tf_op_mapper.py 48.8 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
15
from x2paddle.decoder.tf_decoder import TFGraph, TFGraphNode
S
SunAhong1993 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
from x2paddle.core.program import PaddleGraph 
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
import traceback
import math
import inspect
import numpy
import sys

name_counter = dict()


def gen_name(op_name, var_name):
    name = "{}_{}".format(op_name, var_name)
    if name not in name_counter:
        name_counter[name] = 0
    else:
        name_counter[name] += 1
    name = name + '_' + str(name_counter[name])
    return name


# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    if pad_size < 0:
        pad_size = 0
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


class TFOpMapper(OpMapper):
    directly_map_ops = {
        'Relu': ['paddle.nn.ReLU'],
        'Relu6': ['paddle.nn.ReLU6'],
        'Abs': ['paddle.abs'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Exp': ['paddle.exp'],
        'Rsqrt': ['paddle.rsqrt'],
        'Sqrt': ['paddle.sqrt'],
        'swish_f32': ['paddle.nn.Swish'],
        'Tanh': ['paddle.nn.Tanh'],
        'Softplus': ['paddle.nn.Softplus'],
S
SunAhong1993 已提交
61 62 63
        'LeakyRelu': ['paddle.nn.LeakyReLU', 
                      dict(alpha='negative_slope')],
        'Softmax': ['paddle.nn.Softmax'],
S
SunAhong1993 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77
        'Floor': ['paddle.floor'],
        'Erf': ['paddle.erf'],
        'Square': ['paddle.square']
    }
    elementwise_ops = {
        'Add': 'paddle.add',
        'AddV2': 'paddle.add',
        'RealDiv': 'paddle.divide',
        'Sub': 'fluid.layers.elementwise_sub',
        'Maximum': 'paddle.maximum',
        'Minimum': 'paddle.minimum',
        'LessEqual': 'paddle.less_equal',
        'GreaterEqual': 'paddle.greater_equal',
        'Mul': 'paddle.multiply',
S
rename  
SunAhong1993 已提交
78
        'FloorDiv': 'paddle.floor_divide'
S
SunAhong1993 已提交
79 80 81 82 83 84
    }

    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.tf_graph
S
SunAhong1993 已提交
85 86
        if not self.op_checker():
            raise Exception("Model is not supported yet.")
S
SunAhong1993 已提交
87 88 89 90
        self.params = dict()
        self.nn_name2id = dict()
        self.input_index = 0
        self.inputs_info = dict()
S
SunAhong1993 已提交
91 92
        self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="dygraph", source_type="tf")
        self.paddle_graph.outputs = self.graph.output_nodes
S
SunAhong1993 已提交
93 94 95 96 97 98 99 100 101 102 103

        not_placeholder = list()
        for name in self.graph.input_nodes:
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
S
SunAhong1993 已提交
104 105 106 107 108 109 110 111
            del self.graph.input_nodes[idx]        

        print("Total nodes: {}".format(
            sum([
                isinstance(node, TFGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
        print("Nodes converting ...")
S
SunAhong1993 已提交
112 113 114 115 116 117 118 119 120 121
        for i, node_name in enumerate(self.graph.topo_sort):
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if op in self.directly_map_ops:
                self.directly_map(node)
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
            elif hasattr(self, op):
                func = getattr(self, op)
S
SunAhong1993 已提交
122 123
                func(node)
        print("\nNodes converted.")
S
SunAhong1993 已提交
124 125 126
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        self.paddle_graph.set_inputs_info(self.inputs_info)
S
SunAhong1993 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if not hasattr(self, op) and \
                op not in self.directly_map_ops and \
                op not in self.elementwise_ops:
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            if len(unsupported_ops) > 0:
                print("\n========= {} OPs are not supported yet ===========".format(
                    len(unsupported_ops)))
            for op in unsupported_ops:
                print("========== {} ============".format(op))
            return False 
S
SunAhong1993 已提交
146 147

    def directly_map(self, node):
S
SunAhong1993 已提交
148 149
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
S
SunAhong1993 已提交
150
        op_info = self.directly_map_ops[node.layer_type]
S
SunAhong1993 已提交
151 152
        input = self.graph.get_input_node(node, 0)
        paddle_op = op_info[0]
S
SunAhong1993 已提交
153
        layer_attrs = dict()
S
SunAhong1993 已提交
154 155
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
S
fix  
SunAhong1993 已提交
156
            for tf_attr_name, pd_attr_name in attrs_name_map_dict.items():
S
SunAhong1993 已提交
157 158 159
                layer_attrs[pd_attr_name] = node.get_attr(tf_attr_name)
        if paddle_op.startswith("paddle.nn"):
            op_name = paddle_op[10:].lower()
S
SunAhong1993 已提交
160 161 162 163
            op_name = name_generator(op_name, self.nn_name2id)
            output_name = node.name
            layer_outputs = [op_name, output_name]
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
164
                kernel=paddle_op,
S
SunAhong1993 已提交
165 166 167 168 169
                inputs={"x": input.name},
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
170
                kernel=paddle_op,
S
SunAhong1993 已提交
171 172 173 174 175 176
                inputs={"x": input.name},
                outputs=[node.name],
                **layer_attrs)

    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
S
SunAhong1993 已提交
177 178
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
179 180
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
181
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
182 183 184 185
            kernel=op_type,
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
186
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
S
SunAhong1993 已提交
187 188

    def NotEqual(self, node):
S
SunAhong1993 已提交
189 190
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        
        self.paddle_graph.add_layer(
            kernel="paddle.not_equal",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])

    def Placeholder(self, node):
        shape = node.out_shapes[0]
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
        dtype = node.dtype
        
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
            outputs=[node.name],
            data="x{}".format(self.input_index))
        self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype]
        self.input_index += 1

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            if value == float('inf'):
                value = "float('inf')"
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
            return
        self.params[node.name] = node.value
        
S
SunAhong1993 已提交
230
        if 0 not in shape:
S
SunAhong1993 已提交
231
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
232 233 234 235
                "self.create_parameter",
                inputs={},
                outputs=[node.name],
                shape=shape,
S
SunAhong1993 已提交
236 237 238
                attr=string(node.name),
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
239 240
      
    def Transpose(self, node):
S
SunAhong1993 已提交
241 242
        input = self.graph.get_input_node(node, 0)
        perm = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
243 244 245 246 247 248 249 250 251 252
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
        perm = perm.value.tolist()
        
        self.paddle_graph.add_layer(
            "paddle.transpose",
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)

    def Fill(self, node):
S
SunAhong1993 已提交
253 254
        dims = self.graph.get_input_node(node, 0)
        input_value = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
255 256 257 258 259 260 261 262
        inputs = dict()
        layer_attrs = dict()
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
        if dims.layer_type == "Const":
            layer_attrs["shape"] = dims.value.tolist()
        else:
            inputs["shape"] = dims.name
        layer_attrs["dtype"] = string(input_value.dtype)
S
SunAhong1993 已提交
263
        layer_attrs["fill_value"] = input_value.value
S
SunAhong1993 已提交
264
        
S
SunAhong1993 已提交
265 266 267 268 269 270 271 272

        self.paddle_graph.add_layer(
            "paddle.full",
            inputs=inputs,
            outputs=[node.name],
            **layer_attrs)

    def DepthToSpace(self, node):
S
SunAhong1993 已提交
273
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

        self.paddle_graph.add_layer(
            kernel="fluid.layers.pixel_shuffle",
            inputs={"x": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def MaxPool(self, node):
S
SunAhong1993 已提交
328
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
350

S
SunAhong1993 已提交
351
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
352
            kernel="paddle.nn.MaxPool2D",
S
SunAhong1993 已提交
353 354
            inputs={"input": input_name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
355 356 357
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))
S
SunAhong1993 已提交
358 359 360 361 362 363 364 365 366 367 368 369

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Conv2D(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
370 371
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
        else:
S
SunAhong1993 已提交
386
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
S
SunAhong1993 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

        
        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv2D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=k_size[2],
            out_channels=k_size[3],
            kernel_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def BiasAdd(self, node):
S
SunAhong1993 已提交
433 434
        input = self.graph.get_input_node(node, 0)
        bias = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
435 436 437 438 439 440 441 442 443 444
        self.paddle_graph.add_layer(
            kernel="paddle.add",
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])

    def FusedBatchNorm(self, node):
        op_name = name_generator("bn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
445
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
446

S
SunAhong1993 已提交
447 448 449 450
        gamma = self.graph.get_input_node(node, 1)
        beta = self.graph.get_input_node(node, 2)
        moving_mean = self.graph.get_input_node(node, 3)
        moving_var = self.graph.get_input_node(node, 4)
S
SunAhong1993 已提交
451 452 453 454 455 456 457
        data_format = node.get_attr("data_format").decode()

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"

S
SunAhong1993 已提交
458
        input_name = input.name 
S
SunAhong1993 已提交
459 460 461 462 463 464 465 466
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name
S
SunAhong1993 已提交
467 468 469
            n, h, w, c = input.out_shapes[0]
        else:
             n, c, h, w = input.out_shapes[0]
S
SunAhong1993 已提交
470

S
SunAhong1993 已提交
471 472 473 474
        self.params["{}_{}".format(node.name, gamma.name)] = self.params[gamma.name]
        self.params["{}_{}".format(node.name, beta.name)] = self.params[beta.name]
        self.params["{}_{}".format(node.name, moving_mean.name)] = self.params[moving_mean.name]
        self.params["{}_{}".format(node.name, moving_var.name)] = self.params[moving_var.name]
S
SunAhong1993 已提交
475 476 477 478
        self.paddle_graph.add_layer(
            kernel="paddle.nn.BatchNorm",
            inputs={"input": input_name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
479
            num_channels=c,
S
SunAhong1993 已提交
480
            epsilon=node.get_attr("epsilon"),
S
SunAhong1993 已提交
481 482 483 484
            param_attr=string("{}_{}".format(node.name, gamma.name)),
            bias_attr=string("{}_{}".format(node.name, beta.name)),
            moving_mean_name=string("{}_{}".format(node.name, moving_mean.name)),
            moving_variance_name=string("{}_{}".format(node.name, moving_var.name)),
S
SunAhong1993 已提交
485 486 487 488 489 490 491 492 493 494
            is_test=True)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Mean(self, node):
S
SunAhong1993 已提交
495 496
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
497 498 499 500 501 502 503 504 505 506 507 508
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

        self.paddle_graph.add_layer(
            kernel="paddle.mean",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=dims,
            keepdim=keep_dims)

    def Reshape(self, node):
S
SunAhong1993 已提交
509 510
        input = self.graph.get_input_node(node, 0)
        param = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

        input_name = input.name

        if param.layer_type == "Const":
            shape = param.value.tolist()
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[node.name],
                shape=shape)
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name,
                        "shape": param.name},
                outputs=[node.name])
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
                self.paddle_graph.add_layer(
                    kernel="paddle.reshape",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())

    def Pad(self, node):
S
SunAhong1993 已提交
538 539
        input = self.graph.get_input_node(node, 0)
        paddings = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
                new_padding = paddings[2:6]
                transpose_name = gen_name("pad", "transpose")
                self.paddle_graph.add_layer(
                    kernel="paddle.transpose",
                    inputs={"x": input.name},
                    outputs=[transpose_name],
                    perm=[0, 3, 1, 2])
                self.paddle_graph.add_layer(
                    kernel="paddle.nn.functional.pad",
S
SunAhong1993 已提交
554
                    inputs={"x": transpose_name},
S
SunAhong1993 已提交
555 556 557 558 559 560 561 562 563 564 565
                    outputs=[node.name],
                    pad=new_padding)
                self.paddle_graph.add_layer(
                    kernel="paddle.transpose",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    perm=[0, 2, 3, 1])
                return

        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.pad",
S
SunAhong1993 已提交
566
            inputs={"x": input.name},
S
SunAhong1993 已提交
567 568 569 570
            outputs=[node.name],
            pad=paddings)

    def Squeeze(self, node):
S
SunAhong1993 已提交
571
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
572 573 574 575 576 577 578 579
        squeeze_dims = node.get_attr('squeeze_dims')
        self.paddle_graph.add_layer(
            kernel="paddle.squeeze",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=squeeze_dims)

    def Shape(self, node):
S
SunAhong1993 已提交
580
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
581 582 583 584 585 586 587
        input_name = input.name
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": input_name},
            outputs=[node.name])

    def ArgMax(self, node):
S
SunAhong1993 已提交
588 589
        input = self.graph.get_input_node(node, 0)
        axis = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
590 591 592 593 594 595 596 597 598
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
        self.paddle_graph.add_layer(
            kernel="paddle.argmax",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)

    def MatMul(self, node):
S
SunAhong1993 已提交
599 600
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
        self.paddle_graph.add_layer(
            kernel="paddle.matmul",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)

    def DepthwiseConv2dNative(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
625 626
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"

        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel.value,
                                                          (2, 3, 0, 1))


        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv2D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=in_shape[1],
            out_channels=k_size[2],
            kernel_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode))

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def AvgPool(self, node):
S
SunAhong1993 已提交
676
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
698 699
        
        # TODO(syf): The op has diff.
S
SunAhong1993 已提交
700 701 702 703 704 705 706 707
#         self.paddle_graph.add_layer(
#             kernel="paddle.nn.AvgPool2D",
#             inputs={"input": input_name},
#             outputs=layer_outputs,
#             kernel_size=k_size[2:4],
#             stride=strides[2:4],
#             padding=string(pad_mode))

S
SunAhong1993 已提交
708
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
709
            kernel="fluid.layers.pool2d",
S
SunAhong1993 已提交
710
            inputs={"input": input_name},
S
SunAhong1993 已提交
711
            outputs=[node.name],
S
SunAhong1993 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724
            pool_size=k_size[2:4],
            pool_type=string("avg"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Pack(self, node):
S
SunAhong1993 已提交
725 726 727 728
        inputs_list = list()
        for i in range(len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742
        axis = node.get_attr("axis")
        self.paddle_graph.add_layer(
            kernel="paddle.stack",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        if len(node.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[-1])

    def Unpack(self, node):
S
SunAhong1993 已提交
743
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
        axis = node.get_attr("axis")
        num = node.get_attr("num")
        shape = input.out_shapes[0]
        input_name = input.name
        if len(shape) == 1:
            if shape[0] > 0 and num == shape[0]:
                self.paddle_graph.add_layer(
                    kernel="paddle.unsqueeze",
                    inputs={"x": input.name},
                    outputs=[node.name],
                    axis=[0])
                input_name = node.name
                axis = 1
            else:
                raise Exception("Unexpected situation happend in Unpack OP")
        self.paddle_graph.add_layer(
            kernel="paddle.unstack",
            inputs={"x": input_name},
            outputs=["{}_p{}".format(node.layer_name, i) for i in range(num)],
            axis=axis,
            num=num)

    def ConcatV2(self, node):
S
SunAhong1993 已提交
767 768 769
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))
S
fix  
SunAhong1993 已提交
770
#         inputs_list = [self.graph.get_node(name) for name in node.layer.input[:-1]]
S
SunAhong1993 已提交
771
        axis = self.graph.get_input_node(node, -1)
S
SunAhong1993 已提交
772 773 774
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
S
fix  
SunAhong1993 已提交
775
            axis += len(inputs_list[0].out_shapes[0])
S
SunAhong1993 已提交
776

S
SunAhong1993 已提交
777
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
778 779
        self.paddle_graph.add_layer(
            kernel="paddle.concat",
S
SunAhong1993 已提交
780
            inputs={"x": input_names},
S
SunAhong1993 已提交
781 782 783 784
            outputs=[node.name],
            axis=axis)

    def StridedSlice(self, node):
S
SunAhong1993 已提交
785 786 787 788
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        end = self.graph.get_input_node(node, 2)
        strides = self.graph.get_input_node(node, 3)
S
SunAhong1993 已提交
789 790 791 792

        if strides.layer_type == "Const":
            strides = strides.value.tolist()
        else:
S
SunAhong1993 已提交
793
            strides = self.decoder.infer_tensor(strides)
S
SunAhong1993 已提交
794 795 796
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
        else:
S
SunAhong1993 已提交
797
            begin = self.decoder.infer_tensor(begin)
S
SunAhong1993 已提交
798 799 800
        if end.layer_type == "Const":
            end = end.value.tolist()
        else:
S
SunAhong1993 已提交
801
            end = self.decoder.infer_tensor(end)
S
SunAhong1993 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849

        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"

        if len(begin) < len(input.out_shapes[0]):
            begin = begin + [0] * (len(input.out_shapes[0]) - len(begin))
        if len(end) < len(input.out_shapes[0]):
            end = end + [0] * (len(input.out_shapes[0]) - len(end))
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
        shrink_axis_mask = node.get_attr('shrink_axis_mask')

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])
S
fix  
SunAhong1993 已提交
850 851 852 853 854 855 856
            
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input.name],
                dtype=string("int32"))
S
SunAhong1993 已提交
857 858 859 860 861 862 863 864

        self.paddle_graph.add_layer(
            kernel="paddle.slice",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
S
fix  
SunAhong1993 已提交
865 866 867 868 869 870 871 872
        
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string("bool"))

S
SunAhong1993 已提交
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
        if len(new_axes) > 0:
            self.paddle_graph.add_layer(
                kernel="paddle.unsqueeze",
                inputs={"x": node.name},
                outputs=[node.name],
                axis=new_axes)
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
                self.paddle_graph.add_layer(
                    kernel="paddle.squeeze",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    axis=shrink_axes)

    def Split(self, node):
S
SunAhong1993 已提交
890 891
        dim = self.graph.get_input_node(node, 0)
        input = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
892 893 894 895 896 897
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

        self.paddle_graph.add_layer(
            kernel="paddle.split",
S
SunAhong1993 已提交
898
            inputs={"x": input.name},
S
SunAhong1993 已提交
899 900 901 902
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
S
SunAhong1993 已提交
903
            axis=dim)
S
SunAhong1993 已提交
904 905

    def Slice(self, node):
S
SunAhong1993 已提交
906 907 908
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        size = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923

        inputs = {"x": input.name}
        attrs = {}
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
            attrs['offsets'] = begin
        else:
            #             shape = begin.out_shapes[0]
            #             reshape_name = gen_name("slice", "reshape")
            #             self.paddle_graph.add_layer(
            #                 kernel="fluid.layers.reshape",
            #                 inputs={"x": begin.name},
            #                 outputs=[reshape_name],
            #                 shape=shape)
            #             inputs['offsets'] = reshape_name
S
SunAhong1993 已提交
924
            begin = self.decoder.infer_tensor(begin, use_diff_inputs=False).tolist()
S
SunAhong1993 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
            attrs['offsets'] = begin
        if size.layer_type == "Const":
            size = size.value.tolist()
            attrs['shape'] = size
        else:
            shape = size.out_shapes[0]
            reshape_name = gen_name("slice", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
        self.paddle_graph.add_layer(
            kernel="paddle.crop",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

    def ResizeNearestNeighbor(self, node):
S
SunAhong1993 已提交
945 946
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
947
        data_format = "NHWC"
S
SunAhong1993 已提交
948 949 950 951
        inputs = {"x": input.name}
        attrs = {"align_corners": node.get_attr("align_corners"),
                 "mode": string("nearest"),
                 "align_mode": 1}
S
SunAhong1993 已提交
952 953 954 955 956 957 958 959 960 961 962 963

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["size"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
964
            inputs["size"] = reshape_name
S
SunAhong1993 已提交
965 966 967 968 969 970 971 972

        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
973
            inputs["x"] = transpose_name
S
SunAhong1993 已提交
974 975

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
976
            kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
977 978 979 980 981 982 983 984 985 986
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
SunAhong1993 已提交
987
            
S
SunAhong1993 已提交
988
    def ResizeBilinear(self, node):
S
SunAhong1993 已提交
989 990
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
991
        data_format = "NHWC"
S
SunAhong1993 已提交
992
        inputs = {"x": input.name}
S
SunAhong1993 已提交
993
        attrs = {"align_corners": node.get_attr("align_corners"),
S
SunAhong1993 已提交
994 995
                 "mode": string("bilinear"),
                 "align_mode": 1}
S
SunAhong1993 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["size"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1008
            inputs["size"] = reshape_name
S
SunAhong1993 已提交
1009 1010 1011 1012 1013 1014 1015 1016

        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1017
            inputs["x"] = transpose_name
S
SunAhong1993 已提交
1018 1019

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1020
            kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
1021 1022 1023 1024 1025 1026
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
S
rename  
SunAhong1993 已提交
1027
                kernel="paddle.transpose",
S
SunAhong1993 已提交
1028 1029 1030 1031 1032
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Cast(self, node):
S
SunAhong1993 已提交
1033
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1034 1035 1036 1037 1038 1039 1040 1041
        dtype = node.dtype
        self.paddle_graph.add_layer(
            kernel="paddle.cast",
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))

    def Sum(self, node):
S
SunAhong1993 已提交
1042 1043
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1044 1045 1046 1047 1048 1049
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

        self.paddle_graph.add_layer(
            kernel="paddle.sum",
S
SunAhong1993 已提交
1050
            inputs={"x": input.name},
S
SunAhong1993 已提交
1051 1052 1053 1054 1055
            outputs=[node.name],
            axis=dim,
            keepdim=keep_dims)

    def Max(self, node):
S
SunAhong1993 已提交
1056 1057
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1058 1059 1060 1061 1062
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
        self.paddle_graph.add_layer(
            kernel="paddle.max",
S
SunAhong1993 已提交
1063
            inputs={"x": input.name},
S
SunAhong1993 已提交
1064 1065 1066 1067 1068
            outputs=[node.name],
            axis=dim,
            keepdim=keep_dims)

    def RandomUniform(self, node):
S
SunAhong1993 已提交
1069
        shape = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
            self.paddle_graph.add_layer(
                kernel="paddle.uniform",
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.uniform",
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)

    def Conv2DBackpropInput(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1091 1092 1093
        out_shape = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
        input = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1094 1095 1096 1097 1098 1099

        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"

        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
S
SunAhong1993 已提交
1100 1101
            out_shape = self.decoder.infer_tensor(out_shape,
                                                  out_shape=node.out_shapes[0])
S
SunAhong1993 已提交
1102 1103 1104

        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
S
SunAhong1993 已提交
1105
            in_shape = self.decoder.infer_tensor(input, use_diff_inputs=False).shape
S
SunAhong1993 已提交
1106 1107
        k_size = kernel.out_shapes[0]
        if k_size.count(-1) > 2:
S
SunAhong1993 已提交
1108
            k_size = self.decoder.infer_tensor(kernel, use_diff_inputs=False).shape
S
SunAhong1993 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

        pad_mode = node.get_attr("padding").decode()
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()

        kernel_name = op_name + ".weight"
        self.params[kernel_name] = numpy.transpose(kernel.value, (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
1131
        # TODO(syf): The output_size is not set.
S
SunAhong1993 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
#         self.paddle_graph.add_layer(
#             kernel="paddle.nn.Conv2DTranspose",
#             inputs={"input": input_name},
#             outputs=layer_outputs,
#             weight_attr=string(kernel_name),
#             bias_attr=False,
#             in_channels=k_size[3],
#             out_channels=k_size[2],
#             kernel_size=k_size[0:2],
#             stride=strides[2:4],
#             dilation=dilations[2:4],
#             padding=string(pad_mode))
S
SunAhong1993 已提交
1144
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
            "self.create_parameter",
            inputs={},
            outputs=["{}_{}".format(node.name, kernel_name).replace(".", "_")],
            shape=self.params[kernel_name].shape,
            attr=string(kernel_name))
    
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv2d_transpose",
            inputs={"x": input_name,
                    "weight": "{}_{}".format(node.name, kernel_name).replace(".", "_")},
            outputs=[node.name],
            bias=None,
S
SunAhong1993 已提交
1157 1158
            stride=strides[2:4],
            dilation=dilations[2:4],
S
SunAhong1993 已提交
1159 1160
            padding=string(pad_mode),
            output_size=out_shape[1:3])
S
SunAhong1993 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Tile(self, node):
S
SunAhong1993 已提交
1170 1171
        input = self.graph.get_input_node(node, 0)
        expand_times = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
        inputs = {"x": input.name}
        attr = dict()
        in_shape = input.out_shapes[0]
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
            attr["repeat_times"] = expand_times
        else:
            inputs["repeat_times"] = expand_times.name

        self.paddle_graph.add_layer(
            kernel="paddle.tile",
            inputs=inputs,
            outputs=[node.name],
            **attr)

    def Range(self, node):
S
SunAhong1993 已提交
1188 1189 1190
        start = self.graph.get_input_node(node, 0)
        limit = self.graph.get_input_node(node, 1)
        delta = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
        inputs = dict()
        attr = dict()

        dtype = 'int32'
        if start.dtype.startswith('float'):
            dtype = start.dtype
        if start.layer_type == "Const":
            attr["start"] = start.value
        else:
            inputs["start"] = start.name
        if limit.dtype.startswith('float'):
            dtype = limit.dtype
        if limit.layer_type == "Const":
            attr["end"] = limit.value
        else:
            inputs["end"] = limit.name
        if delta.dtype.startswith('float'):
            dtype = delta.dtype
        if delta.layer_type == "Const":
            attr["step"] = delta.value
        else:
            inputs["step"] = delta.name
        node.set_dtype(dtype)
        attr["dtype"] = string(node.dtype)

        self.paddle_graph.add_layer(
            kernel="paddle.arange",
            inputs=inputs,
            outputs=[node.name],
            **attr)

    def SquaredDifference(self, node):
S
SunAhong1993 已提交
1223 1224
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1225 1226 1227 1228
        inputs = {"x": x.name, "y": y.name}
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1229 1230
            "fluid.layers.elementwise_sub", inputs=inputs, outputs=[node.name])
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
S
SunAhong1993 已提交
1231 1232 1233 1234 1235 1236

        inputs = {"x": node.name, "y": node.name}
        x_shape = node.out_shapes[0]
        y_shape = node.out_shapes[0]
        layer_id = self.paddle_graph.add_layer(
            "paddle.multiply", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1237
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
S
SunAhong1993 已提交
1238 1239

    def OneHot(self, node):
S
SunAhong1993 已提交
1240 1241 1242 1243
        input = self.graph.get_input_node(node, 0)
        depth = self.graph.get_input_node(node, 1)
        on_value = self.graph.get_input_node(node, 2)
        off_value = self.graph.get_input_node(node, 3)
S
SunAhong1993 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

        self.paddle_graph.add_layer(
            "paddle.nn.functional.one_hot",
            inputs={"x": input.name},
            outputs=[node.name],
            num_classes=depth.value)

    def Pow(self, node):
S
SunAhong1993 已提交
1263 1264
        x = self.graph.get_input_node(node, 0)
        factor = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
            attr["y"] = factor.value.tolist()
        else:
            inputs["y"] = factor.name
        self.paddle_graph.add_layer(
            "paddle.pow", inputs=inputs, outputs=[node.name], **attr)

    def All(self, node):
S
SunAhong1993 已提交
1275 1276
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
        attr["axis"] = reduce_idx.value.tolist()
        attr["keepdim"] = node.get_attr("keep_dims")

        input_name = input.name
        if input.dtype != "bool":
            input_name = gen_name("all", "cast")
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input_name],
                dtype=string("bool"))
        self.paddle_graph.add_layer(
            "paddle.all",
            inputs={"x": input_name},
            outputs=[node.name],
            **attr)

        node.layer.attr['dtype'].type = 10

    def GatherV2(self, node):
S
SunAhong1993 已提交
1299 1300 1301
        embeddings = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        axis = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
        axis = axis.value.tolist()
        assert axis == 0, "Only support axis=0 in GatherV2 OP"
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
        inputs = {'x': embeddings.name, 'index': index_name}
        self.paddle_graph.add_layer(
            "paddle.gather",
            inputs=inputs,
            outputs=[node.name])
        if len(index.out_shapes[0]) != 1:
            out_shape = node.out_shapes[0]
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=out_shape)

    def ExpandDims(self, node):
S
SunAhong1993 已提交
1328 1329
        x = self.graph.get_input_node(node, 0, copy=True)
        y = self.graph.get_input_node(node, 1, copy=True)
S
SunAhong1993 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
        inputs = {"x": x.name}
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
            attr['axis'] = dim
        else:
            inputs['axis'] = y.name
        self.paddle_graph.add_layer(
            "paddle.unsqueeze",
            inputs=inputs,
            outputs=[node.name],
            **attr)