fc_fuser.py 5.9 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
S
SunAhong1993 已提交
16
from x2paddle.optimizer.pattern_matcher import FuseBase
S
SunAhong1993 已提交
17 18 19 20
from x2paddle.core.program import PaddleGraph, PaddleLayer
from x2paddle.core.util import *


S
renam  
SunAhong1993 已提交
21
class DygraphFcFuser(FuseBase):
S
SunAhong1993 已提交
22 23
    def __init__(self):
        self.linear_index = 0
S
renam  
SunAhong1993 已提交
24
        super(DygraphFcFuser, self).__init__(graph_type="dygraph")
S
SunAhong1993 已提交
25 26 27 28 29 30 31 32 33

    def build_pattern(self):
        """ 描述需要替换的fc图结构。
        fc层模式python实现代码示例:
            x133 = x128.shape
            x133 = len(x133)
            x134 = x133 == 2
            if x134 :
                classifier_6_weight = self.classifier_6_weight
S
SunAhong1993 已提交
34
                x136 = paddle.transpose(x=classifier_6_weight, perm=[1, 0])
S
SunAhong1993 已提交
35 36 37 38 39
                classifier_6_bias = self.classifier_6_bias
                x137 = paddle.addmm(input=classifier_6_bias, x=x128, y=x136, beta=1, alpha=1)
                x135 = x137
            else:
                classifier_6_weight = self.classifier_6_weight
S
SunAhong1993 已提交
40 41
                x138 = paddle.transpose(x=classifier_6_weight, perm=[1, 0])
                x139 = paddle.matmul(x=x128, y=x138)
S
SunAhong1993 已提交
42 43 44 45 46 47 48 49 50
                classifier_6_bias = self.classifier_6_bias
                x140 = x139 + 1 * classifier_6_bias
                x135 = x140
        """

        def gen_name(id):
            return "x" + str(id)

        self.pattern.add_layer(
S
SunAhong1993 已提交
51
            "prim.shape",
S
SunAhong1993 已提交
52 53 54 55 56 57 58 59 60 61 62 63
            inputs={'input': "fc-input-0"},
            outputs=[gen_name(2)])
        self.pattern.add_layer(
            "prim.len", inputs={'input': gen_name(2)}, outputs=[gen_name(2)])
        self.pattern.add_layer(
            "prim.eq",
            inputs={"eq0": gen_name(2)},
            outputs=[gen_name(3)],
            eq1=2)
        self.pattern.add_layer("prim.if", {'input': gen_name(3)}, [gen_name(4)])
        self.pattern.outputs.append(gen_name(4))
        if_layer1 = self.pattern.layers[list(self.pattern.layers.keys())[-1]]
S
SunAhong1993 已提交
64
        pattern_block0 = PaddleGraph(parent_layer=if_layer1, graph_type="dygraph")
S
SunAhong1993 已提交
65
        pattern_block0.add_layer(
S
SunAhong1993 已提交
66
            "self.create_parameter",
S
SunAhong1993 已提交
67
            inputs={},
S
SunAhong1993 已提交
68
            outputs=[gen_name(5)])
S
SunAhong1993 已提交
69
        pattern_block0.add_layer(
S
SunAhong1993 已提交
70
            "paddle.transpose",
S
SunAhong1993 已提交
71 72 73 74
            inputs={"x": gen_name(5)},
            outputs=[gen_name(6)],
            perm=[1, 0])
        pattern_block0.add_layer(
S
SunAhong1993 已提交
75
            "self.create_parameter",
S
SunAhong1993 已提交
76
            inputs={},
S
SunAhong1993 已提交
77
            outputs=[gen_name(7)])
S
SunAhong1993 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90
        pattern_block0.add_layer(
            "paddle.addmm",
            inputs={"input": gen_name(7),
                    "x": "fc-input-0",
                    "y": gen_name(6)},
            outputs=[gen_name(8)],
            beta=1,
            alpha=1)
        if_layer1.inputs["input-0"] = "fc-input-0"
        self.pattern.inputs.append("fc-input-0")
        pattern_block0.add_layer(
            "prim.equal", inputs={'input': gen_name(8)}, outputs=[gen_name(4)])
        if_layer1.add_block(pattern_block0)
S
SunAhong1993 已提交
91
        pattern_block1 = PaddleGraph(parent_layer=if_layer1, graph_type="dygraph")
S
SunAhong1993 已提交
92
        pattern_block1.add_layer(
S
SunAhong1993 已提交
93
            "self.create_parameter",
S
SunAhong1993 已提交
94
            inputs={},
S
SunAhong1993 已提交
95
            outputs=[gen_name(5)])
S
SunAhong1993 已提交
96
        pattern_block1.add_layer(
S
SunAhong1993 已提交
97
            "paddle.transpose",
S
SunAhong1993 已提交
98 99 100 101 102 103 104 105 106 107
            inputs={"x": gen_name(5)},
            outputs=[gen_name(6)],
            perm=[1, 0])
        pattern_block1.add_layer(
            "paddle.matmul",
            inputs={"x": "fc-input-0",
                    "y": gen_name(6)},
            outputs=[gen_name(9)])
        if_layer1.inputs["input-1"] = "fc-input-0"
        pattern_block1.add_layer(
S
SunAhong1993 已提交
108
            "self.create_parameter",
S
SunAhong1993 已提交
109
            inputs={},
S
SunAhong1993 已提交
110
            outputs=[gen_name(12)])
S
SunAhong1993 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        pattern_block1.add_layer(
            "prim.add_",
            inputs={"x": gen_name(9),
                    "y": gen_name(12)},
            outputs=[gen_name(13)],
            alpha=1)
        pattern_block1.add_layer(
            "prim.equal", inputs={'input': gen_name(13)},
            outputs=[gen_name(4)])
        if_layer1.add_block(pattern_block1)
        self.pattern.build(inputs={"input-0": "fc-input-0"})

    def insert_new_layer(self, graph, parameters, matches):
        new_layer = self.gen_new_layer(parameters, matches)
        new_layer_id = list(matches.keys())[0]
        graph.layers[new_layer_id] = new_layer
        matches.pop(new_layer_id)

    def gen_new_layer(self, parameters, matches):
        layers_id = list(matches.keys())
        layer = matches[layers_id[0]]
        input_name = layer.inputs["input"]
        layer = matches[layers_id[3]]
        output_name = layer.outputs[0]
        layer = matches[layers_id[4]]
S
SunAhong1993 已提交
136
        weight_name = layer.outputs[0]
S
SunAhong1993 已提交
137
        layer = matches[layers_id[6]]
S
SunAhong1993 已提交
138
        bias_name = layer.outputs[0]
S
SunAhong1993 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        attrs = dict()
        attrs["in_features"] = parameters[weight_name].shape[1]
        attrs["out_features"] = parameters[weight_name].shape[0]
        linear_name = "linear{}".format(self.linear_index)
        self.linear_index += 1
        parameters["{}.weight".format(linear_name)] = parameters[
            weight_name].transpose((1, 0))
        parameters["{}.bias".format(linear_name)] = np.squeeze(parameters[
            bias_name])
        new_layer = PaddleLayer(
            layers_id[0],
            "paddle.nn.Linear",
            inputs={"input": input_name},
            outputs=[linear_name, output_name],
            **attrs)
        return new_layer