opset.py 104.5 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.core.graph import GraphNode
from x2paddle.core.util import *
from functools import reduce
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
import logging as _logging
from collections import OrderedDict
import math
import os
import copy
import sys
import shutil

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node, necessary=False):
    if 'Constant' in node.layer_type:
        return node.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
S
SunAhong1993 已提交
41
            node.name)
S
SunAhong1993 已提交
42 43 44
    return None


45 46 47 48 49
def _rename_or_remove_weight(weights,
                             origin_name,
                             target_name=None,
                             is_remove=True):
    '''
50 51 52 53
    Rename parameters by Paddle's naming rule of parameters.

    Args:
        weights(dict[String:np.ndarray]): Dict stored paramters, the key in weights is name of parameter.
54
        origin_name(String): Name of parameter to rename or remove.
55 56
        target_name(String, optional): if target_name is not None, add new key-value pair
            {target_name:weights[origin_name]} to weights, and target_name must follow paddle's
57
            naming rule of parameters. Default: None.
58 59 60
        is_remove: if is_remove is True, remove origin key-value pair. Default: True.
    Returns:
        None
61
    '''
C
Channingss 已提交
62
    if origin_name not in weights:
63
        raise KeyError('{} not a key in {}'.format(origin_name, weights.keys()))
Y
yeliang2258 已提交
64
    data = weights[origin_name]
C
Channingss 已提交
65 66 67
    if target_name is not None:
        # rename weight
        weights[target_name] = data
C
Channingss 已提交
68

69

S
SunAhong1993 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
        if dim < -1:
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


def _get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
99
            raise Exception("convert failed node:{}, op_type is {}".format(
S
SunAhong1993 已提交
100
                node.name[9:], node.layer_type))
S
SunAhong1993 已提交
101 102 103 104 105 106 107 108 109 110
        else:
            return res

    return run_mapping


class OpSet9():
    elementwise_ops = {
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
SunAhong1993 已提交
111
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
112 113
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
114
        'Less': 'paddle.less_than',
S
SunAhong1993 已提交
115 116
    }

S
SunAhong1993 已提交
117 118 119
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
120 121 122
        'ReduceMean': [
            'paddle.mean', dict(
                axes='axis', keepdims='keepdim'), dict(
123
                    axes=None, keepdims=True)
124 125 126 127
        ],
        'ReduceMin': [
            'paddle.min', dict(
                axes='axis', keepdims='keepdim'), dict(
128
                    axes=None, keepdim=True)
129 130 131 132
        ],
        'ReduceMax': [
            'paddle.max', dict(
                axes='axis', keepdims='keepdim'), dict(
133
                    axes=None, keepdim=True)
134 135 136 137
        ],
        'ReduceProd': [
            'paddle.prod', dict(
                axes='axis', keepdims='keepdim'), dict(
138
                    axes=None, keepdim=True)
139
        ],
S
SunAhong1993 已提交
140 141
        # active function
        'Relu': ['paddle.nn.ReLU'],
142 143 144 145 146 147 148 149 150 151
        'LeakyRelu': [
            'paddle.nn.LeakyReLU', dict(alpha='negative_slope'),
            dict(negative_slope=.01)
        ],
        'Elu':
        ['paddle.nn.functional.elu', dict(alpha='alpha'), dict(alpha=1.)],
        'ThresholdedRelu': [
            'paddle.nn.functional.thresholded_relu', dict(alpha='threshold'),
            dict(alpha=1.)
        ],
S
SunAhong1993 已提交
152 153 154
        'Tanh': ['paddle.nn.Tanh'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Softsign': ['paddle.nn.Softsign'],
155 156 157 158
        'Softplus': [
            'paddle.nn.Softplus', dict(threshold='threshold'),
            dict(threshold=float(sys.maxsize))
        ],
S
SunAhong1993 已提交
159
        'Exp': ['paddle.exp'],
S
SunAhong1993 已提交
160
        'Log': ['paddle.log'],
161 162 163
        'LogSoftmax':
        ['paddle.nn.functional.log_softmax', dict(axis='axis'), dict(axis=1)],
        'Softmax': ['paddle.nn.Softmax', dict(axis='axis'), dict(axis=1)],
S
SunAhong1993 已提交
164 165 166 167
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
Y
yeliang2258 已提交
168 169
        'Sin': ['paddle.sin'],
        'Cos': ['paddle.cos'],
S
SunAhong1993 已提交
170 171 172 173 174 175 176 177 178
    }

    def __init__(self, decoder, paddle_graph):
        super(OpSet9, self).__init__()
        self.graph = decoder.graph
        self.paddle_graph = paddle_graph
        self.inputs_info = dict()
        self.weights = dict()
        self.nn_name2id = dict()
S
fix  
SunAhong1993 已提交
179
        self.done_weight_list = list()
S
SunAhong1993 已提交
180 181 182 183 184 185

    @print_mapping_info
    def directly_map(self, node, *args, **kwargs):
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
201
        if paddle_op.startswith("paddle.nn") and 'functional' not in paddle_op:
S
SunAhong1993 已提交
202 203
            op_name = paddle_op[10:].lower()
            op_name = name_generator(op_name, self.nn_name2id)
S
SunAhong1993 已提交
204
            output_name = node.name
S
SunAhong1993 已提交
205
            layer_outputs = [op_name, output_name]
206

S
SunAhong1993 已提交
207 208
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
209
                inputs={"x": input.name},
S
SunAhong1993 已提交
210 211 212 213 214
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
215 216
                inputs={"x": input.name},
                outputs=[node.name],
217 218
                **layer_attrs)

S
SunAhong1993 已提交
219 220 221 222 223
    @print_mapping_info
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
224
        inputs_dict = {'x': val_x.name, 'y': val_y.name}
S
SunAhong1993 已提交
225
        self.paddle_graph.add_layer(
226
            op_type, inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
227 228 229 230 231 232 233 234 235 236 237 238

    @print_mapping_info
    def place_holder(self, node):
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
                assert 'shape of input is not assigned'
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
S
SunAhong1993 已提交
239
            outputs=[node.name],
S
SunAhong1993 已提交
240 241
            data=node.name)
        self.inputs_info[node.name] = [shape, node.dtype]
S
SunAhong1993 已提交
242 243 244 245 246 247 248

    @print_mapping_info
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
        shape = node.out_shapes[0]
Y
yeliang2258 已提交
249

S
fix  
SunAhong1993 已提交
250
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
S
SunAhong1993 已提交
251
            self.paddle_graph.add_layer(
252 253
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
254
                outputs=[node.name],
S
SunAhong1993 已提交
255 256 257 258
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
        else:
S
SunAhong1993 已提交
259
            self.weights[node.name] = node.weight
S
SunAhong1993 已提交
260 261 262
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
263
                outputs=[node.name],
S
SunAhong1993 已提交
264
                shape=shape,
S
SunAhong1993 已提交
265
                attr=string(node.name),
S
SunAhong1993 已提交
266
                dtype=string(dtype),
267
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

    def _interpolate(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
284
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
285
        attrs = dict()
S
SunAhong1993 已提交
286 287 288 289
        if node.layer_type == 'Resize':
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
290
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
291
                # which is the same as the rank of input.
292 293
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[
                    2:]
S
SunAhong1993 已提交
294 295 296
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
297
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
298
                # which is the same as the rank of input.
299 300
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[
                    2:]
S
SunAhong1993 已提交
301 302 303
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
W
WJJ1995 已提交
304
                size_values = _const_weight_or_none(val_sizes)
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
                val_x_shape = val_x.out_shapes[0]
                if len(val_x_shape) == 3:
                    var_n, var_hw = val_sizes.name + '_n', val_sizes.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_sizes.name},
                        outputs=[var_n, var_hw],
                        num_or_sections=[1, 2],
                        axis=0)
                    self.paddle_graph.add_layer(
                        "paddle.cast",
                        inputs={"x": var_hw},
                        outputs=[var_hw],
                        dtype=string('int32'))
                    inputs['size'] = var_hw
                    attrs = {
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
                    }
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        'paddle.unsqueeze',
                        inputs={"x": val_x.name},
                        outputs=[val_x.name],
                        axis=0)
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={"x": node.name},
                        outputs=[node.name],
                        axis=0)
                else:
W
WJJ1995 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
                    if size_values is not None:
                        attrs["size"] = [size_values[2], size_values[3]]
                    else:
                        var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
                        self.paddle_graph.add_layer(
                            'paddle.split',
                            inputs={"x": val_sizes.name},
                            outputs=[var_nc, var_hw],
                            num_or_sections=[2, 2],
                            axis=0)
                        self.paddle_graph.add_layer(
                            "paddle.cast",
                            inputs={"x": var_hw},
                            outputs=[var_hw],
                            dtype=string('int32'))
                        inputs['size'] = var_hw
                    attrs.update({
367 368
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
W
WJJ1995 已提交
369
                    })
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
S
SunAhong1993 已提交
385
                return
S
SunAhong1993 已提交
386
        elif node.layer_type == 'Upsample':
Y
yeliang2258 已提交
387 388 389 390 391 392 393 394 395 396 397 398
            if len(node.layer.input) == 2:
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                self.paddle_graph.add_layer(
                    "paddle.slice",
                    inputs={"input": val_scales.name},
                    outputs=[val_scales.name],
                    axes=[0],
                    starts=[2],
                    ends=[4])
                inputs['scale_factor'] = val_scales.name
            else:
                val_scales = node.get_attr('scales')[2:]
399

S
SunAhong1993 已提交
400
        mode = node.get_attr('mode', 'nearest')
401 402 403 404 405
        attrs.update({
            "align_corners": False,
            "mode": string(mode),
            "align_mode": 1
        })
Y
yeliang2258 已提交
406 407
        if len(node.layer.input) == 1:
            attrs["scale_factor"] = val_scales
S
SunAhong1993 已提交
408 409 410
        val_x_shape = val_x.out_shapes[0]
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
411 412 413 414 415 416
            if node.get_attr('coordinate_transformation_mode',
                             'half_pixel') == 'pytorch_half_pixel':
                attrs["align_corners"] = False
                attrs["align_mode"] = 0
            else:
                attrs["align_corners"] = True
S
SunAhong1993 已提交
417 418 419
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
S
SunAhong1993 已提交
420
            outputs=[node.name],
S
SunAhong1993 已提交
421
            **attrs)
422

S
SunAhong1993 已提交
423 424 425 426 427 428 429
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
S
SunAhong1993 已提交
430 431
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
S
SunAhong1993 已提交
432 433 434 435
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
S
SunAhong1993 已提交
436 437
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
S
SunAhong1993 已提交
438
            min=0.0,
439 440
            max=1.0)

S
SunAhong1993 已提交
441 442 443 444 445 446 447 448
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
449 450 451 452
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))
S
SunAhong1993 已提交
453 454 455 456 457 458 459 460 461 462

    @print_mapping_info
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
463 464 465 466 467 468
        val_rois_shape = val_rois.name + '_shape'
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_rois.name},
            outputs=[val_rois_shape])
        val_rois_num = val_rois.name + '_num'
469 470 471 472 473 474 475 476 477 478 479 480 481 482
        if len(val_rois.out_shapes[0]) == 4:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _', ' _', ' _'],
                num_or_sections=[1, 1, 1, 1],
                axis=0)
        elif len(val_rois.out_shapes[0]) == 2:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _'],
                num_or_sections=[1, 1],
                axis=0)
S
SunAhong1993 已提交
483 484 485 486 487
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
488
            'rois_num': val_rois_num,
S
SunAhong1993 已提交
489 490
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
491
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
492 493 494
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
            **layer_attrs)

    @print_mapping_info
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
510
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
511 512 513
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
514 515 516 517 518 519
            **layer_attrs)

    @print_mapping_info
    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
520 521 522 523 524 525 526 527
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
S
SunAhong1993 已提交
528
        mode = node.get_attr('mode', 'constant')
529 530
        if mode in ["edge"]:
            mode = "replicate"
S
SunAhong1993 已提交
531 532 533
        value = node.get_attr('value', 0.)
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
534
        assume_pad = False
S
SunAhong1993 已提交
535 536
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
fix  
SunAhong1993 已提交
537 538 539
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
S
SunAhong1993 已提交
540
        else:
S
fix  
SunAhong1993 已提交
541 542 543
            output_name = node.name
        nn_op_name = name_generator("pad", self.nn_name2id)
        layer_outputs = [nn_op_name, output_name]
S
SunAhong1993 已提交
544 545
        if is_pads_attr:
            paddings = []
S
SunAhong1993 已提交
546
            if len(pads) == 10 and sum(pads) == 0:
547
                pads = pads[0:6]
S
fix  
SunAhong1993 已提交
548
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
549
                if data_shape:
550 551
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == len(pads)  # NCHW
S
SunAhong1993 已提交
552
                if output_shape:
553 554
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
555 556 557 558
                if assume_pad:
                    paddle_op = 'paddle.nn.Pad{}D'.format(len(output_shape) - 2)
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
S
for pad  
SunAhong1993 已提交
559
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
S
fix  
SunAhong1993 已提交
560 561 562
                    layer_attrs['padding'] = paddings
                else:
                    if data_shape:
563 564
                        assume_pad |= data_shape and 2 * len(data_shape) == len(
                            pads)  # NCHW
S
fix  
SunAhong1993 已提交
565
                    if output_shape:
566 567
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
568 569 570
                    if assume_pad:
                        paddle_op = 'paddle.nn.functional.pad'
                        paddings = np.array(pads).reshape(
571 572
                            (2,
                             -1)).transpose().astype("int32").flatten().tolist()
S
fix  
SunAhong1993 已提交
573 574
                        layer_attrs['pad'] = paddings
                    else:
575 576
                        raise Exception("The padding value {} is wrong!".format(
                            pads))
S
SunAhong1993 已提交
577
            elif len(pads) == 8:
S
fix  
SunAhong1993 已提交
578
                if data_shape:
579 580
                    assume_pad |= data_shape and 2 * len(data_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
581
                if output_shape:
582 583
                    assume_pad |= output_shape and 2 * len(output_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
584
                if assume_pad:
S
for pad  
SunAhong1993 已提交
585
                    paddle_op = 'paddle.nn.Pad2D'
S
fix  
SunAhong1993 已提交
586
                    paddings = np.array(pads).reshape(
S
for pad  
SunAhong1993 已提交
587 588 589 590 591 592 593 594
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    if sum(paddings[:4]) == 0:
                        paddings = paddings[4:]
                        layer_attrs['padding'] = paddings
                    else:
                        layer_attrs["pad"] = paddings
                        paddle_op = "custom_layer:PadAllDim4WithOneInput"
S
SunAhong1993 已提交
595
            else:
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
                pad_data = node.get_attr('pads')
                pad_data1 = pad_data[0::2]
                pad_data_all = []
                for i in range(len(pad_data1)):
                    pad_data_all.append(pad_data[i])
                    pad_data_all.append(pad_data[len(pad_data1) + i])

                layer_attrs["pad"] = pad_data_all
                self.paddle_graph.add_layer(
                    'paddle.nn.functional.pad',
                    inputs={'x': val_x.name},
                    outputs=layer_outputs[1:],
                    **layer_attrs)
                return

S
SunAhong1993 已提交
611
            self.paddle_graph.add_layer(
612 613 614 615
                paddle_op,
                inputs={'x': val_x.name},
                outputs=layer_outputs[1:]
                if paddle_op == 'paddle.nn.functional.pad' else layer_outputs,
S
SunAhong1993 已提交
616
                **layer_attrs)
S
fix  
SunAhong1993 已提交
617
            if not op_independent:
S
SunAhong1993 已提交
618
                return node.name + '_paded'
S
SunAhong1993 已提交
619
        else:
S
fix  
SunAhong1993 已提交
620 621
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
622
                if data_shape:
623 624
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == pads_len  # NCHW
S
SunAhong1993 已提交
625
                if output_shape:
626 627
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
628 629 630 631 632 633 634 635
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
636 637 638
                        "custom_layer:PadWithTwoInput",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
S
fix  
SunAhong1993 已提交
639 640 641 642 643 644
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
645 646
                        assume_pad |= data_shape and 2 * len(
                            data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
647
                    if output_shape:
648 649
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
650 651 652
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
653 654 655 656
                                "custom_layer:PadAllDim2",
                                inputs={'x': val_x.name,
                                        'pad': val_pad.name},
                                outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
657 658 659 660 661 662
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
663 664
                    assume_pad |= data_shape and 2 * len(
                        data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
665
                if output_shape:
666 667
                    assume_pad |= output_shape and 2 * len(
                        output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
668 669
                if assume_pad:
                    self.paddle_graph.add_layer(
670 671 672 673
                        "custom_layer:PadAllDim4",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
                        outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
674 675 676
                        value=value,
                        mode=string(mode))
            else:
677
                raise Exception("The padding value is wrong!")
S
SunAhong1993 已提交
678 679
            if not op_independent:
                return node.name + '_paded'
S
SunAhong1993 已提交
680 681 682 683 684

    @print_mapping_info
    def Unsqueeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
685 686
        if axes is None:
            axes = self.graph.get_input_node(node, idx=1, copy=True)
Y
fix  
yeliang2258 已提交
687 688 689 690 691 692 693
        if len(val_x.out_shapes[0]) == 0 and len(axes) == 1 and axes[0] == 0:
            if node.name:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    shape=[1])
S
SunAhong1993 已提交
694
        else:
Y
fix  
yeliang2258 已提交
695 696 697 698 699 700 701 702 703 704 705 706
            if isinstance(axes, list) or isinstance(axes, tuple):
                self.paddle_graph.add_layer(
                    'paddle.unsqueeze',
                    inputs={"x": val_x.name},
                    axis=axes,
                    outputs=[node.name])
            else:
                self.paddle_graph.add_layer(
                    'paddle.unsqueeze',
                    inputs={"x": val_x.name,
                            "axis": axes.name},
                    outputs=[node.name])
S
SunAhong1993 已提交
707 708 709 710 711 712 713 714

    @print_mapping_info
    def Shrink(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        self.paddle_graph.add_layer(
715 716 717
            'paddle.nn.functional.hardshrink',
            inputs={"x": val_x.name},
            outputs=[node.name],
S
SunAhong1993 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
            threshold=lambd)

    @print_mapping_info
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)

        if shape is None:
            shape = val_output.out_shapes[0]
        if shape is None:
            shape = list(value.shape)
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
739
                            val_output.name, val_output.name)
S
SunAhong1993 已提交
740 741 742 743
        if len(value) == 1:
            value = value.tolist()
            value = value[0]
            self.paddle_graph.add_layer(
744 745
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
746
                outputs=[node.name],
S
SunAhong1993 已提交
747 748 749 750 751
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
752
            self.weights[node.name] = value
S
SunAhong1993 已提交
753 754 755
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
756
                outputs=[node.name],
S
SunAhong1993 已提交
757
                shape=shape,
S
SunAhong1993 已提交
758
                attr=string(node.name),
S
SunAhong1993 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")

    @print_mapping_info
    def Resize(self, node):
        self._interpolate(node)

    @print_mapping_info
    def Upsample(self, node):
        self._interpolate(node)

    @print_mapping_info
    def InstanceNormalization(self, node):
        op_name = name_generator("instanse_norm", self.nn_name2id)
S
SunAhong1993 已提交
773
        output_name = node.name
S
SunAhong1993 已提交
774 775 776 777 778
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
779 780
        self.weights[op_name + '.scale'] = self.weights[val_scale.name]
        self.weights[op_name + '.bias'] = self.weights[val_b.name]
S
SunAhong1993 已提交
781 782 783 784 785
        layer_attrs = {
            'num_features': node.out_shapes[0][1],
            'epsilon': epsilon,
        }
        dim = len(val_x.out_shapes[0])
S
SunAhong1993 已提交
786
        if dim == 3:
S
SunAhong1993 已提交
787 788 789 790 791 792
            paddle_op = "paddle.nn.InstanceNorm1D"
        elif dim == 4:
            paddle_op = "paddle.nn.InstanceNorm2D"
        elif dim == 5:
            paddle_op = "paddle.nn.InstanceNorm3D"
        else:
793 794 795
            raise Exception(
                "The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization."
            )
S
SunAhong1993 已提交
796
        self.paddle_graph.add_layer(
797 798 799
            paddle_op,
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
800 801 802 803 804 805 806
            **layer_attrs)

    @print_mapping_info
    def Expand(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
807
        name_ones = node.name + '_ones'
Y
yeliang2258 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820
        shape_values = _const_weight_or_none(val_shape)
        if shape_values is None:
            attr_ones = {
                'shape': val_shape.name,
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
        else:
            attr_ones = {
                'shape': shape_values.tolist(),
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
S
SunAhong1993 已提交
821
        self.paddle_graph.add_layer(
822 823
            'paddle.full', inputs={}, outputs=[name_ones], **attr_ones)
        inputs_dict = {'x': name_ones, 'y': val_x.name}
S
SunAhong1993 已提交
824
        self.paddle_graph.add_layer(
825
            'paddle.multiply', inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
826

Y
yeliang2258 已提交
827 828 829 830 831 832 833 834
    @print_mapping_info
    def GatherND(self, node):
        x = self.graph.get_input_node(node, idx=0, copy=True)
        index = self.graph.get_input_node(node, idx=1, copy=True)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd", inputs=inputs, outputs=[node.name])

S
SunAhong1993 已提交
835 836 837 838 839 840 841 842 843 844 845 846
    @print_mapping_info
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
        axis = node.get_attr('axis', 0)
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
        if axis == 0 and len(indices_shape) <= 1:
            if len(val_x.out_shapes[0]) <= 1:
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
847 848 849
                    inputs={'x': val_x.name,
                            'index': indices.name},
                    outputs=[node.name])
S
SunAhong1993 已提交
850 851
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
Y
yeliang2258 已提交
852 853 854 855 856
                    self.paddle_graph.add_layer(
                        'paddle.reshape',
                        inputs={"x": indices.name},
                        outputs=[indices.name],
                        shape=[-1, ])
S
SunAhong1993 已提交
857
                    gather_ = node.name + '_1'
S
SunAhong1993 已提交
858 859
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
860 861
                        inputs={'x': val_x.name,
                                'index': indices.name},
S
SunAhong1993 已提交
862 863 864 865
                        outputs=[gather_])
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={'x': gather_},
S
SunAhong1993 已提交
866
                        outputs=[node.name],
S
SunAhong1993 已提交
867 868 869 870
                        axis=[0])
                else:
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
871 872 873
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[node.name])
S
SunAhong1993 已提交
874 875 876
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
877
            name_trans = val_x.name + '_trans'
S
SunAhong1993 已提交
878 879
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
880
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
881 882 883 884 885
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
S
SunAhong1993 已提交
886 887
                        'index': indices.name},
                outputs=[node.name])
S
SunAhong1993 已提交
888 889 890
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
891
            self.paddle_graph.add_layer(
892 893 894
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
S
SunAhong1993 已提交
895
                perm=new_perm)
S
SunAhong1993 已提交
896 897 898
            if len(indices_shape) < 1:
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
S
SunAhong1993 已提交
899 900
                    inputs={'x': node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
901 902 903 904
                    axis=[axis])
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
905
                indices_cast = indices.name + '_cast'
S
SunAhong1993 已提交
906 907
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
908
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
909
                    outputs=[indices_cast],
S
SunAhong1993 已提交
910 911
                    dtype=string('int64'))
                op_name = name_generator("embedding", self.nn_name2id)
S
SunAhong1993 已提交
912
                output_name = node.name
S
SunAhong1993 已提交
913
                layer_outputs = [op_name, output_name]
C
Channingss 已提交
914
                self.weights[op_name + '.weight'] = _const_weight_or_none(val_x)
S
SunAhong1993 已提交
915 916 917 918
                self.paddle_graph.add_layer(
                    'paddle.nn.Embedding',
                    inputs={"x": indices_cast},
                    outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
919 920
                    num_embeddings=val_x.out_shapes[0][0],
                    embedding_dim=val_x.out_shapes[0][1])
S
SunAhong1993 已提交
921 922 923
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
924
                indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
925 926
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
927
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
928 929 930 931 932 933
                    outputs=[indices_reshape],
                    shape=[reshape_shape, ])

                perm = list(range(len(val_x.out_shapes[0])))
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
934
                    inputs={'x': val_x.name,
S
SunAhong1993 已提交
935
                            'index': indices_reshape},
S
SunAhong1993 已提交
936
                    outputs=[node.name])
S
SunAhong1993 已提交
937 938 939 940 941 942 943 944
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
945 946
                    inputs={"x": node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
947 948 949 950
                    shape=reshaped_shape)
        elif axis > 0 and len(indices_shape) > 1:
            from functools import reduce
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
951
            indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
952 953
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
954
                inputs={"x": indices.name},
S
SunAhong1993 已提交
955 956 957 958 959
                outputs=[indices_reshape],
                shape=[reshape_shape, ])

            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
960
            name_trans = val_x.name + '_transpose'
S
SunAhong1993 已提交
961 962
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
963
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
964 965 966 967 968 969
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
                        'index': indices_reshape},
S
SunAhong1993 已提交
970 971
                outputs=[node.name])
            input_transpose = node.name + '_transpose'
S
SunAhong1993 已提交
972 973 974
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
975 976
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
977
                inputs={"x": node.name},
S
SunAhong1993 已提交
978
                outputs=[input_transpose],
S
SunAhong1993 已提交
979 980
                perm=new_perm)
            perm = new_perm
S
SunAhong1993 已提交
981 982 983 984 985 986 987 988 989
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": input_transpose},
S
SunAhong1993 已提交
990
                outputs=[node.name],
S
SunAhong1993 已提交
991 992 993 994 995 996 997 998 999 1000
                shape=reshaped_shape)

    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                'paddle.scatter',
1001 1002 1003 1004 1005
                inputs={
                    'x': val_x.name,
                    'index': indices.name,
                    'updates': updates.name
                },
S
SunAhong1993 已提交
1006
                outputs=[node.name])
S
SunAhong1993 已提交
1007
        else:
S
SunAhong1993 已提交
1008
            input_inner_indices = node.name + '_input_inner_indices'
S
SunAhong1993 已提交
1009 1010 1011
            shape = val_x.out_shapes[0]
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1012 1013
                inputs={"x": indices.name},
                outputs=[indices.name],
S
SunAhong1993 已提交
1014 1015
                shape=indices.out_shapes[0])

S
SunAhong1993 已提交
1016
            zeros_like_val_x = val_x.name + '_zeros'
S
SunAhong1993 已提交
1017 1018
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
S
SunAhong1993 已提交
1019
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1020 1021 1022 1023 1024
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1025 1026
                    'index': indices.name,
                    'updates': updates.name
S
SunAhong1993 已提交
1027 1028
                },
                outputs=[input_inner_indices])
S
SunAhong1993 已提交
1029 1030
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
S
SunAhong1993 已提交
1031 1032 1033
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1034
                inputs={"x": updates.name},
S
SunAhong1993 已提交
1035 1036 1037 1038 1039 1040 1041
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1042
                    'index': indices.name,
S
SunAhong1993 已提交
1043 1044 1045
                    'updates': constant_minus_one
                },
                outputs=[indices_mask])
S
SunAhong1993 已提交
1046
            constant_one = node.name + '_constant_1'
S
SunAhong1993 已提交
1047 1048 1049
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1050
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1051 1052 1053
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
S
SunAhong1993 已提交
1054
            input_out_indices_mask = node.name + '_input_out_indices_mask'
S
SunAhong1993 已提交
1055 1056 1057 1058 1059 1060
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": indices_mask,
                        "y": constant_one},
                outputs=[input_out_indices_mask])

S
SunAhong1993 已提交
1061
            input_out_indices = node.name + '_input_out_indices'
S
SunAhong1993 已提交
1062 1063
            self.paddle_graph.add_layer(
                "paddle.multiply",
S
SunAhong1993 已提交
1064
                inputs={"x": val_x.name,
S
SunAhong1993 已提交
1065 1066 1067 1068 1069 1070 1071
                        "y": input_out_indices_mask},
                outputs=[input_out_indices])

            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
1072
                outputs=[node.name])
S
SunAhong1993 已提交
1073 1074 1075 1076 1077 1078 1079

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
1080 1081 1082 1083 1084
        inputs = {
            'start': val_start.name,
            'end': val_limit.name,
            'step': val_delta.name
        }
S
SunAhong1993 已提交
1085 1086 1087
        self.paddle_graph.add_layer(
            'paddle.arange',
            inputs=inputs,
S
SunAhong1993 已提交
1088
            outputs=[node.name],
S
SunAhong1993 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
            dtype=string(dtype))

    @print_mapping_info
    def Slice(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        starts, ends, axes, steps = None, None, None, None
        layer_attrs = {}
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            starts_value = _const_weight_or_none(starts)
S
fix  
SunAhong1993 已提交
1100 1101
            if starts_value is not None:
                starts_value = starts_value.tolist()
S
SunAhong1993 已提交
1102
            ends_value = _const_weight_or_none(ends)
S
fix  
SunAhong1993 已提交
1103 1104 1105 1106 1107
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
S
SunAhong1993 已提交
1108
            if len(node.inputs) > 3:
S
fix  
SunAhong1993 已提交
1109 1110
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
S
SunAhong1993 已提交
1111 1112
            if len(node.inputs) > 4:
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
fix  
SunAhong1993 已提交
1113
                steps = _const_weight_or_none(steps).tolist()
1114

S
SunAhong1993 已提交
1115 1116
            layer_attrs = {
                "axes": axes,
S
SunAhong1993 已提交
1117 1118
                "starts": starts.name,
                "ends": ends.name
S
SunAhong1993 已提交
1119
            }
S
SunAhong1993 已提交
1120
            if starts_value is not None and ends_value is not None and axes is not None:
S
SunAhong1993 已提交
1121 1122 1123
                starts_value = starts_value.copy()
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
1124 1125
                    if starts_value[idx] >= val_x.out_shapes[0][axes[
                            idx]] and val_x.out_shapes[0][axes[idx]] > 0:
S
SunAhong1993 已提交
1126 1127 1128 1129
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
1130

S
SunAhong1993 已提交
1131 1132 1133 1134 1135 1136 1137
                layer_attrs = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
1138
                    starts_cast = starts.name + '_cast'
S
SunAhong1993 已提交
1139 1140
                    self.paddle_graph.add_layer(
                        'paddle.cast',
S
SunAhong1993 已提交
1141
                        inputs={"x": starts.name},
S
SunAhong1993 已提交
1142 1143 1144 1145
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
1146
                    ends_cast = ends.name + '_cast'
S
SunAhong1993 已提交
1147 1148
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
1149 1150
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
1151
                    inputs={"x": ends.name},
S
SunAhong1993 已提交
1152 1153 1154 1155 1156 1157 1158
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
Y
yeliang2258 已提交
1159 1160 1161 1162
            output_shape = val_x.out_shapes[0]

            if axes is None:
                axes = [i for i in range(len(starts))]
S
SunAhong1993 已提交
1163 1164 1165 1166 1167 1168 1169 1170
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}

        if steps is not None:
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
1171 1172 1173
                'paddle.strided_slice',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1174 1175 1176
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
1177 1178 1179
                'paddle.slice',
                inputs={"input": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
                **layer_attrs)

    @print_mapping_info
    def ConstantOfShape(self, node):
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
        if len(value) == 1:
            value = value[0]
1194
            layer_attrs = {'dtype': string(dtype), 'fill_value': value}
S
SunAhong1993 已提交
1195
            self.paddle_graph.add_layer(
1196 1197
                "paddle.full",
                inputs={'shape': val_shape.name},
S
SunAhong1993 已提交
1198
                outputs=[node.name],
S
SunAhong1993 已提交
1199 1200
                **layer_attrs)

Y
yeliang2258 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    @print_mapping_info
    def GatherND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={"x": val_x.name,
                    "index": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
            layer_attrs = {
                'max': max_value,
                'min': min_value,
            }
1223

S
SunAhong1993 已提交
1224
            self.paddle_graph.add_layer(
1225 1226 1227
                'paddle.clip',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1228 1229
                **layer_attrs)
        else:
Y
yeliang2258 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
            if len(node.inputs) == 2:
                val_ipt = self.graph.get_input_node(node, idx=1, copy=True)

                index = node.get_input_index(val_ipt.name)

                val_value = _const_weight_or_none(val_ipt)
                if val_value.shape == (1, ):
                    val_value = val_value[0]

                if index == 1:
                    layer_attrs = {'min': val_value}

                if index == 2:
                    layer_attrs = {'max': val_value}

1245 1246 1247 1248 1249 1250
                self.paddle_graph.add_layer(
                    'paddle.clip',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    **layer_attrs)
            else:
Y
yeliang2258 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
                if len(node.inputs) == 3:
                    min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
                    max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
                    self.paddle_graph.add_layer(
                        'paddle.clip',
                        inputs={
                            "x": val_x.name,
                            "min": min_ipt.name,
                            "max": max_ipt.name
                        },
                        outputs=[node.name])
                else:
                    raise Exception("max_value or min_value can't be None")
S
SunAhong1993 已提交
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    @print_mapping_info
    def ReduceSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        if len(node.inputs) == 1:
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                keepdims = True
            axes_value = node.get_attr('axes')
            layer_attrs = {'axis': axes_value, 'keepdim': keepdims}
            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)
        else:
            axes = self.graph.get_input_node(node, idx=1, copy=True)
            axes_value = _const_weight_or_none(axes)
            if axes_value.shape == (1, ):
                axes_value = axes_value[0]
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                layer_attrs = {'axis': axes_value}
            else:
                layer_attrs = {'axis': axes_value, 'keepdim': keepdims}

            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)

    @print_mapping_info
    def Max(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.maximum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "max_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def Min(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.minimum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "min_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def GreaterOrEqual(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_equal",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def GatherND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={"x": val_x.name,
                    "index": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def And(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.logical_and",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1386 1387 1388 1389 1390 1391
    @print_mapping_info
    def Split(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        paddle_op = 'split'
        split = node.get_attr('split')
        axis = node.get_attr('axis', 0)
Y
yeliang2258 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400
        if split is None:
            split_num = len(node.layer.output)
            layer_attrs = {
                'num_or_sections': split_num,
                'axis': axis,
            }
            outputs_list = list()
            for i in range(len(node.layer.output)):
                if hasattr(node, 'index'):
S
SunAhong1993 已提交
1401
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
Y
yeliang2258 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
                else:
                    outputs_list.append("{}".format(node.layer_name))
            if split_num > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))

S
SunAhong1993 已提交
1417
        else:
Y
yeliang2258 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
            layer_attrs = {
                'num_or_sections': split,
                'axis': axis,
            }
            outputs_list = list()
            if isinstance(split, list) or isinstance(split, tuple):
                if len(split) == 1:
                    outputs_list.append(node.name)
                else:
                    for i in range(len(split)):
                        outputs_list.append("{}_p{}".format(node.layer_name, i))
1429
            else:
Y
yeliang2258 已提交
1430 1431 1432 1433 1434 1435
                outputs_list.append(node.name)
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_x.name},
                outputs=outputs_list,
                **layer_attrs)
S
SunAhong1993 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

    @print_mapping_info
    def Reshape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1448 1449
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1450 1451 1452 1453 1454
                shape=shape_value.tolist())
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1455 1456
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1457 1458 1459 1460 1461 1462
                shape=node.out_shapes[0])
        else:
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
1463 1464
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
S
SunAhong1993 已提交
1465
                    shape=val_shape.out_shapes[0])
S
fix  
SunAhong1993 已提交
1466 1467 1468 1469 1470 1471
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1472 1473
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1474 1475
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1476
                outputs=[node.name])
S
SunAhong1993 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

    @print_mapping_info
    def Cast(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        self.paddle_graph.add_layer(
1491 1492 1493
            'paddle.cast',
            inputs={'x': val_input.name},
            outputs=[node.name],
S
SunAhong1993 已提交
1494 1495 1496 1497 1498
            dtype=string(dtype))

    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
1499 1500 1501 1502
        self.paddle_graph.add_layer(
            'paddle.logical_not',
            inputs={'x': val_input.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

    @print_mapping_info
    def AveragePool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
SunAhong1993 已提交
1526 1527 1528 1529 1530
        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
S
SunAhong1993 已提交
1531
        layer_attrs = {
S
SunAhong1993 已提交
1532 1533 1534
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
S
SunAhong1993 已提交
1535 1536 1537 1538
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
        }
        self.paddle_graph.add_layer(
1539 1540 1541
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1542 1543 1544 1545 1546 1547 1548 1549
            **layer_attrs)

    @print_mapping_info
    def Concat(self, node):
        inputs_list = []
        dtypes = set()
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1550
            inputs_list.append(ipt.name)
S
SunAhong1993 已提交
1551 1552 1553 1554 1555
            dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
        axis = node.get_attr('axis')
        self.paddle_graph.add_layer(
1556 1557 1558
            'paddle.concat',
            inputs={"x": inputs_list},
            outputs=[node.name],
S
SunAhong1993 已提交
1559 1560 1561 1562 1563
            axis=axis)

    @print_mapping_info
    def Flatten(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1564
        output_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
        axis = node.get_attr('axis', 1)
        shape_list = [1, 1]
        if axis == 0:
            for s in output_shape:
                shape_list[1] *= s
        else:
            for s in output_shape[:axis]:
                shape_list[0] *= s
            for s in output_shape[axis:]:
                shape_list[1] *= s
        self.paddle_graph.add_layer(
1576 1577
            'paddle.reshape',
            inputs={"x": val_x.name},
S
SunAhong1993 已提交
1578
            outputs=[node.name],
S
SunAhong1993 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
            shape=shape_list)

    @print_mapping_info
    def Gemm(self, node):
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1591
        val_mm = node.name + '_mm'
1592
        matmul_inputs = {"x": val_a.name, "y": val_b.name}
S
SunAhong1993 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
        self.paddle_graph.add_layer(
            'paddle.matmul',
            inputs=matmul_inputs,
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
1603
            "paddle.scale", inputs={"x": val_mm}, outputs=[val_mm], scale=alpha)
S
SunAhong1993 已提交
1604 1605 1606

        if beta != 0:
            if beta == 1.:
1607
                add_inputs = {"x": val_mm, "y": val_c.name}
S
SunAhong1993 已提交
1608
                self.paddle_graph.add_layer(
1609
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1610
            else:
S
SunAhong1993 已提交
1611
                var_beta = node.name + '_beta'
S
SunAhong1993 已提交
1612 1613
                self.paddle_graph.add_layer(
                    "paddle.scale",
S
SunAhong1993 已提交
1614
                    inputs={"x": val_c.name},
S
SunAhong1993 已提交
1615 1616 1617 1618
                    outputs=[var_beta],
                    scale=beta)
                add_inputs = {"x": val_mm, "y": var_beta}
                self.paddle_graph.add_layer(
1619
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1620 1621 1622 1623 1624

    @print_mapping_info
    def Sum(self, node):
        val_inps = node.layer.input
        inputs_dict = {
S
SunAhong1993 已提交
1625 1626 1627 1628
            "x": self.graph.get_input_node(
                node, idx=0, copy=True).name,
            "y": self.graph.get_input_node(
                node, idx=1, copy=True).name,
S
SunAhong1993 已提交
1629
        }
1630 1631
        self.paddle_graph.add_layer(
            "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1632 1633 1634 1635

        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
            inputs_dict = {
S
SunAhong1993 已提交
1636 1637
                "x": node.name,
                "y": y.name,
S
SunAhong1993 已提交
1638 1639
            }
            self.paddle_graph.add_layer(
1640
                "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1641 1642 1643 1644 1645 1646 1647

    @print_mapping_info
    def MatMul(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
1648
        inputs_dict = {"x": val_x.name, "y": val_y.name}
S
SunAhong1993 已提交
1649
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1650
            y_squeeze = val_y.name + '_squeeze'
S
SunAhong1993 已提交
1651 1652
            self.paddle_graph.add_layer(
                "paddle.squeeze",
S
SunAhong1993 已提交
1653
                inputs={"x": val_y.name},
S
SunAhong1993 已提交
1654 1655 1656 1657
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
1658
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1659 1660
        else:
            self.paddle_graph.add_layer(
1661
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1662 1663 1664 1665

    @print_mapping_info
    def BatchNormalization(self, node):
        op_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
1666
        output_name = node.name
S
SunAhong1993 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)
        c = val_x.out_shapes[0][1]

1678 1679 1680 1681 1682 1683 1684
        _rename_or_remove_weight(self.weights, val_scale.name,
                                 op_name + '.weight')
        _rename_or_remove_weight(self.weights, val_b.name, op_name + '.bias')
        _rename_or_remove_weight(self.weights, val_var.name,
                                 op_name + '._variance')
        _rename_or_remove_weight(self.weights, val_mean.name,
                                 op_name + '._mean')
C
Channingss 已提交
1685

S
SunAhong1993 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
        layer_attrs = {
            "num_channels": c,
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": True,
            "use_global_stats": False,
        }
        self.paddle_graph.add_layer(
1696 1697 1698
            "paddle.nn.BatchNorm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1699 1700 1701 1702 1703
            **layer_attrs)

    @print_mapping_info
    def Transpose(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
1704 1705 1706 1707
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1708
        self.paddle_graph.add_layer(
1709
            "paddle.transpose",
S
SunAhong1993 已提交
1710
            inputs={"x": val_x.name},
1711
            outputs=[node.name],
S
SunAhong1993 已提交
1712 1713 1714 1715 1716
            perm=perm)

    @print_mapping_info
    def PRelu(self, node):
        op_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
1717
        output_name = node.name
S
SunAhong1993 已提交
1718 1719 1720 1721 1722 1723
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)

        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
1724
        if shape_slope == [1] * len(shape_slope):
S
SunAhong1993 已提交
1725 1726
            mode = 'all'

S
SunAhong1993 已提交
1727 1728 1729
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.zeros",
1730 1731
                inputs={},
                outputs=[output_name + "__zeros"],
S
SunAhong1993 已提交
1732 1733 1734 1735
                shape=shape_slope,
                dtype=string(node.dtype))
            self.paddle_graph.add_layer(
                "paddle.maximum",
1736 1737
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
S
SunAhong1993 已提交
1738 1739 1740
                outputs=[output_name + "__max"])
            self.paddle_graph.add_layer(
                "paddle.minimum",
1741 1742
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
1743
                outputs=[output_name + "__min"])
S
SunAhong1993 已提交
1744 1745
            self.paddle_graph.add_layer(
                "paddle.multiply",
1746 1747
                inputs={"x": val_slope.name,
                        "y": output_name + "__min"},
S
SunAhong1993 已提交
1748 1749 1750
                outputs=[output_name + "__mul"])
            self.paddle_graph.add_layer(
                "paddle.add",
1751 1752 1753 1754
                inputs={
                    "x": output_name + "__max",
                    "y": output_name + "__mul"
                },
S
SunAhong1993 已提交
1755
                outputs=[output_name])
S
SunAhong1993 已提交
1756
        else:
S
fix  
SunAhong1993 已提交
1757
            if mode == 'channel':
S
SunAhong1993 已提交
1758
                slope_data = _const_weight_or_none(val_slope)
S
SunAhong1993 已提交
1759 1760
                if slope_data is None:
                    self.paddle_graph.add_layer(
1761 1762
                        "paddle.reshape",
                        inputs={"x": val_slope.name},
S
SunAhong1993 已提交
1763 1764 1765
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
                    self.paddle_graph.add_layer(
1766
                        "paddle.nn.functional.prelu",
S
SunAhong1993 已提交
1767
                        inputs={"x": val_x.name,
1768
                                "weight": val_slope.name},
S
SunAhong1993 已提交
1769 1770
                        outputs=[node.name])
                    return
C
Channingss 已提交
1771
                _rename_or_remove_weight(self.weights, val_slope.name)
S
fix  
SunAhong1993 已提交
1772
                if len(shape_slope) > 1:
1773 1774
                    self.weights[op_name + '._weight'] = np.reshape(
                        slope_data, shape_slope[0])
S
SunAhong1993 已提交
1775 1776 1777
                num_parameters = val_x.out_shapes[0][1]
            else:
                num_parameters = 1
Y
yeliang2258 已提交
1778
                slope_data = self.weights[val_slope.name]
C
Channingss 已提交
1779
                _rename_or_remove_weight(self.weights, val_slope.name)
Y
yeliang2258 已提交
1780
                self.weights[op_name + '._weight'] = np.reshape(slope_data, [1])
S
SunAhong1993 已提交
1781
            self.paddle_graph.add_layer(
1782 1783 1784
                "paddle.nn.PReLU",
                inputs={"x": val_x.name},
                outputs=layer_outputs,
1785
                num_parameters=num_parameters)
S
SunAhong1993 已提交
1786 1787 1788 1789 1790 1791 1792 1793

    @print_mapping_info
    def Squeeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        if len(val_x.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                "paddle.cast",
S
SunAhong1993 已提交
1794 1795
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1796 1797 1798
                dtype=string(val_x.dtype))
        else:
            self.paddle_graph.add_layer(
1799 1800 1801
                "paddle.squeeze",
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1802 1803 1804 1805 1806 1807 1808 1809
                axis=axes)

    @print_mapping_info
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.equal",
S
SunAhong1993 已提交
1810 1811 1812
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1813 1814 1815 1816 1817 1818 1819

    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_than",
S
SunAhong1993 已提交
1820 1821
            inputs={'x': val_x.name,
                    'y': val_y.name},
1822
            outputs=[node.name])
S
SunAhong1993 已提交
1823 1824 1825 1826 1827 1828 1829

    @print_mapping_info
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)

S
SunAhong1993 已提交
1830
        not_condition = condition.name + '_not'
S
SunAhong1993 已提交
1831 1832
        self.paddle_graph.add_layer(
            "paddle.logical_not",
S
SunAhong1993 已提交
1833
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1834 1835 1836 1837 1838 1839 1840
            outputs=[not_condition])
        cast_not_condition = not_condition + '_cast'
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": not_condition},
            outputs=[cast_not_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1841
        cast_condition = condition.name + '_cast'
S
SunAhong1993 已提交
1842 1843
        self.paddle_graph.add_layer(
            "paddle.cast",
S
SunAhong1993 已提交
1844
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1845 1846
            outputs=[cast_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1847
        mul_val_x = val_x.name + '_mul'
S
SunAhong1993 已提交
1848 1849
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1850
            inputs={'x': val_x.name,
S
SunAhong1993 已提交
1851 1852
                    'y': cast_condition},
            outputs=[mul_val_x])
S
SunAhong1993 已提交
1853
        mul_val_y = val_y.name + '_mul'
S
SunAhong1993 已提交
1854 1855
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1856
            inputs={'x': val_y.name,
S
SunAhong1993 已提交
1857 1858 1859 1860 1861 1862 1863
                    'y': cast_not_condition},
            outputs=[mul_val_y])

        self.paddle_graph.add_layer(
            "paddle.add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
S
SunAhong1993 已提交
1864
            outputs=[node.name])
S
SunAhong1993 已提交
1865 1866 1867 1868 1869 1870 1871

    @print_mapping_info
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            self.paddle_graph.add_layer(
1872 1873
                "paddle.nonzero",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1874
                outputs=[val_x.name])
S
SunAhong1993 已提交
1875 1876
            self.paddle_graph.add_layer(
                "paddle.transpose",
S
SunAhong1993 已提交
1877
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1878
                outputs=[node.layer_name],
S
SunAhong1993 已提交
1879 1880 1881
                perm=[1, 0])
        if val_x_dim > 1:
            self.paddle_graph.add_layer(
1882 1883
                "paddle.nonzero",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1884
                outputs=[val_x.name])
S
SunAhong1993 已提交
1885 1886
            self.paddle_graph.add_layer(
                "paddle.split",
1887
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1888
                outputs=[val_x.name],
S
SunAhong1993 已提交
1889 1890 1891
                num_or_sections=1,
                axis=val_x_dim)
            self.paddle_graph.add_layer(
1892
                "paddle.concat", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1893 1894 1895 1896 1897

    @print_mapping_info
    def Identity(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
1898
            "paddle.assign", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1899 1900 1901 1902 1903 1904 1905 1906

    @print_mapping_info
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)

        if repeats is None:
S
SunAhong1993 已提交
1907
            repeats = val_repeats.name
S
SunAhong1993 已提交
1908 1909 1910 1911
            if val_repeats.dtype != 'int32':
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
1912
                    outputs=["{}_tmp".format(repeats)],
S
SunAhong1993 已提交
1913
                    dtype=string("int32"))
1914
                repeats = "{}_tmp".format(repeats)
S
SunAhong1993 已提交
1915 1916 1917 1918

        elif isinstance(repeats, int):
            repeats = [repeats]

1919 1920 1921
        elif type(repeats) is np.ndarray:
            repeats = repeats.tolist()

S
SunAhong1993 已提交
1922 1923
        attr = {
            'expand_times': repeats,
S
SunAhong1993 已提交
1924
            "name": string(node.name),
S
SunAhong1993 已提交
1925 1926
        }
        self.paddle_graph.add_layer(
1927 1928 1929 1930
            "paddle.tile",
            inputs={"x": val_x.name},
            outputs=[node.name],
            repeat_times=repeats)
S
SunAhong1993 已提交
1931 1932 1933 1934

    @print_mapping_info
    def MaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1935
        output_name = node.name
S
SunAhong1993 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        paddle_op = 'paddle.nn.MaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
1960

S
SunAhong1993 已提交
1961 1962 1963 1964 1965 1966 1967
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "ceil_mode": ceil_mode,
        }
        self.paddle_graph.add_layer(
1968 1969 1970
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1971 1972 1973 1974 1975
            **layer_attrs)

    @print_mapping_info
    def GlobalMaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1976
        output_name = node.name
S
SunAhong1993 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveMaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
1990 1991 1992
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1993 1994
            output_size=output_shape[2:])

Y
yeliang2258 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
    @print_mapping_info
    def Neg(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = node.name + "_y"
        dtype = np.dtype(val_x.dtype)
        self.paddle_graph.add_layer(
            "paddle.full",
            inputs={},
            outputs=[val_y],
            dtype=string(dtype),
            shape=[1],
            fill_value=-1)
        self.paddle_graph.add_layer(
            "paddle.multiply",
            inputs={'x': val_x.name,
                    'y': val_y},
            outputs=[node.name])

    @print_mapping_info
    def SpaceToDepth(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": val_x.name},
            outputs=[node.name],
            shape=[b, c, h // blocksize, blocksize, w // blocksize, blocksize])
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": node.name},
            outputs=[node.name],
            perm=[0, 3, 5, 1, 2, 4])
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": node.name},
            outputs=[node.name],
            shape=[b, c * (blocksize**2), h // blocksize, w // blocksize])

    @print_mapping_info
    def GatherElements(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
        axis = node.get_attr('axis')
        val_x_shape = val_x.out_shapes[0]
        indices_shape = indices.out_shapes[0]
        axis = axis if axis >= 0 else axis + len(val_x_shape)
        if axis == 0:
            axis_perm = [i for i in range(len(val_x_shape))]
            data_swaped = val_x.name
            index_swaped = indices.name
        else:
            axis_perm = [i for i in range(len(val_x_shape))]
            axis_perm[axis] = 0
            axis_perm[0] = axis
            data_swaped = val_x.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': val_x.name},
                perm=axis_perm,
                outputs=[data_swaped])
            index_swaped = indices.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': indices.name},
                perm=axis_perm,
                outputs=[index_swaped])
            temp = indices_shape[0]
            indices_shape[0] = indices_shape[axis]
            indices_shape[axis] = temp

        idx_tensors_per_axis_pre = [
            indices_shape[i] for i in range(len(indices_shape))
        ]
        name_list = list()
        for i in range(len(idx_tensors_per_axis_pre)):
            tensor_name = val_x.name + "_meshgrid_" + str(i)
            self.paddle_graph.add_layer(
                kernel="paddle.linspace",
                inputs={},
                outputs=[tensor_name],
                start=0,
                stop=idx_tensors_per_axis_pre[i] - 1,
                num=idx_tensors_per_axis_pre[i])
            name_list.append(tensor_name)

Y
yeliang2258 已提交
2082
        self.paddle_graph.add_layer(
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
            "paddle.meshgrid", inputs=name_list, outputs=name_list)

        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": index_swaped},
            outputs=[index_swaped],
            dtype=string("float32"))
        import copy
        copy_name_list = copy.copy(name_list)
        copy_name_list[0] = index_swaped
        new_name_list = list()
        for i in range(len(copy_name_list)):
            unsqueeze_name = copy_name_list[i] + "_unsqueeze"
            self.paddle_graph.add_layer(
                "paddle.unsqueeze",
                inputs={"x": copy_name_list[i]},
                axis=-1,
                outputs=[unsqueeze_name])
            new_name_list.append(unsqueeze_name)
        concat_name = val_x.name + "_concated_layer"
        self.paddle_graph.add_layer(
            "paddle.concat",
            inputs={'x': new_name_list},
            axis=-1,
            outputs=[concat_name])
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": concat_name},
            outputs=[concat_name],
            dtype=string("int32"))
        gather_nd_name = "gather_nd_layer"
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={'x': data_swaped,
                    "index": concat_name},
            outputs=[gather_nd_name])

        self.paddle_graph.add_layer(
            "paddle.transpose",
            inputs={'x': gather_nd_name},
            perm=axis_perm,
Y
yeliang2258 已提交
2124 2125
            outputs=[node.name])

S
SunAhong1993 已提交
2126 2127 2128
    @print_mapping_info
    def GlobalAveragePool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
2129
        output_name = node.name
S
SunAhong1993 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveAvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
2143 2144 2145
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2146 2147 2148 2149
            output_size=output_shape[2:])

    @print_mapping_info
    def Conv(self, node):
S
SunAhong1993 已提交
2150
        output_name = node.name
S
SunAhong1993 已提交
2151 2152
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2153 2154 2155 2156 2157 2158 2159 2160

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

        kernel_shape = node.get_attr('kernel_shape')
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2D and Conv3D is supported'
        num_out_channels = val_w.out_shapes[0][0]
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.Conv{}D'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))

        input_shape = val_x.out_shapes[0]
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
fix  
SunAhong1993 已提交
2188
        layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name}
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "padding": paddings,
                "dilation": dilations,
                "groups": num_groups,
            }
            layer_inputs['weight'] = val_w.name
            if has_bias:
                layer_inputs['bias'] = val_b.name

            paddle_op = 'paddle.nn.functional.conv{}d'.format(convnd)
            self.paddle_graph.add_layer(
                paddle_op,
                inputs=layer_inputs,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216
        layer_attrs = {
            "in_channels": num_in_channels * num_groups,
            "out_channels": num_out_channels,
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
        }
2217
        remove_weight = True if val_w.name in self.done_weight_list else False
C
Channingss 已提交
2218 2219
        if remove_weight:
            self.done_weight_list.append(val_w.name)
2220 2221
        _rename_or_remove_weight(self.weights, val_w.name, op_name + '.weight',
                                 remove_weight)
S
SunAhong1993 已提交
2222
        if has_bias:
C
Channingss 已提交
2223 2224 2225
            remove_bias = True if val_b.name in self.done_weight_list else False
            if remove_bias:
                self.done_weight_list.append(val_b_name)
2226 2227
            _rename_or_remove_weight(self.weights, val_b.name,
                                     op_name + '.bias', remove_bias)
S
SunAhong1993 已提交
2228 2229
        else:
            layer_attrs["bias_attr"] = False
2230 2231
        if reduce(lambda x, y: x * y,
                  input_shape) in [1, -1] and 1 not in input_shape:
S
fix  
SunAhong1993 已提交
2232 2233 2234 2235
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
2236 2237 2238
                "paddle.reshape",
                inputs=layer_inputs,
                outputs=[layer_inputs["x"]],
S
fix  
SunAhong1993 已提交
2239
                shape=input_shape)
S
SunAhong1993 已提交
2240
        self.paddle_graph.add_layer(
2241 2242 2243
            paddle_op,
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
2244 2245 2246 2247
            **layer_attrs)

    @print_mapping_info
    def ConvTranspose(self, node):
2248
        output_name = node.name
S
SunAhong1993 已提交
2249 2250
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2251 2252 2253 2254 2255 2256 2257 2258

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv_trans", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
        val_b = None
        if len(node.layer.input) > 2:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape')
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported'
        num_in_channels = val_w.out_shapes[0][0]
        num_out_channels = val_w.out_shapes[0][1]
2270
        paddle_op = 'paddle.nn.Conv{}DTranspose'.format(convnd)
S
SunAhong1993 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

W
wjj19950828 已提交
2280
        if len(output_size) != 0:
W
wjj19950828 已提交
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
            paddings = [0] * 4
            total_paddings = list()
            total_paddings.append((val_x.out_shapes[0][2] - 1) * strides[
                0] + dilations[0] * (kernel_shape[0] - 1) + 1 + out_padding[0] -
                                  output_size[0])
            total_paddings.append((val_x.out_shapes[0][3] - 1) * strides[
                1] + dilations[1] * (kernel_shape[1] - 1) + 1 + out_padding[1] -
                                  output_size[1])
            if auto_pad == "SAME_UPPER":
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] - total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] // 2
            else:
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] - total_paddings[
                        0] // 2
        else:
            output_size = [0, 0]
S
SunAhong1993 已提交
2300

W
wjj19950828 已提交
2301 2302 2303 2304 2305 2306 2307 2308
            output_size[0] = (
                val_x.out_shapes[0][2] - 1
            ) * strides[0] - 2 * paddings[0] + dilations[0] * (
                kernel_shape[0] - 1) + 1 + out_padding[0]
            output_size[1] = (
                val_x.out_shapes[0][3] - 1
            ) * strides[1] - 2 * paddings[1] + dilations[1] * (
                kernel_shape[1] - 1) + 1 + out_padding[1]
2309

S
fix  
SunAhong1993 已提交
2310
        # Conv2DTranspose缺少output_size,只能在forward里头传进output_size
2311
        inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name}
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "dilation": dilations,
                "padding": paddings,
                "groups": num_groups,
                "output_padding": out_padding
            }
            paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd)

            inputs_dict['weight'] = val_w.name
            if len(node.layer.input) > 2:
                inputs_dict['bias'] = val_b.name

            self.paddle_graph.add_layer(
                paddle_op,
                inputs=inputs_dict,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2333
        layer_attrs = {
2334
            "in_channels": num_in_channels,
S
SunAhong1993 已提交
2335
            "out_channels": num_out_channels * num_groups,
2336
            "kernel_size": kernel_shape,
S
fix  
SunAhong1993 已提交
2337 2338 2339
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
2340
            "groups": num_groups,
2341 2342 2343 2344 2345 2346 2347
            "output_padding": out_padding
        }

        _rename_or_remove_weight(
            self.weights,
            val_w.name,
            op_name + '.weight', )
S
fix  
SunAhong1993 已提交
2348
        if val_b is not None:
2349 2350
            _rename_or_remove_weight(self.weights, val_b.name,
                                     op_name + '.bias')
W
wjj19950828 已提交
2351 2352
        else:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
2353
        self.paddle_graph.add_layer(
2354
            kernel=paddle_op,
S
fix  
SunAhong1993 已提交
2355
            inputs=inputs_dict,
2356
            outputs=layer_outputs,
S
SunAhong1993 已提交
2357
            **layer_attrs)
2358

S
fix  
SunAhong1993 已提交
2359 2360 2361 2362 2363
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
2364
        layer_attrs = {'axis': axis, 'keepdim': keepdims}
S
fix  
SunAhong1993 已提交
2365
        self.paddle_graph.add_layer(
2366 2367
            'paddle.argmax',
            inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2368
            outputs=[node.name],
C
Channingss 已提交
2369 2370 2371
            **layer_attrs)

    @print_mapping_info
S
SunAhong1993 已提交
2372 2373 2374
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2375
            "paddle.shape", inputs={"input": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2376 2377 2378 2379
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
2380
            dtype=string('int64'))
S
SunAhong1993 已提交
2381
        self.paddle_graph.add_layer(
2382 2383
            "paddle.prod", inputs={"x": node.name}, outputs=[node.name])

S
SunAhong1993 已提交
2384 2385 2386
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
2387 2388
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2389 2390
                "paddle.cast",
                inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2391 2392
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
2393
        self.paddle_graph.add_layer(
2394
            "paddle.sign", inputs={"x": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2395 2396
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2397 2398
                "paddle.cast",
                inputs={"x": node.name},
S
fix  
SunAhong1993 已提交
2399 2400
                outputs=[node.name],
                dtype=string(node.dtype))
2401

S
SunAhong1993 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
    @print_mapping_info
    def OneHot(self, node):
        nn_op_name = name_generator("onehot", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
2412 2413 2414 2415 2416 2417
            "custom_layer:OneHot",
            inputs={
                "indices": indices.name,
                "depth": depth.name,
                "values": values.name
            },
S
SunAhong1993 已提交
2418 2419
            outputs=layer_outputs,
            axis=axis)
2420

S
SunAhong1993 已提交
2421 2422 2423 2424
    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2425
            "paddle.reciprocal", inputs={"x": val_x.name}, outputs=[node.name])
C
Channingss 已提交
2426

2427 2428
    @print_mapping_info
    def LSTM(self, node):
C
Channingss 已提交
2429 2430 2431 2432 2433 2434
        x = self.graph.get_input_node(node, idx=0, copy=True)
        input_weight = self.graph.get_input_node(node, idx=1, copy=True)
        hidden_weight = self.graph.get_input_node(node, idx=2, copy=True)

        input_nums = len(node.layer.input)
        exist_input_nums = 3
2435
        have_bias = False
C
Channingss 已提交
2436
        if input_nums > 3 and node.layer.input[3] != '':
2437 2438
            bias = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2439
            have_bias = True
C
Channingss 已提交
2440 2441
            exist_input_nums += 1
        if input_nums > 4 and node.layer.input[4] != '':
2442 2443
            sequence_lens = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
C
Channingss 已提交
2444 2445
            exist_input_nums += 1
        if input_nums > 5 and node.layer.input[5] != '':
2446 2447
            init_h = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2448 2449 2450 2451
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_h.name},
                outputs=[init_h.name],
2452
                shape=init_h.out_shapes[0])
C
Channingss 已提交
2453 2454
            exist_input_nums += 1
        if input_nums > 6 and node.layer.input[6] != '':
2455 2456
            init_c = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2457 2458 2459 2460
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_c.name},
                outputs=[init_c.name],
2461
                shape=init_c.out_shapes[0])
C
Channingss 已提交
2462 2463

        input_weight_np = _const_weight_or_none(input_weight)
C
Channingss 已提交
2464
        _rename_or_remove_weight(self.weights, input_weight.name)
2465
        hidden_size = node.get_attr('hidden_size', input_weight_np.shape[1] / 4)
C
Channingss 已提交
2466 2467
        input_size = input_weight_np.shape[2]
        hidden_weight_np = _const_weight_or_none(hidden_weight)
C
Channingss 已提交
2468
        _rename_or_remove_weight(self.weights, hidden_weight.name)
C
Channingss 已提交
2469
        bias_np = _const_weight_or_none(bias)
C
Channingss 已提交
2470
        _rename_or_remove_weight(self.weights, bias.name)
2471 2472
        input_bias_np = bias_np[:, :4 * hidden_size]
        hidden_bias_np = bias_np[:, 4 * hidden_size:]
2473 2474 2475 2476 2477 2478

        # parameters order in paddle:lstm:
        # 1. gate order in paddle is: input, forget, cell, output.
        # 2. gate orfer in onnx is: input, output, forget, cell.

        def reform_weights(w, n, intervals):
2479
            slices = [w[:, x * n:y * n] for x, y in intervals]
2480
            return np.concatenate(slices, axis=1)
C
Channingss 已提交
2481

2482 2483 2484 2485
        def transform_weight_with_bias(weights, n, intervals):
            return [reform_weights(w, n, intervals) for w in weights]

        reform_permutation = [(0, 1), (2, 4), (1, 2)]
C
Channingss 已提交
2486

C
Channingss 已提交
2487
        weights = transform_weight_with_bias(
C
Channingss 已提交
2488 2489 2490 2491 2492
            [input_weight_np, hidden_weight_np, input_bias_np, hidden_bias_np],
            hidden_size, reform_permutation)

        op_name = name_generator("lstm", self.nn_name2id)
        y_out = node.output(0)
2493
        yh_out = node.output(1)
C
Channingss 已提交
2494
        yc_out = node.output(2)
2495
        direction = node.get_attr('direction', 'forward')
C
Channingss 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

        def generate_paddle_param_names(op_name, suffix=''):
            param_names = []
            param_names.extend(['{}.weight_ih_l0{}', '{}.weight_hh_l0{}'])
            if have_bias != False: param_names.append('{}.bias_ih_l0{}')
            if have_bias != False: param_names.append('{}.bias_hh_l0{}')
            param_names = [x.format(op_name, suffix) for x in param_names]
            return param_names

        def assign_params(op_name, weights, weight_idx=0, suffix=''):
            param_names = generate_paddle_param_names(op_name, suffix)
            for param_name, weight in zip(param_names, weights):
                self.weights[param_name] = weight[weight_idx]

2510
        if direction == 'backward':
2511 2512 2513
            raise Exception(
                "LSTM support 'forward' or 'bidirectional', except '{}'.".
                format(direction))
2514
        else:
C
Channingss 已提交
2515 2516 2517
            assign_params(op_name, weights)
            if direction == 'bidirectional':
                assign_params(op_name, weights, 1, '_reverse')
2518

C
Channingss 已提交
2519
        self.paddle_graph.add_layer(
2520 2521 2522 2523 2524
            'paddle.nn.LSTM',
            inputs={
                'input': x.name,
                'initial_states': (init_h.name, init_c.name)
            },
C
Channingss 已提交
2525 2526 2527 2528
            outputs=[op_name, y_out, yh_out, yc_out],
            input_size=input_size,
            hidden_size=hidden_size,
            num_layers=1,
2529
            direction=string(direction),
C
Channingss 已提交
2530 2531 2532 2533 2534 2535
            time_major=True)

        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": y_out},
            outputs=[y_out],
2536
            shape=[0, 0, -1, hidden_size])
C
Channingss 已提交
2537 2538 2539 2540
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": y_out},
            outputs=[y_out],
2541 2542
            perm=[0, 2, 1, 3])

S
SunAhong1993 已提交
2543 2544 2545 2546
    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
2547 2548 2549 2550 2551 2552
        if val_k.dtype != "int32":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": val_k.name},
                outputs=[val_k.name],
                dtype=string('int32'))
S
SunAhong1993 已提交
2553 2554
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
2555 2556 2557 2558
        layer_attrs["largest"] = True if node.get_attr('largest',
                                                       1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted',
                                                      1) == 1 else False
S
SunAhong1993 已提交
2559
        self.paddle_graph.add_layer(
2560
            "paddle.topk",
S
SunAhong1993 已提交
2561
            inputs={"x": val_x.name,
2562 2563 2564 2565 2566
                    "k": val_k.name},
            outputs=[
                "{}_p{}".format(node.layer_name, 0),
                "{}_p{}".format(node.layer_name, 1)
            ],
S
SunAhong1993 已提交
2567
            **layer_attrs)
2568

S
add lrn  
SunAhong1993 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
    @print_mapping_info
    def LRN(self, node):
        op_name = name_generator("lrn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.0001)
        beta = node.get_attr('beta', 0.75)
        bias = node.get_attr('bias', 1.0)
        size = node.get_attr('size')
2579
        layer_attrs = {'size': size, 'alpha': alpha, 'beta': beta, 'k': bias}
S
add lrn  
SunAhong1993 已提交
2580
        self.paddle_graph.add_layer(
W
WJJ1995 已提交
2581
            "paddle.nn.LocalResponseNorm",
2582 2583
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
add lrn  
SunAhong1993 已提交
2584
            **layer_attrs)
2585

S
SunAhong1993 已提交
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
    @print_mapping_info
    def DepthToSpace(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        mode = node.get_attr('mode', "DCR")
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        if mode == "DCR":
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2598
                shape=[b, blocksize, blocksize, c // (blocksize**2), h, w])
S
SunAhong1993 已提交
2599 2600 2601 2602
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2603
                perm=[0, 3, 4, 1, 5, 2])
S
SunAhong1993 已提交
2604 2605 2606 2607
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2608
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])
S
SunAhong1993 已提交
2609 2610 2611 2612 2613
        else:
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2614
                shape=[b, c // (blocksize**2), blocksize, blocksize, h, w])
S
SunAhong1993 已提交
2615 2616 2617 2618
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2619
                perm=[0, 1, 4, 2, 5, 3])
S
SunAhong1993 已提交
2620 2621 2622 2623
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2624 2625 2626 2627 2628 2629 2630 2631 2632
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])

    @print_mapping_info
    def NonMaxSuppression(self, node):
        nn_op_name = name_generator("nms", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        boxes = self.graph.get_input_node(node, idx=0, copy=True)
        scores = self.graph.get_input_node(node, idx=1, copy=True)
2633
        num_classes = scores.out_shapes[0][1]
2634 2635 2636 2637 2638
        inputs_len = len(node.layer.input)
        layer_attrs = dict()
        if inputs_len > 2:
            max_output_boxes_per_class = self.graph.get_input_node(
                node, idx=2, copy=True)
2639 2640
            layer_attrs["keep_top_k"] = _const_weight_or_none(
                max_output_boxes_per_class).tolist()[0] * num_classes
2641
        else:
2642
            layer_attrs["keep_top_k"] = 0
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
        if inputs_len > 3:
            iou_threshold = self.graph.get_input_node(node, idx=3, copy=True)
            layer_attrs["nms_threshold"] = _const_weight_or_none(
                iou_threshold).tolist()[0]
        else:
            layer_attrs["nms_threshold"] = 0.0
        if inputs_len > 4:
            score_threshold = self.graph.get_input_node(node, idx=4, copy=True)
            layer_attrs["score_threshold"] = _const_weight_or_none(
                score_threshold).tolist()[0]
        else:
            layer_attrs["score_threshold"] = 0.0
        self.paddle_graph.add_layer(
            "custom_layer:NMS",
            inputs={"bboxes": boxes.name,
                    "scores": scores.name},
            outputs=layer_outputs,
            **layer_attrs)
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688

    @print_mapping_info
    def ReduceL1(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 1, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)

    @print_mapping_info
    def ReduceL2(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 2, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)