tf_decoder.py 16.2 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
J
jiangjiajun 已提交
16 17
from x2paddle.core.fluid_code import FluidCode
from tensorflow.python.framework import tensor_util
J
jiangjiajun 已提交
18
from tensorflow.core.framework import attr_value_pb2
J
jiangjiajun 已提交
19
import tensorflow as tf
J
jiangjiajun 已提交
20
import copy as cp
J
jiangjiajun 已提交
21
import numpy
J
jiangjiajun 已提交
22
import sys
J
jiangjiajun 已提交
23

24

J
jiangjiajun 已提交
25
class TFGraphNode(GraphNode):
J
jiangjiajun 已提交
26
    def __init__(self, layer, layer_name=None, data_format="NHWC"):
J
jiangjiajun 已提交
27
        if layer_name is None:
J
jiangjiajun 已提交
28 29 30
            super(TFGraphNode,
                  self).__init__(layer,
                                 layer.name.replace('/', '_').replace('-', '_'))
J
jiangjiajun 已提交
31
        else:
J
jiangjiajun 已提交
32 33 34
            super(TFGraphNode,
                  self).__init__(layer,
                                 layer_name.replace('/', '_').replace('-', '_'))
J
jiangjiajun 已提交
35

J
jiangjiajun 已提交
36
        self.layer_type = layer.op
J
jiangjiajun 已提交
37 38
        self.tf_data_format = data_format
        self.pd_data_format = "NCHW"
J
jiangjiajun 已提交
39
        self.fluid_code = FluidCode()
J
jiangjiajun 已提交
40

41
        self.dtype_map = {1: "float32", 3: "int32", 4: "uint8", 9: "int64"}
42 43 44 45 46 47 48 49 50 51 52 53

    @property
    def out_shapes(self):
        values = self.layer.attr["_output_shapes"].list.shape
        out_shapes = list()
        for value in values:
            shape = [dim.size for dim in value.dim]
            out_shapes.append(shape)
        return out_shapes

    @property
    def dtype(self):
J
jiangjiajun 已提交
54
        keys = ['dtype', 'Tidx', 'T', 'DstT']
55 56 57 58
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
59 60 61 62
        if dtype not in self.dtype_map:
            raise Exception("Dtype[{}] not in dtype_map".format(dtype))
        return self.dtype_map[dtype]

J
jiangjiajun 已提交
63 64 65 66 67 68 69 70
    @property
    def value(self):
        assert self.layer_type == "Const", "Only Const node has value."

        attr = self.layer.attr['value']
        field = getattr(attr, attr.WhichOneof('value'))
        return tensor_util.MakeNdarray(field)

J
jiangjiajun 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    def get_attr(self, name):
        if name not in self.layer.attr:
            return None
        attr = self.layer.attr[name]
        field = attr.WhichOneof('value')
        value = getattr(attr, field) if field else None

        if isinstance(value, attr_value_pb2.AttrValue.ListValue):
            result = list(value.ListFields()[0][1])
            for i in range(len(result)):
                if isinstance(result[i], int):
                    result[i] = int(result[i])
                try:
                    if isinstance(result[i], long):
                        result[i] = int(result[i])
                except:
                    pass
            return result
        else:
            return value

J
jiangjiajun 已提交
92 93

class TFGraph(Graph):
J
jiangjiajun 已提交
94
    def __init__(self, model, data_format="NHWC"):
J
jiangjiajun 已提交
95
        super(TFGraph, self).__init__(model)
J
jiangjiajun 已提交
96
        self.identity_map = dict()
J
jiangjiajun 已提交
97
        self.multi_out_ops = ['Split', 'SplitV']
J
jiangjiajun 已提交
98
        self.tf_data_format = data_format
J
jiangjiajun 已提交
99 100 101

    def build(self):
        for layer in self.model.node:
J
jiangjiajun 已提交
102
            self.node_map[layer.name.replace('/', '_').replace(
J
jiangjiajun 已提交
103
                '-', '_')] = TFGraphNode(layer, data_format=self.tf_data_format)
J
jiangjiajun 已提交
104

J
jiangjiajun 已提交
105 106
        for layer_name, node in self.node_map.items():
            for in_node in node.layer.input:
J
jiangjiajun 已提交
107
                in_node = in_node.replace('/', '_').replace('-', '_')
J
jiangjiajun 已提交
108 109
                if in_node not in self.node_map:
                    if in_node.strip().split(':')[0] in self.node_map:
J
jiangjiajun 已提交
110
                        self.connect(in_node.strip().split(':')[0], layer_name)
J
jiangjiajun 已提交
111
                    else:
112 113 114
                        raise Exception(
                            'input[{}] of node[{}] does not exist in node_map'.
                            format(in_node, layer_name))
J
jiangjiajun 已提交
115 116 117
                else:
                    self.connect(in_node, layer_name)

118
        super(TFGraph, self).build()
J
jiangjiajun 已提交
119

J
jiangjiajun 已提交
120 121 122 123 124 125
        # tensorflow graph optimize
        self._remove_isolated_node()
        self._remove_identity_node()

    def get_node(self, node_name, copy=False):
        items = node_name.strip().split(':')
J
jiangjiajun 已提交
126
        items[0] = items[0].replace('/', '_').replace('-', '_')
J
jiangjiajun 已提交
127 128 129
        if items[0] in self.identity_map:
            items[0] = self.identity_map[items[0]]
        new_node_name = ":".join(items)
J
jiangjiajun 已提交
130
        node = super(TFGraph, self).get_node(new_node_name, copy)
J
jiangjiajun 已提交
131 132
        if node is None:
            return None
J
jiangjiajun 已提交
133 134 135
        if len(items) == 1 and node.layer_type in self.multi_out_ops:
            node.index = 0
        return node
J
jiangjiajun 已提交
136

J
jiangjiajun 已提交
137 138 139 140 141
    def remove_node(self, node_name):
        if node_name not in self.node_map:
            raise Exception("Node[{}] not in graph".format(node_name))
        inputs = self.node_map[node_name].inputs
        outputs = self.node_map[node_name].outputs
142
        #        assert len(inputs) == 1
J
jiangjiajun 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156
        input_node = self.node_map[inputs[0]]
        idx = input_node.outputs.index(node_name)
        del input_node.outputs[idx]
        for output in outputs:
            node = self.node_map[output]
            idx = node.inputs.index(node_name)
            node.inputs[idx] = inputs[0]
            input_node.outputs.append(output)

        del self.node_map[node_name]

        idx = self.topo_sort.index(node_name)
        del self.topo_sort[idx]

J
jiangjiajun 已提交
157 158 159 160
    def _remove_isolated_node(self):
        # delete isolated nodes
        isolated_nodes = list()
        for node_name in self.node_map.keys():
J
jiangjiajun 已提交
161
            if len(self.get_node(node_name).inputs) == 0 and len(
J
jiangjiajun 已提交
162 163 164
                    self.get_node(node_name).outputs) == 0:
                isolated_nodes.append(node_name)

J
jiangjiajun 已提交
165
        for node_name in isolated_nodes:
J
jiangjiajun 已提交
166 167 168 169 170 171 172 173 174
            del self.node_map[node_name]
            if node_name in self.input_nodes:
                idx = self.input_nodes.index(node_name)
                del self.input_nodes[idx]
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                del self.output_nodes[idx]
            idx = self.topo_sort.index(node_name)
            del self.topo_sort[idx]
J
jiangjiajun 已提交
175 176 177 178

    def _remove_identity_node(self):
        identity_node = list()
        for node_name, node in self.node_map.items():
J
jiangjiajun 已提交
179
            if node.layer_type == "Identity" or node.layer_type == "StopGradient":
J
jiangjiajun 已提交
180 181 182 183 184
                identity_node.append(node_name)

        for node_name in identity_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
J
jiangjiajun 已提交
185
            self.remove_node(node_name)
J
jiangjiajun 已提交
186 187 188

            self.identity_map[node_name] = input_node.layer_name

J
jiangjiajun 已提交
189 190 191 192
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

J
jiangjiajun 已提交
193 194 195 196 197 198 199 200 201 202 203
    def data_format_propagation(self, node):
        current_node = self.node_map[node.layer_name]
        current_node = node.tf_data_format
        outputs = current_node.outputs
        if len(outputs) == 0:
            return
        for out in outputs:
            next_node = self.node_map[out]
            next_node.tf_data_format = node.tf_data_format
            self.data_format_propagation(next_node)

J
jiangjiajun 已提交
204

J
jiangjiajun 已提交
205
class TFDecoder(object):
206
    def __init__(self, pb_model, data_format="NHWC", define_input_shape=False):
207 208 209 210
        try:
            self.sess = tf.compat.v1.Session()
        except:
            self.sess = tf.Session()
J
jiangjiajun 已提交
211
        self.input_info = dict()
212
        self.define_input_shape = define_input_shape
213 214 215 216 217
        with open(pb_model, 'rb') as f:
            try:
                graph_def = tf.compat.v1.GraphDef()
            except:
                graph_def = tf.GraphDef()
J
jiangjiajun 已提交
218
            graph_def.ParseFromString(f.read())
J
jiangjiajun 已提交
219
            input_map = self._check_input_shape(graph_def)
J
jiangjiajun 已提交
220
            self._fix_output_shape(graph_def)
J
jiangjiajun 已提交
221
            self.sess.graph.as_default()
J
jiangjiajun 已提交
222
            tf.import_graph_def(graph_def, name='', input_map=input_map)
223

224 225 226 227 228
        try:
            initializer = tf.compat.v1.global_variables_initializer()
        except:
            initializer = tf.global_variables_initializer()
        self.sess.run(initializer)
J
jiangjiajun 已提交
229

J
jiangjiajun 已提交
230
        self.tf_graph = TFGraph(
J
jiangjiajun 已提交
231
            self.sess.graph._as_graph_def(add_shapes=True)[0], data_format)
J
jiangjiajun 已提交
232
        self.tf_graph.build()
J
jiangjiajun 已提交
233 234 235 236 237 238

    def _fix_output_shape(self, graph):
        for i in range(len(graph.node)):
            node = graph.node[i]
            if node.op == "swish_f32":
                graph.node[i].attr['_disable_call_shape_inference'].b = False
J
jiangjiajun 已提交
239 240

    def _check_input_shape(self, graph_def):
J
jiangjiajun 已提交
241
        numpy.random.seed(13)
J
jiangjiajun 已提交
242 243 244 245 246 247
        graph_def = cp.deepcopy(graph_def)
        input_map = dict()
        for layer in graph_def.node:
            if layer.op != "Placeholder":
                continue
            graph_node = TFGraphNode(layer)
248
            dtype = graph_node.layer.attr['dtype'].type
J
jiangjiajun 已提交
249 250

            need_define_shape = 0
251 252 253 254 255
            if self.define_input_shape:
                need_define_shape = 3
            elif graph_node.layer.attr[
                    'shape'].shape.unknown_rank or not graph_node.get_attr(
                        "shape"):
J
jiangjiajun 已提交
256 257 258 259 260 261 262 263
                need_define_shape = 1
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
                if shape.count(-1) > 1:
                    need_define_shape = 2

            if need_define_shape > 0:
264 265 266 267
                shape = None
                if graph_node.get_attr("shape"):
                    value = value = graph_node.layer.attr["shape"].shape
                    shape = [dim.size for dim in value.dim]
J
jiangjiajun 已提交
268
                if need_define_shape == 1:
J
jiangjiajun 已提交
269 270
                    print("Unknown shape for input tensor[tensor name: \"{}\"]".
                          format(layer.name))
271
                elif need_define_shape == 2:
J
jiangjiajun 已提交
272
                    print(
J
jiangjiajun 已提交
273 274
                        "\nShape[now is {}] for input tensor[tensor name: \"{}\"] not support yet"
                        .format(shape, layer.name))
275 276 277 278
                else:
                    print(
                        "Define shape[now is {}] for input tensor[tensor name: \"{}\']"
                        .format(shape, layer.name))
J
jiangjiajun 已提交
279
                print(
J
jiangjiajun 已提交
280 281 282 283 284 285
                    "Use your keyboard type the shape of input tensor below :)")

                right_shape_been_input = False
                while not right_shape_been_input:
                    shape = input("Shape of Input(e.g. None,224,224,3): ")
                    if shape.count("None") > 1:
J
jiangjiajun 已提交
286
                        print("Only 1 dimension can be None, type again:)")
J
jiangjiajun 已提交
287 288 289
                    else:
                        right_shape_been_input = True

J
jiangjiajun 已提交
290 291 292 293
                shape = [
                    None if dim == "None" else int(dim)
                    for dim in shape.strip().split(',')
                ]
J
jiangjiajun 已提交
294
                assert shape.count(None) <= 1, "Only one dimension can be None"
295 296 297 298 299 300 301 302 303 304 305
                try:
                    x2paddle_input = tf.compat.v1.placeholder(
                        dtype=dtype,
                        shape=shape,
                        name="x2paddle_{}".format(layer.name))
                except:
                    x2paddle_input = tf.placeholder(dtype=dtype,
                                                    shape=shape,
                                                    name="x2paddle_{}".format(
                                                        layer.name))

J
jiangjiajun 已提交
306
                input_map["{}:0".format(layer.name)] = x2paddle_input
307 308
                if shape.count(None) > 0:
                    shape[shape.index(None)] = -1
J
jiangjiajun 已提交
309 310 311 312 313 314 315
                self.input_info["x2paddle_{}".format(layer.name)] = (shape,
                                                                     dtype)
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
                self.input_info[graph_node.layer_name] = (shape, dtype)

J
jiangjiajun 已提交
316
        return input_map
J
jiangjiajun 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

    # trick method
    # should be removed after PaddlePaddle V1.6 been released
    def infer_tensor(self, graph_node):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        for input_name, info in self.input_info.items():
            (shape, dtype) = cp.deepcopy(info)
            input_tensor = self.sess.graph.get_tensor_by_name(input_name + ":0")
            if shape.count(-1) > 0:
                shape[shape.index(-1)] = 2
            feed[input_tensor] = numpy.random.random_sample(shape)
        output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
        return self.sess.run([output_tensor], feed)[0]

    def infer_shape_tensor(self, graph_node, out_shape=None):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        batch_size = [2, 3, 5]
        results = list()
        for b in batch_size:
            for input_name, info in self.input_info.items():
                (shape, dtype) = cp.deepcopy(info)
                input_tensor = self.sess.graph.get_tensor_by_name(input_name +
                                                                  ":0")
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
            results.append(self.sess.run([output_tensor], feed)[0].flatten())

        compare01 = (results[0] == results[1])
        compare12 = (results[1] == results[2])

        if compare01.all() and compare12.all():
            return results[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            results[0][index[0]] = -1

            index = numpy.argwhere(results[0] < 0).flatten()
            if index.shape[0] > 2:
                print("Warning: More than two dimension less than zero")
            if index.shape[0] == 2 and out_shape is not None:
                if out_shape[index[1]] > 0:
                    results[0][index[1]] = out_shape[index[1]]
                else:
                    results[0][index[0]] = out_shape[index[0]]
            return results[0].tolist()
        else:
            raise Exception("Couldn't infer a stable shape shape tensor value")
J
jiangjiajun 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

    def infer_tensor_shape(self, graph_node):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        batch_size = [2, 3, 5]
        shapes = list()
        for b in batch_size:
            for input_name, info in self.input_info.items():
                (shape, dtype) = cp.deepcopy(info)
                input_tensor = self.sess.graph.get_tensor_by_name(input_name +
                                                                  ":0")
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
            shape = self.sess.run([output_tensor], feed)[0].shape
            shapes.append(numpy.array(shape))

        compare01 = (shapes[0] == shapes[1])
        compare12 = (shapes[1] == shapes[2])

        if compare01.all() and compare12.all():
            return shape[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            if index[0] != 0:
                raise Exception("Batch size not in the first dimension")
            shapes[0][0] = -1
            return shapes[0].tolist()