opset.py 30.0 KB
Newer Older
C
Channingss 已提交
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
Channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import sys
import x2paddle
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
from onnx import helper, onnx_pb


class OpSet9(object):
    def __init__(self):
        self.paddle_onnx_dtype_map = {
            core.VarDesc.VarType.FP32: onnx_pb.TensorProto.FLOAT,
            core.VarDesc.VarType.FP64: onnx_pb.TensorProto.DOUBLE,
            core.VarDesc.VarType.INT32: onnx_pb.TensorProto.INT32,
            core.VarDesc.VarType.INT16: onnx_pb.TensorProto.INT16,
            core.VarDesc.VarType.INT16: onnx_pb.TensorProto.UINT16,
            core.VarDesc.VarType.INT64: onnx_pb.TensorProto.INT64,
            core.VarDesc.VarType.BOOL: onnx_pb.TensorProto.BOOL
        }
        self.name_counter = dict()

    def get_name(self, op_name, var_name):
        name = 'p2o.{}.{}'.format(op_name, var_name)
        if name not in self.name_counter:
            self.name_counter[name] = 0
        else:
            self.name_counter[name] += 1
        return name + '.{}'.format(self.name_counter[name])

    def make_constant_node(self, name, dtype, value=None):
        if isinstance(value, list):
            dims = (len(value), )
        elif value is None:
            dims = ()
            value = []
        else:
            dims = ()
            value = [value]
        tensor = helper.make_tensor(
            name=name, data_type=dtype, dims=dims, vals=value)
        node = helper.make_node(
            'Constant', inputs=[], outputs=[name], value=tensor)
        return node

C
Channingss 已提交
62
    def convert_weights(self, program, scope=None):
C
Channingss 已提交
63 64 65 66 67 68 69 70
        var_names = program.global_block().vars
        nodes = list()
        for name in var_names:
            var = program.global_block().var(name)
            if name.endswith('feed') or name.endswith('fetch'):
                continue
            if not var.persistable:
                continue
C
Channingss 已提交
71
            weight = np.array(scope.find_var(name).get_tensor())
C
Channingss 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            tensor = helper.make_tensor(
                name=name,
                dims=var.shape,
                data_type=self.paddle_onnx_dtype_map[var.dtype],
                vals=weight.flatten().tolist())
            node = helper.make_node(
                'Constant', inputs=[], outputs=[name], value=tensor)
            nodes.append(node)
        return nodes

    def conv2d(self, op, block):
        kernel_shape = block.var(op.input('Filter')[0]).shape
        node = helper.make_node(
            'Conv',
            inputs=op.input('Input') + op.input('Filter'),
            outputs=op.output('Output'),
            dilations=op.attr('dilations'),
            kernel_shape=kernel_shape[-2:],
            strides=op.attr('strides'),
            group=op.attr('groups'),
            pads=op.attr('paddings') + op.attr('paddings'))
        return node

    def conv2d_transpose(self, op, block):
        kernel_shape = block.var(op.input('Filter')[0]).shape
        node = helper.make_node(
            'ConvTranspose',
            inputs=op.input('Input') + op.input('Filter'),
            outputs=op.output('Output'),
            dilations=op.attr('dilations'),
            kernel_shape=kernel_shape[-2:],
            strides=op.attr('strides'),
            group=1,
            pads=op.attr('paddings') + op.attr('paddings'))
        return node

    def relu(self, op, block):
        node = helper.make_node(
            'Relu', inputs=op.input('X'), outputs=op.output('Out'))
        return node

C
Channingss 已提交
113 114 115 116 117 118 119 120 121 122
    def tanh(self, op, block):
        node = helper.make_node(
            'Tanh', inputs=op.input('X'), outputs=op.output('Out'))
        return node

    def log(self, op, block):
        node = helper.make_node(
            'Log', inputs=op.input('X'), outputs=op.output('Out'))
        return node

C
Channingss 已提交
123 124 125 126 127
    def sigmoid(self, op, block):
        node = helper.make_node(
            'Sigmoid', inputs=op.input('X'), outputs=op.output('Out'))
        return node

C
Channingss 已提交
128 129 130 131 132 133 134 135 136 137 138
    def clip(self, op, block):
        min_value = op.attr('min')
        max_value = op.attr('max')
        node = helper.make_node(
            'Clip',
            inputs=[op.input('X')[0]],
            outputs=op.output('Out'),
            max=max_value,
            min=min_value)
        return node

C
Channingss 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    def exp(self, op, block):
        node = helper.make_node(
            'Exp', inputs=op.input('X'), outputs=op.output('Out'))
        return node

    def leaky_relu(self, op, block):
        node = helper.make_node(
            'LeakyRelu',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            alpha=op.attr('alpha'))
        return node

    def elementwise_add(self, op, block):
        axis = op.attr('axis')
        x_shape = block.var(op.input('X')[0]).shape
        y_shape = block.var(op.input('Y')[0]).shape
        if len(y_shape) == 1 and axis == 1:
            shape_name = self.get_name(op.type, 'shape')
            shape_value = [1] * len(x_shape)
            shape_value[axis] = y_shape[0]
            shape_node = self.make_constant_node(
                shape_name, onnx_pb.TensorProto.INT64, shape_value)
            temp_value = self.get_name(op.type, 'temp')
            y_node = helper.make_node(
                'Reshape',
                inputs=[op.input('Y')[0], shape_name],
                outputs=[temp_value])
            node = helper.make_node(
                'Add',
                inputs=[op.input('X')[0], temp_value],
                outputs=op.output('Out'))
            return [shape_node, y_node, node]
        elif len(x_shape) == len(y_shape):
            node = helper.make_node(
                'Add',
                inputs=[op.input('X')[0], op.input('Y')[0]],
                outputs=op.output('Out'))
            return node
        else:
            raise Excpetion("Unexpected situation happend in elementwise_add")

    def elementwise_sub(self, op, block):
        axis = op.attr('axis')
        x_shape = block.var(op.input('X')[0]).shape
        y_shape = block.var(op.input('Y')[0]).shape
        if len(y_shape) == 1 and axis == 1:
            shape_name = self.get_name(op.type, 'shape')
            shape_value = [1] * len(x_shape)
            shape_value[axis] = y_shape[0]
            shape_node = self.make_constant_node(
                shape_name, onnx_pb.TensorProto.INT64, shape_value)
            temp_value = self.get_name(op.type, 'temp')
            y_node = helper.make_node(
                'Reshape',
                inputs=[op.input('Y')[0], shape_name],
                outputs=[temp_value])
            node = helper.make_node(
                'Sub',
                inputs=[op.input('X')[0], temp_value],
                outputs=op.output('Out'))
            return [shape_node, y_node, node]
        elif len(x_shape) == len(y_shape):
            node = helper.make_node(
                'Sub',
                inputs=[op.input('X')[0], op.input('Y')[0]],
                outputs=op.output('Out'))
            return node
        else:
            raise Excpetion("Unexpected situation happend in elementwise_sub")

    def pool2d(self, op, block):
        pool_type = {
            'max': ('MaxPool', 'GlobalMaxPool'),
            'avg': ('AveragePool', 'GlobalAveragePool')
        }
        if op.attr('global_pooling'):
            node = helper.make_node(
                pool_type[op.attr('pooling_type')][1],
                inputs=op.input('X'),
                outputs=op.output('Out'), )
220 221
        elif op.attr('adaptive'):
            raise Excpetion("ONNX cannot support adaptive pool")
C
Channingss 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        else:
            input_shape = block.var(op.input('X')[0]).shape
            k_size = op.attr('ksize')
            paddings = op.attr('paddings')
            if input_shape[2] > 0 and input_shape[2] + paddings[0] < k_size[0]:
                k_size[0] = input_shape[2] + paddings[0]
            if input_shape[3] > 0 and input_shape[3] + paddings[1] < k_size[1]:
                k_size[1] = input_shape[3] + paddings[1]
            node = helper.make_node(
                pool_type[op.attr('pooling_type')][0],
                inputs=op.input('X'),
                outputs=op.output('Out'),
                kernel_shape=k_size,
                strides=op.attr('strides'),
                pads=op.attr('paddings') + op.attr('paddings'))
        return node

C
Channingss 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    def pad2d(self, op, block):
        x_shape = block.var(op.input('X')[0]).shape
        paddings = op.attr('paddings')
        onnx_pads = []
        if op.attr('data_format') == 'NCHW':
            pads = [
                0, 0, paddings[0], paddings[2], 0, 0, paddings[1], paddings[3]
            ]
        else:
            pads = [
                0, paddings[0], paddings[2], 0, 0, paddings[1], paddings[3], 0
            ]
        #TODO support pads is Variable
        node = helper.make_node(
            'Pad',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            mode=op.attr('mode'),
            value=op.attr('pad_value'),
            pads=pads)
        return node

C
Channingss 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
    def softmax(self, op, block):
        axis = op.attr('axis')
        shape = block.var(op.output('Out')[0]).shape
        if axis < 0:
            axis += len(shape)
        if axis == len(shape) - 1:
            node = helper.make_node(
                'Softmax',
                inputs=op.input('X'),
                outputs=op.output('Out'),
                axis=op.attr('axis'))
            return node
        else:
            perm = [i for i in range(len(shape))]
            perm[-1] = axis
            perm[axis] = len(shape) - 1
            transpose_name0 = self.get_name(op.type, 'transpose')
            transpose_node0 = helper.make_node(
                'Transpose',
                inputs=op.input('X'),
                outputs=[transpose_name0],
                perm=perm)
            softmax_name = self.get_name(op.type, 'softmax')
            softmax_node = helper.make_node(
                'Softmax',
                inputs=[transpose_name0],
                outputs=[softmax_name],
                axis=-1)
            transpose_name1 = self.get_name(op.type, 'transpose')
            transpose_node1 = helper.make_node(
                'Transpose',
                inputs=[softmax_name],
                outputs=op.output('Out'),
                perm=perm)
            return [transpose_node0, softmax_node, transpose_node1]

    def scale(self, op, block):
        scale = op.attr('scale')
        bias = op.attr('bias')
        if math.fabs(scale - 1.0) < 1e-06 and math.fabs(bias - 0.0) < 1e-06:
            node = helper.make_node(
                'Identity', inputs=op.input('X'), outputs=op.output('Out'))
            return node
        else:
            scale_name = self.get_name(op.type, 'scale')
            bias_name = self.get_name(op.type, 'bias')
            scale_node = self.make_constant_node(
                scale_name, onnx_pb.TensorProto.FLOAT, scale)
            bias_node = self.make_constant_node(bias_name,
                                                onnx_pb.TensorProto.FLOAT, bias)
            temp_tensor_name = self.get_name(op.type, 'temporary')
            if op.attr('bias_after_scale'):
                node1 = helper.make_node(
                    'Mul',
                    inputs=[scale_name, op.input('X')[0]],
                    outputs=[temp_tensor_name])
                node2 = helper.make_node(
                    'Add',
                    inputs=[bias_name, temp_tensor_name],
                    outputs=op.output('Out'))
            else:
                node1 = helper.make_node(
                    'Add',
                    inputs=[bias_name, op.input('X')[0]],
                    outputs=temp_tensor_name)
                node2 = helper.make_node(
                    'Mul',
                    inputs=[scale_name, temp_tensor_name],
                    outputs=[op.output('Out')])
            return [scale_node, bias_node, node1, node2]

    def mul(self, op, block):
        x_shape = block.var(op.input('X')[0]).shape
        y_shape = block.var(op.input('Y')[0]).shape
        out_shape = list(block.var(op.output('Out')[0]).shape)
        x_num_col_dims = op.attr('x_num_col_dims')
        y_num_col_dims = op.attr('y_num_col_dims')
        flatten_x_name = 'flatten_{}'.format(op.input('X')[0])
        flatten_y_name = 'flatten_{}'.format(op.input('Y')[0])
        shape_name = 'temp_shape_{}'.format(op.output('Out')[0])
        temp_out_name = 'temp_{}'.format(op.output('Out')[0])
        flatten_x = helper.make_node(
            'Flatten',
            inputs=op.input('X'),
            outputs=[flatten_x_name],
            axis=x_num_col_dims)
        flatten_y = helper.make_node(
            'Flatten',
            inputs=op.input('Y'),
            outputs=[flatten_y_name],
            axis=y_num_col_dims)
        shape_node = self.make_constant_node(
            shape_name, onnx_pb.TensorProto.INT64, out_shape)
        node = helper.make_node(
            'MatMul',
            inputs=[flatten_x_name, flatten_y_name],
            outputs=[temp_out_name])
        reshape_out = helper.make_node(
            'Reshape',
            inputs=[temp_out_name, shape_name],
            outputs=op.output('Out'))
        return [flatten_x, flatten_y, shape_node, node, reshape_out]

    def batch_norm(self, op, block):
        kwargs = {
            'epsilon': op.attr('epsilon'),
            'momentum': op.attr('momentum')
        }
        inputs = op.input('X') + op.input('Scale') + op.input(
            'Bias') + op.input('Mean') + op.input('Variance')
        node = helper.make_node(
            'BatchNormalization',
            inputs=inputs,
            outputs=op.output('Y'),
            **kwargs)
        return node

    def concat(self, op, block):
        node = helper.make_node(
            'Concat',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            axis=op.attr('axis'))
        return node

    def depthwise_conv2d(self, op, block):
        return self.conv2d(op, block)

    def relu6(self, op, block):
        threshold = op.attr('threshold')
        node = helper.make_node(
            'Clip',
            inputs=[op.input('X')[0]],
            outputs=op.output('Out'),
            max=threshold,
            min=0.0)
        return [node]

    def shape(self, op, block):
        node = helper.make_node(
            'Shape', inputs=op.input('Input'), outputs=op.output('Out'))
        return node

    def split(self, op, block):
        sections = op.attr('sections')
        if len(sections) > 0:
            node = helper.make_node(
                'Split',
                inputs=op.input('X'),
                outputs=op.output('Out'),
                axis=op.attr('axis'),
                split=sections)
        else:
            node = helper.make_node(
                'Split',
                inputs=op.input('X'),
                outputs=op.output('Out'),
                axis=op.attr('axis'))
        return node

    def slice(self, op, block):
        axes = op.attr('axes')
        starts = op.attr('starts')
        ends = op.attr('ends')
        node = helper.make_node(
            "Slice",
            inputs=[op.input('Input')[0], starts_name, ends_name, axes_name],
            outputs=op.output('Out'),
            axes=axes,
            starts=starts,
            ends=ends)
        return [node]

    def fill_constant(self, op, block):
        value = op.attr('value')
        dtype = op.attr('dtype')
        shape = op.attr('shape')
        value = np.ones(shape) * value
        if dtype == 2:
            value = value.astype('int32')
        node = helper.make_node(
            'Constant',
            inputs=[],
            outputs=op.output('Out'),
            value=helper.make_tensor(
                name=op.output('Out')[0],
                data_type=self.paddle_onnx_dtype_map[dtype],
                dims=shape,
                vals=value.tolist()))
        return node

    def transpose2(self, op, block):
        node = helper.make_node(
            'Transpose',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            perm=op.attr('axis'))
        return node

    def reshape2(self, op, block):
        input_names = op.input_names
        if len(op.input('ShapeTensor')) > 1:
            cast_shape_nodes = list()
            cast_shape_names = list()
            for i in range(len(op.input('ShapeTensor'))):
                dim = op.input('ShapeTensor')[i]
                temp_name = self.get_name(op.type, 'shape.cast')
                node = helper.make_node(
                    'Cast',
                    inputs=[dim],
                    outputs=[temp_name],
                    to=onnx_pb.TensorProto.INT64)
                cast_shape_nodes.append(node)
                cast_shape_names.append(temp_name)

            temp_name = self.get_name(op.type, 'shape.concat')
            shape_node = helper.make_node(
                'Concat', inputs=cast_shape_names, outputs=[temp_name], axis=-1)
            node = helper.make_node(
                'Reshape',
                inputs=[op.input('X')[0], temp_name],
                outputs=op.output('Out'))
            return cast_shape_nodes + [shape_node, node]
        else:
            temp_name = self.get_name(op.type, 'shape.cast')
            cast_shape_node = helper.make_node(
                'Cast',
                inputs=op.input('ShapeTensor'),
                outputs=[temp_name],
                to=onnx_pb.TensorProto.INT64)
            node = helper.make_node(
                'Reshape',
                inputs=[op.input('X')[0], temp_name],
                outputs=op.output('Out'))
            return [cast_shape_node, node]

    def dropout(self, op, block):
        dropout_mode = op.attr('dropout_implementation')
        dropout_prob = op.attr('dropout_prob')
        if dropout_mode == 'upscale_in_train':
            node = helper.make_node(
                'Identity', inputs=op.input('X'), outputs=op.output('Out'))
            return node
        elif dropout_mode == 'downgrade_in_infer':
            scale_name = self.get_name(op.type, 'scale')
            scale_node = self.make_constant_node(
                scale_name, onnx_pb.TensorProto.FLOAT, 1 - dropout_prob)
            node = helper.make_node(
                "Mul",
                inputs=[op.input('X')[0], scale_name],
                outputs=op.output('Out'))
            return [scale_node, node]
        else:
            raise Exception("Unexpected situation happend")

    def reduce_mean(self, op, block):
        node = helper.make_node(
            'ReduceMean',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            axes=op.attr('dim'),
            keepdims=op.attr('keep_dim'))
        return node

    def bilinear_interp(self, op, block):
        input_names = op.input_names
        input_shape = block.vars[op.input('X')[0]].shape
        if op.attr('align_corners') or op.attr('align_mode') == 0:
            raise Exception(
                "Resize in onnx(opset<=10) only support coordinate_transformation_mode: 'asymmetric'."
            )
        if ('OutSize' in input_names and len(op.input('OutSize')) > 0) or (
                'SizeTensor' in input_names and
                len(op.input('SizeTensor')) > 0):
            node_list = list()
            shape_name0 = self.get_name(op.type, 'shape')
            shape_node0 = helper.make_node(
                'Shape', inputs=op.input('X'), outputs=[shape_name0])
            starts_name = self.get_name(op.type, 'slice.starts')
            starts_node = self.make_constant_node(
                starts_name, onnx_pb.TensorProto.INT64, [0])
            ends_name = self.get_name(op.type, 'slice.ends')
            ends_node = self.make_constant_node(ends_name,
                                                onnx_pb.TensorProto.INT64, [2])
            shape_name1 = self.get_name(op.type, 'shape')
            shape_node1 = helper.make_node(
                'Slice',
                inputs=[shape_name0, starts_name, ends_name],
                outputs=[shape_name1])
            node_list.extend([shape_node0, starts_node, ends_node, shape_node1])
            if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
                cast_shape_name = self.get_name(op.type, "shape.cast")
                cast_shape_node = helper.make_node(
                    'Cast',
                    inputs=op.input('OutSize'),
                    outputs=[cast_shape_name],
                    to=onnx_pb.TensorProto.INT64)
                node_list.append(cast_shape_node)
            else:
                concat_shape_name = self.get_name(
                    op.type, op.output('Out')[0] + "shape.concat")
                concat_shape_node = helper.make_node(
                    "Concat",
                    inputs=op.input('SizeTensor'),
                    outputs=[concat_shape_name],
                    axis=0)
                cast_shape_name = self.get_name(op.type, "shape.cast")
                cast_shape_node = helper.make_node(
                    'Cast',
                    inputs=[concat_shape_name],
                    outputs=[cast_shape_name],
                    to=onnx_pb.TensorProto.INT64)
                node_list.extend([concat_shape_node, cast_shape_node])
            shape_name2 = self.get_name(op.type, "shape.concat")
            shape_node2 = helper.make_node(
                'Concat',
                inputs=[shape_name1, cast_shape_name],
                outputs=[shape_name2],
                axis=0)
            node_list.append(shape_node2)
            cast_shape_name2 = self.get_name(op.type, "shape.cast")
            cast_shape_node2 = helper.make_node(
                'Cast',
                inputs=[shape_name2],
                outputs=[cast_shape_name2],
                to=onnx_pb.TensorProto.FLOAT)
            node_list.append(cast_shape_node2)
            cast_shape_name0 = self.get_name(op.type, "shape.cast")
            cast_shape_node0 = helper.make_node(
                'Cast',
                inputs=[shape_name0],
                outputs=[cast_shape_name0],
                to=onnx_pb.TensorProto.FLOAT)
            node_list.append(cast_shape_node0)
            outputs_h_w_scales = op.output('Out')[0] + "@out_hw_scales"
            node_h_w_scales = helper.make_node(
                'Div',
                inputs=[cast_shape_name2, cast_shape_name0],
                outputs=[outputs_h_w_scales])
            node_list.append(node_h_w_scales)
            result_node = helper.make_node(
                'Resize',
                inputs=[op.input('X')[0], outputs_h_w_scales],
                outputs=op.output('Out'),
                mode='linear')
            node_list.extend([result_node])
            return node_list
        elif 'Scale' in input_names and len(op.input('Scale')) > 0:
            node = helper.make_node(
                'Resize',
                inputs=[op.input('X')[0], op.input('Scale')[0]],
                outputs=op.output('Out'),
                mode='linear')
        else:
            out_shape = [op.attr('out_h'), op.attr('out_w')]
            scale = op.attr('scale')
            if out_shape.count(-1) > 0:
                scale_name = self.get_name(op.type, 'scale')
                scale_node = self.make_constant_node(scale_name,
                                                     onnx_pb.TensorProto.FLOAT,
                                                     [1, 1, scale, scale])
                node = helper.make_node(
                    'Resize',
                    inputs=[op.input('X')[0], scale_name],
                    outputs=op.output('Out'),
                    mode='linear')
                return [scale_node, node]
            else:
                raise Exception("Unexpected situation happend")
        return node

    def nearest_interp(self, op, block):
        input_names = op.input_names
        if op.attr('align_corners'):
            raise Exception(
                "Resize in onnx(opset<=10) only support coordinate_transformation_mode: 'asymmetric'."
            )
        if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
            node = helper.make_node(
                'Resize',
                inputs=[op.input('X')[0], op.input('OutSize')[0]],
                outputs=op.output('Out'),
                mode='nearest')
        elif 'Scale' in input_names and len(op.input('Scale')) > 0:
            node = helper.make_node(
                'Resize',
                inputs=[op.input('X')[0], op.input('Scale')[0]],
                outputs=op.output('Out'),
                mode='nearest')
        else:
            out_shape = [op.attr('out_h'), op.attr('out_w')]
            scale = op.attr('scale')
            if out_shape.count(-1) > 0:
                scale_name = self.get_name(op.type, 'scale')
                scale_node = self.make_constant_node(scale_name,
                                                     onnx_pb.TensorProto.FLOAT,
                                                     [1, 1, scale, scale])
                node = helper.make_node(
                    'Resize',
                    inputs=[op.input('X')[0], scale_name],
                    outputs=op.output('Out'),
                    mode='nearest')
                return [scale_node, node]
            else:
                raise Exception("Unexpected situation happend")
        return node

    def hard_sigmoid(self, op, block):
        slope = op.attr('slope')
        offset = op.attr('offset')
        node = helper.make_node(
            'HardSigmoid',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            alpha=slope,
            beta=offset)
        return node

    def hard_swish(self, op, block):
        scale_name = self.get_name(op.type, 'scale')
        offset_name = self.get_name(op.type, 'offset')
        scale_node = self.make_constant_node(scale_name,
                                             onnx_pb.TensorProto.FLOAT,
                                             op.attr('scale'))
        offset_node = self.make_constant_node(offset_name,
                                              onnx_pb.TensorProto.FLOAT,
                                              op.attr('offset'))

        name0 = self.get_name(op.type, 'add')
        node0 = helper.make_node(
            'Add', inputs=[op.input('X')[0], offset_name], outputs=[name0])
        name1 = self.get_name(op.type, 'relu')
        min_value = op.attr('min')
        max_value = op.attr('max')
        node1 = helper.make_node(
            'Clip',
            inputs=[name0],
            outputs=[name1],
            max=max_value,
            min=min_value)
        name2 = self.get_name(op.type, 'mul')
        node2 = helper.make_node(
            'Mul', inputs=[op.input('X')[0], name1], outputs=[name2])
        node3 = helper.make_node(
            'Div', inputs=[name2, scale_name], outputs=op.output('Out'))
        return [scale_node, offset_node, node0, node1, node2, node3]

    def elementwise_mul(self, op, block):
        axis = op.attr('axis')
        x_shape = block.var(op.input('X')[0]).shape
        y_shape = block.var(op.input('Y')[0]).shape
        if len(y_shape) == 1 and axis == 1:
            shape_name = self.get_name(op.type, 'shape')
            shape_value = [1] * len(x_shape)
            shape_value[axis] = y_shape[0]
            shape_node = self.make_constant_node(
                shape_name, onnx_pb.TensorProto.INT64, shape_value)
            temp_value = self.get_name(op.type, 'temp')
            y_node = helper.make_node(
                'Reshape',
                inputs=[op.input('Y')[0], shape_name],
                outputs=[temp_value])
            node = helper.make_node(
                'Mul',
                inputs=[op.input('X')[0], temp_value],
                outputs=op.output('Out'))
            return [shape_node, y_node, node]
        elif len(x_shape) == len(y_shape):
            node = helper.make_node(
                'Mul',
                inputs=[op.input('X')[0], op.input('Y')[0]],
                outputs=op.output('Out'))
            return node
        else:
            raise Excpetion("Unexpected situation happend in elementwise_add")
        return node

    def feed(self, op, block):
        name = op.output('Out')[0]
        var = block.var(name)
        tensor_info = helper.make_tensor_value_info(
            name=name,
            shape=var.shape,
            elem_type=self.paddle_onnx_dtype_map[var.dtype])
        return tensor_info

    def fetch(self, op, block):
        name = op.input('X')[0]
        var = block.var(name)
        tensor_info = helper.make_tensor_value_info(
            name=name,
            shape=var.shape,
            elem_type=self.paddle_onnx_dtype_map[var.dtype])
        return tensor_info

    def unsqueeze2(self, op, block):
        node = helper.make_node(
            'Unsqueeze',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            axes=op.attr('axes'))
        return node

    def arg_max(self, op, block):
        node = helper.make_node(
            'ArgMax',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            axis=op.attr('axis'),
            keepdims=0)
        return node

    def reciprocal(self, op, block):
        inputs = op.input(op.input_names[0])
        outputs = op.output(op.output_names[0])
        node = helper.make_node('Reciprocal', inputs=inputs, outputs=outputs)
        return node

    def im2sequence(self, op, block):
        from .paddle_custom_layer.im2sequence import im2sequence
        return im2sequence(op, block)

    def yolo_box(self, op, block):
        from .paddle_custom_layer.yolo_box import yolo_box
        return yolo_box(op, block)

    def multiclass_nms(self, op, block):
        from .paddle_custom_layer.multiclass_nms import multiclass_nms
        return multiclass_nms(op, block)