends_value)):
S
SunAhong1993 已提交
921
                    if starts_value[idx] >= val_x.out_shapes[0][axes[idx]] and val_x.out_shapes[0][axes[idx]] > 0:
922
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
C
Channingss 已提交
923
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
S
SunAhong1993 已提交
924 925
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
S
SunAhong1993 已提交
926
                layer_attrs = {
927 928 929 930 931 932
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
933 934 935 936 937 938 939
                    starts_cast = starts.name + '_cast'
                    self.paddle_graph.add_layer(
                        'paddle.cast',
                        inputs={"x": starts.name},
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
940
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
941
                    ends_cast = ends.name + '_cast'
S
for pad  
SunAhong1993 已提交
942 943
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
944 945 946 947 948 949
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={"x": ends.name},
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
C
channingss 已提交
950 951 952 953
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
954 955 956
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
S
SunAhong1993 已提交
957
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}
C
channingss 已提交
958

S
for pad  
SunAhong1993 已提交
959

C
Channingss 已提交
960
        if steps is not None:
S
SunAhong1993 已提交
961 962 963 964 965 966
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
                'paddle.strided_slice', 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                **layer_attrs)
C
Channingss 已提交
967
        else:
S
SunAhong1993 已提交
968 969 970 971 972
            self.paddle_graph.add_layer(
                'paddle.slice', 
                inputs={"input": val_x.name}, 
                outputs=[node.name],  
                **layer_attrs)
C
channingss 已提交
973

974
    @print_mapping_info
C
update  
channingss 已提交
975
    def ConstantOfShape(self, node):
C
channingss 已提交
976
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
977
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
978 979 980 981

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
982 983
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
C
update  
channingss 已提交
984 985
        if len(value) == 1:
            value = value[0]
S
SunAhong1993 已提交
986
            layer_attrs = {
987
                'dtype': string(dtype),
S
SunAhong1993 已提交
988
                'fill_value': value
989
            }
S
SunAhong1993 已提交
990 991
            self.paddle_graph.add_layer(
                "paddle.full", 
S
SunAhong1993 已提交
992
                inputs={'shape': val_shape.name}, 
S
SunAhong1993 已提交
993 994
                outputs=[node.name],
                **layer_attrs)
C
update  
channingss 已提交
995

C
Channingss 已提交
996 997 998 999 1000 1001 1002 1003
    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
S
SunAhong1993 已提交
1004
            layer_attrs = {
C
Channingss 已提交
1005 1006 1007
                'max': max_value,
                'min': min_value,
            }
S
SunAhong1993 已提交
1008 1009 1010 1011 1012
            self.paddle_graph.add_layer(
                'paddle.clip', 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                **layer_attrs)
C
Channingss 已提交
1013
        else:
S
fix  
SunAhong1993 已提交
1014 1015
            min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
            max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
S
SunAhong1993 已提交
1016
            min_value = _const_weight_or_none(min_ipt)
S
fix  
SunAhong1993 已提交
1017
            max_value = _const_weight_or_none(max_ipt)
1018
            if max_value.shape == (1, ):
C
Channingss 已提交
1019
                max_value = max_value[0]
1020
            if min_value.shape == (1, ):
C
Channingss 已提交
1021 1022
                min_value = min_value[0]
        if max_value is not None and min_value is not None:
S
SunAhong1993 已提交
1023 1024 1025 1026 1027 1028
            layer_attrs = {'max': max_value, 'min': min_value}
            self.paddle_graph.add_layer(
                'paddle.clip', 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                **layer_attrs)
C
Channingss 已提交
1029 1030 1031
        else:
            raise

1032
    @print_mapping_info
C
update  
channingss 已提交
1033
    def Split(self, node):
C
channingss 已提交
1034
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1035
        paddle_op = 'split'
C
channingss 已提交
1036
        split = node.get_attr('split')
C
update  
channingss 已提交
1037
        axis = node.get_attr('axis', 0)
S
SunAhong1993 已提交
1038
        layer_attrs = {
C
channingss 已提交
1039
            'num_or_sections': split,
S
SunAhong1993 已提交
1040
            'axis': axis,
C
channingss 已提交
1041
        }
S
SunAhong1993 已提交
1042 1043
        outputs_list = list()
        if isinstance(split, list) or isinstance(split, tuple):
S
SunAhong1993 已提交
1044 1045 1046 1047 1048
            if len(split) == 1:
                outputs_list.append(node.name)
            else:
                for i in range(len(split)):
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
S
SunAhong1993 已提交
1049 1050 1051 1052 1053 1054 1055
        else:
            outputs_list.append(node.name)
        self.paddle_graph.add_layer(
            'paddle.split', 
            inputs={"x": val_x.name}, 
            outputs=outputs_list, 
            **layer_attrs)
C
update  
channingss 已提交
1056

1057
    @print_mapping_info
C
update  
channingss 已提交
1058
    def Reshape(self, node):
C
channingss 已提交
1059 1060
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1061
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
1062 1063 1064 1065
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
S
SunAhong1993 已提交
1066 1067 1068 1069 1070
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={'x': val_x.name},
                outputs=[node.name],
                shape=shape_value.tolist())
C
Channingss 已提交
1071 1072
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
S
SunAhong1993 已提交
1073 1074 1075 1076 1077
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={'x': val_x.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
1078
        else:
1079 1080
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
S
SunAhong1993 已提交
1081 1082 1083 1084 1085
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    shape=val_shape.out_shapes[0])
S
for pad  
SunAhong1993 已提交
1086 1087 1088 1089 1090 1091
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1092 1093 1094 1095
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1096
                outputs=[node.name])
1097 1098

    @print_mapping_info
C
update  
channingss 已提交
1099
    def Cast(self, node):
C
channingss 已提交
1100
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
S
SunAhong1993 已提交
1110 1111 1112 1113 1114
        self.paddle_graph.add_layer(
            'paddle.cast', 
            inputs={'x': val_input.name}, 
            outputs=[node.name], 
            dtype=string(dtype))
C
update  
channingss 已提交
1115

C
Channingss 已提交
1116 1117 1118
    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1119 1120 1121
        self.paddle_graph.add_layer('paddle.logical_not', 
                                    inputs={'x': val_input.name}, 
                                    outputs=[node.name])
C
Channingss 已提交
1122

1123
    @print_mapping_info
C
update  
channingss 已提交
1124
    def AveragePool(self, node):
C
channingss 已提交
1125
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1126 1127

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1128 1129 1130 1131 1132 1133
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
C
channingss 已提交
1134

C
channingss 已提交
1135 1136
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1137
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1138
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1139 1140 1141 1142 1143
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1144

S
SunAhong1993 已提交
1145 1146
        paddle_op = 'paddle.nn.functional.avg_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only avg_pool1d, avg_pool2d and avg_pool3d are supported'
S
SunAhong1993 已提交
1147
        layer_attrs = {
S
SunAhong1993 已提交
1148 1149 1150
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
C
update  
channingss 已提交
1151
            "ceil_mode": ceil_mode,
S
SunAhong1993 已提交
1152
            "exclusive": True,
S
SunAhong1993 已提交
1153
            "name": string(node.name)
C
update  
channingss 已提交
1154
        }
S
SunAhong1993 已提交
1155 1156
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1157
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, 
S
SunAhong1993 已提交
1158 1159
            outputs=[node.name], 
            **layer_attrs)
C
update  
channingss 已提交
1160

1161
    @print_mapping_info
C
update  
channingss 已提交
1162
    def Concat(self, node):
S
SunAhong1993 已提交
1163
        inputs_list = []
C
Channingss 已提交
1164
        dtypes = set()
C
update  
channingss 已提交
1165
        for i in range(len(node.layer.input)):
C
channingss 已提交
1166
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1167 1168
            inputs_list.append(ipt.name)
            dtypes.add(ipt.dtype)
C
Channingss 已提交
1169 1170
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
C
update  
channingss 已提交
1171
        axis = node.get_attr('axis')
S
SunAhong1993 已提交
1172 1173 1174 1175 1176
        self.paddle_graph.add_layer(
            'paddle.concat', 
            inputs={"x": inputs_list}, 
            outputs=[node.name], 
            axis=axis)
C
update  
channingss 已提交
1177

1178
    @print_mapping_info
C
update  
channingss 已提交
1179
    def Flatten(self, node):
C
channingss 已提交
1180
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1181
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
1182
        axis = node.get_attr('axis', 1)
S
SunAhong1993 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
        shape_list = [1, 1]
        if axis == 0:
            for s in output_shape:
                shape_list[1] *= s
        else:
            for s in output_shape[:axis]:
                shape_list[0] *= s
            for s in output_shape[axis:]:
                shape_list[1] *= s
        self.paddle_graph.add_layer(
            'paddle.reshape', 
            inputs={"x": val_x.name}, 
            outputs=[node.name],
            shape=shape_list)
C
update  
channingss 已提交
1197

1198
    @print_mapping_info
C
update  
channingss 已提交
1199
    def Gemm(self, node):
C
channingss 已提交
1200 1201 1202
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1203 1204 1205 1206 1207

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1208 1209 1210
        val_mm = node.name + '_mm'
        matmul_inputs = {"x": val_a.name, 
                         "y": val_b.name}
C
update  
channingss 已提交
1211 1212 1213 1214
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
S
SunAhong1993 已提交
1215 1216
        self.paddle_graph.add_layer(
            'paddle.matmul',
1217
            inputs=matmul_inputs,
S
SunAhong1993 已提交
1218 1219 1220 1221 1222 1223 1224
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
            "paddle.scale", 
            inputs={"x": val_mm}, 
            outputs=[val_mm],
            scale=alpha)
C
channingss 已提交
1225

C
update  
channingss 已提交
1226 1227
        if beta != 0:
            if beta == 1.:
S
SunAhong1993 已提交
1228 1229 1230 1231
                add_inputs = {"x": val_mm, 
                              "y": val_c.name}
                self.paddle_graph.add_layer(
                    "paddle.add",
1232
                    inputs=add_inputs,
S
SunAhong1993 已提交
1233
                    outputs=[node.name])
C
update  
channingss 已提交
1234
            else:
S
SunAhong1993 已提交
1235 1236 1237 1238 1239 1240
                var_beta = node.name + '_beta'
                self.paddle_graph.add_layer(
                    "paddle.scale",
                    inputs={"x": val_c.name},
                    outputs=[var_beta],
                    scale=beta)
C
channingss 已提交
1241
                add_inputs = {"x": val_mm, "y": var_beta}
S
SunAhong1993 已提交
1242 1243
                self.paddle_graph.add_layer(
                    "paddle.add",
1244
                    inputs=add_inputs,
S
SunAhong1993 已提交
1245
                    outputs=[node.name])
C
update  
channingss 已提交
1246

1247
    @print_mapping_info
C
update  
channingss 已提交
1248
    def Sum(self, node):
1249
        val_inps = node.layer.input
S
SunAhong1993 已提交
1250
        inputs_dict = {
1251
            "x": self.graph.get_input_node(
S
SunAhong1993 已提交
1252
                node, idx=0, copy=True).name,
1253
            "y": self.graph.get_input_node(
S
SunAhong1993 已提交
1254
                node, idx=1, copy=True).name,
1255
        }
S
SunAhong1993 已提交
1256 1257 1258
        self.paddle_graph.add_layer("paddle.add", 
                                    inputs=inputs_dict, 
                                    outputs=[node.name])
1259

C
channingss 已提交
1260 1261
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
S
SunAhong1993 已提交
1262 1263 1264
            inputs_dict = {
                "x": node.name,
                "y": y.name,
1265
            }
S
SunAhong1993 已提交
1266 1267 1268 1269
            self.paddle_graph.add_layer(
                "paddle.add", 
                inputs=inputs_dict, 
                outputs=[node.name])
C
update  
channingss 已提交
1270

1271
    @print_mapping_info
C
update  
channingss 已提交
1272
    def MatMul(self, node):
C
channingss 已提交
1273 1274
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
1275 1276
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
S
SunAhong1993 已提交
1277 1278
        inputs_dict = {"x": val_x.name, 
                       "y": val_y.name}
C
Channingss 已提交
1279
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
            y_squeeze = val_y.name + '_squeeze'
            self.paddle_graph.add_layer(
                "paddle.squeeze",
                inputs={"x": val_y.name},
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
                outputs=[node.name])
C
Channingss 已提交
1291
        else:
S
SunAhong1993 已提交
1292 1293 1294 1295 1296
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
                outputs=[node.name])
            
1297
    @print_mapping_info
C
update  
channingss 已提交
1298
    def BatchNormalization(self, node):
C
channingss 已提交
1299 1300 1301 1302 1303
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
1304 1305 1306 1307

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
1308 1309
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
S
SunAhong1993 已提交
1310
        layer_attrs = {
C
update  
channingss 已提交
1311 1312 1313
            "momentum": momentum,
            "epsilon": epsilon,
        }
S
SunAhong1993 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
        self.paddle_graph.add_layer(
            "paddle.nn.functional.batch_norm", 
            inputs={"x": val_x.name,
                    "weight": val_scale.name,
                    "bias": val_b.name,
                    "running_mean": val_mean.name,
                    "running_var": val_var.name}, 
            outputs=[node.name], 
            **layer_attrs)
        
1324
    @print_mapping_info
C
update  
channingss 已提交
1325
    def Transpose(self, node):
C
channingss 已提交
1326
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
for pad  
SunAhong1993 已提交
1327 1328 1329 1330
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1331 1332 1333 1334 1335
        self.paddle_graph.add_layer(
            "paddle.transpose", 
            inputs={"x": val_x.name},
            outputs=[node.name], 
            perm=perm)
C
update  
channingss 已提交
1336

1337
    @print_mapping_info
C
update  
channingss 已提交
1338
    def PRelu(self, node):
C
channingss 已提交
1339 1340
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1341

C
channingss 已提交
1342 1343
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
C
Channingss 已提交
1344
        if shape_slope == [1]:
C
channingss 已提交
1345
            mode = 'all'
C
Channingss 已提交
1346

S
SunAhong1993 已提交
1347 1348 1349 1350 1351 1352 1353 1354
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.static.nn.prelu", 
                inputs={"x": val_x.name,
                        "param_attr": val_slope.name}, 
                outputs=[node.name],
                mode="element")
        else:
S
SunAhong1993 已提交
1355 1356 1357 1358 1359 1360 1361
            if mode == 'channel':
                if len(shape_slope) > 1:
                    self.paddle_graph.add_layer(
                        "paddle.reshape", 
                        inputs={"x": val_slope.name}, 
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
S
SunAhong1993 已提交
1362 1363 1364 1365 1366
            self.paddle_graph.add_layer(
                "paddle.nn.functional.prelu", 
                inputs={"x": val_x.name,
                        "weight": val_slope.name}, 
                outputs=[node.name])
C
update  
channingss 已提交
1367

1368
    @print_mapping_info
C
update  
channingss 已提交
1369
    def Squeeze(self, node):
C
channingss 已提交
1370 1371
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
1372
        if len(val_x.out_shapes[0]) == 1:
S
SunAhong1993 已提交
1373 1374 1375 1376 1377
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": val_x.name},
                outputs=[node.name],
                dtype=string(val_x.dtype))
1378
        else:
S
SunAhong1993 已提交
1379 1380 1381 1382 1383
            self.paddle_graph.add_layer(
                "paddle.squeeze", 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                axis=axes)
R
root 已提交
1384

1385
    @print_mapping_info
C
channings 已提交
1386 1387 1388
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1389 1390 1391 1392 1393
        self.paddle_graph.add_layer(
            "paddle.equal",
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
1394

C
Channingss 已提交
1395 1396 1397 1398
    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1399 1400 1401 1402
        self.paddle_graph.add_layer(
            "paddle.greater_than",
            inputs={'x': val_x.name,
                    'y': val_y.name},
S
SunAhong1993 已提交
1403
            outputs=[node.name],
C
Channingss 已提交
1404 1405
            param_attr=None)

1406
    @print_mapping_info
C
channings 已提交
1407 1408 1409 1410
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1411

S
SunAhong1993 已提交
1412 1413 1414 1415 1416
        not_condition = condition.name + '_not'
        self.paddle_graph.add_layer(
            "paddle.logical_not",
            inputs={"x": condition.name},
            outputs=[not_condition])
R
root 已提交
1417
        cast_not_condition = not_condition + '_cast'
S
SunAhong1993 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": not_condition},
            outputs=[cast_not_condition],
            dtype=string(val_x.dtype))
        cast_condition = condition.name + '_cast'
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": condition.name},
            outputs=[cast_condition],
            dtype=string(val_x.dtype))
        mul_val_x = val_x.name + '_mul'
        self.paddle_graph.add_layer(
            "paddle.multiply",
            inputs={'x': val_x.name,
1433
                    'y': cast_condition},
S
SunAhong1993 已提交
1434 1435 1436 1437 1438
            outputs=[mul_val_x])
        mul_val_y = val_y.name + '_mul'
        self.paddle_graph.add_layer(
            "paddle.multiply",
            inputs={'x': val_y.name,
1439
                    'y': cast_not_condition},
S
SunAhong1993 已提交
1440
            outputs=[mul_val_y])
1441

S
SunAhong1993 已提交
1442 1443
        self.paddle_graph.add_layer(
            "paddle.add",
1444 1445
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
S
SunAhong1993 已提交
1446
            outputs=[node.name])
1447 1448

    @print_mapping_info
R
root 已提交
1449 1450
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1451 1452
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
S
SunAhong1993 已提交
1453 1454 1455 1456 1457 1458 1459
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1460
                outputs=[node.layer_name],
S
SunAhong1993 已提交
1461
                perm=[1, 0])
1462
        if val_x_dim > 1:
S
SunAhong1993 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
            self.paddle_graph.add_layer(
                "paddle.split",
                inputs={"x": val_x.name}, 
                outputs=[val_x.name],
                num_or_sections=1,
                axis=val_x_dim)
            self.paddle_graph.add_layer(
                "paddle.concat", 
                inputs={"x": val_x.name}, 
                outputs=[node.name])
1477 1478

    @print_mapping_info
C
update  
channingss 已提交
1479
    def Identity(self, node):
C
channingss 已提交
1480
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1481 1482 1483 1484 1485
        self.paddle_graph.add_layer(
            "paddle.assign", 
            inputs={"x": val_x.name}, 
            outputs=[node.name])
        
1486
    @print_mapping_info
C
channings 已提交
1487 1488 1489 1490
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
R
root 已提交
1491

1492
        if repeats is None:
S
SunAhong1993 已提交
1493
            repeats = val_repeats.name
J
jiangjiajun 已提交
1494
            if val_repeats.dtype != 'int32':
S
SunAhong1993 已提交
1495 1496 1497 1498 1499
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
                    outputs=["{}.tmp".format(repeats)],
                    dtype=string("int32"))
J
jiangjiajun 已提交
1500 1501
                repeats = "{}.tmp".format(repeats)

1502
        elif isinstance(repeats, int):
C
channings 已提交
1503
            repeats = [repeats]
R
root 已提交
1504

C
channings 已提交
1505
        attr = {
R
root 已提交
1506
            'expand_times': repeats,
S
SunAhong1993 已提交
1507
            "name": string(node.name),
C
channings 已提交
1508
        }
S
SunAhong1993 已提交
1509 1510 1511 1512 1513
        self.paddle_graph.add_layer(
            "paddle.tile", 
            inputs={"x": val_x.name}, 
                    outputs=[node.name], 
                    repeat_times=repeats)
R
root 已提交
1514

1515
    @print_mapping_info
C
update  
channingss 已提交
1516
    def MaxPool(self, node):
C
channingss 已提交
1517
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1518
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
S
SunAhong1993 已提交
1528 1529
        paddle_op = 'paddle.nn.functional.max_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only max_pool1d, max_pool2d and max_pool3d are supported'
C
channingss 已提交
1530

C
channingss 已提交
1531 1532
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1533
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1534
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1535 1536 1537 1538 1539
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
S
SunAhong1993 已提交
1540 1541 1542 1543 1544
            
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
C
update  
channingss 已提交
1545 1546
            "ceil_mode": ceil_mode,
        }
S
SunAhong1993 已提交
1547 1548 1549 1550 1551
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, 
            outputs=[node.name], 
            **layer_attrs)
R
root 已提交
1552

1553
    @print_mapping_info
C
channings 已提交
1554
    def GlobalMaxPool(self, node):
S
SunAhong1993 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.functional.adaptive_max_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only adaptive_max_pool1d, adaptive_max_pool2d and adaptive_max_pool3d are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs={'x': val_x.name}, 
            outputs=[node.name], 
            output_size=output_shape[2:])
        
1572
    @print_mapping_info
C
channings 已提交
1573
    def GlobalAveragePool(self, node):
S
SunAhong1993 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.functional.adaptive_avg_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs={'x': val_x.name}, 
            outputs=[node.name], 
            output_size=output_shape[2:])
R
root 已提交
1590

1591
    @print_mapping_info
C
update  
channingss 已提交
1592
    def Conv(self, node):
C
channingss 已提交
1593 1594
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1595 1596
        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1597
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1598 1599
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1600
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1601 1602
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
Channingss 已提交
1603
        num_out_channels = val_w.out_shapes[0][0]
S
SunAhong1993 已提交
1604 1605
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.functional.conv{}d'.format(convnd)
C
update  
channingss 已提交
1606 1607

        num_groups = node.get_attr('group', 1)
C
Channingss 已提交
1608 1609 1610
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
update  
channingss 已提交
1611

C
channingss 已提交
1612
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1613 1614
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1615
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
Channingss 已提交
1616 1617 1618 1619 1620
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
update  
channingss 已提交
1621

S
SunAhong1993 已提交
1622
        layer_attrs = {
C
update  
channingss 已提交
1623 1624 1625 1626
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
S
SunAhong1993 已提交
1627 1628
        }
        layer_inputs = {
S
SunAhong1993 已提交
1629
            "x": val_x if isinstance(val_x, str) else val_x.name,
S
SunAhong1993 已提交
1630
            "weight": val_w.name
C
update  
channingss 已提交
1631 1632
        }
        if has_bias:
S
SunAhong1993 已提交
1633
            layer_inputs["bias"] = val_b.name
S
fix  
SunAhong1993 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642
        if reduce(lambda x,y:x*y, input_shape) in [1, -1] and 1 not in input_shape:
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
                "paddle.reshape", 
                inputs={"x": layer_inputs["x"]}, 
                outputs=[layer_inputs["x"]], 
                shape=input_shape)
S
SunAhong1993 已提交
1643 1644 1645 1646 1647
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs=layer_inputs, 
            outputs=[node.name], 
            **layer_attrs)
C
channingss 已提交
1648

1649
    @print_mapping_info
C
channingss 已提交
1650
    def ConvTranspose(self, node):
C
channingss 已提交
1651 1652
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1653
        val_b = None
R
root 已提交
1654
        if len(node.layer.input) > 2:
C
channingss 已提交
1655
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
channingss 已提交
1656 1657
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1658
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1659 1660 1661
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
S
SunAhong1993 已提交
1662
        num_in_channels = val_w.out_shapes[0][0]
C
channingss 已提交
1663
        num_out_channels = val_w.out_shapes[0][1]
S
SunAhong1993 已提交
1664
        paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd)
C
channingss 已提交
1665

C
channingss 已提交
1666 1667 1668 1669 1670
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1671 1672 1673 1674

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1675

1676 1677
        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
C
channingss 已提交
1678
                              kernel_shape[0] - 1) + 1 + out_padding[0]
1679 1680
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
C
channingss 已提交
1681
                              kernel_shape[1] - 1) + 1 + out_padding[1]
S
SunAhong1993 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
        layer_inputs = {'x': val_x.name,
                       "weight": val_w.name}
        layer_attrs = {
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
            "groups": num_groups,
            "output_size": node.out_shapes[0][2:]}
        if val_b is not None:
            layer_inputs["bias"] = val_b.name
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
1693
            kernel=paddle_op,
S
SunAhong1993 已提交
1694 1695
            inputs=layer_inputs,
            outputs=[node.name],
S
fix  
SunAhong1993 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
            **layer_attrs)
        
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'axis': axis,
                      'keepdim': keepdims}
        self.paddle_graph.add_layer(
            'paddle.argmax', 
            inputs={"x": val_x.name}, 
            outputs=[node.name],
C
Channingss 已提交
1709
            **layer_attrs)
S
SunAhong1993 已提交
1710 1711 1712 1713 1714 1715
        
    @print_mapping_info
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.shape", 
S
for pad  
SunAhong1993 已提交
1716
            inputs={"input": val_x.name}, 
S
SunAhong1993 已提交
1717
            outputs=[node.name])
S
for pad  
SunAhong1993 已提交
1718 1719 1720 1721 1722
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))  
S
SunAhong1993 已提交
1723 1724 1725 1726
        self.paddle_graph.add_layer(
            "paddle.prod",
            inputs={"x": node.name},
            outputs=[node.name])
C
Channingss 已提交
1727

S
SunAhong1993 已提交
1728 1729 1730
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
for pad  
SunAhong1993 已提交
1731 1732 1733 1734 1735 1736
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
                "paddle.cast", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
1737 1738 1739 1740
        self.paddle_graph.add_layer(
            "paddle.sign", 
            inputs={"x": val_x.name}, 
            outputs=[node.name])
S
for pad  
SunAhong1993 已提交
1741 1742 1743 1744 1745 1746
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
                "paddle.cast", 
                inputs={"x": node.name}, 
                outputs=[node.name],
                dtype=string(node.dtype))
S
SunAhong1993 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

    @print_mapping_info
    def OneHot(self, node):
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
            "custom_layer:one_hot", 
            inputs={"indices": indices.name,
                    "depth": depth.name,
                    "values": values.name}, 
            outputs=[node.name],
            axis=axis)

    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.reciprocal", 
            inputs={"x": val_x.name}, 
1768
            outputs=[node.name])
S
SunAhong1993 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
        layer_attrs["largest"] = True if node.get_attr('largest', 1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted', 1) == 1 else False
        self.paddle_graph.add_layer(
            "paddle.topk", 
            inputs={"x": val_x.name,
                    "k": val_k.name}, 
            outputs=["{}_p{}".format(node.layer_name, 0), "{}_p{}".format(node.layer_name, 1)],
S
add lrn  
SunAhong1993 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
            **layer_attrs)
        
    @print_mapping_info
    def LRN(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.0001)
        beta = node.get_attr('beta', 0.75)
        bias = node.get_attr('bias', 1.0)
        size = node.get_attr('size')
        layer_attrs = {
            'size': size,
            'alpha': alpha,
            'beta': beta,
            'k': bias
        }
        self.paddle_graph.add_layer(
            'paddle.nn.functional.local_response_norm', 
            inputs={"x": val_x.name}, 
            outputs=[node.name], 
            **layer_attrs)