vgg_translate_tutorial.ipynb 14.8 KB
Notebook
Newer Older
J
Jason 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Tutorial : tensorflow2fluid转换VGG_16模型\n",
    "\n",
    "VGG_16是CV领域的一个经典模型,本文档以tensorflow/models下的[VGG_16](https://github.com/tensorflow/models/blob/master/research/slim/nets/vgg.py)为例,展示如何将TensorFlow训练好的模型转换为PaddlePaddle模型。 \n",
    "### 下载预训练模型"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Download percentage 100.00%"
     ]
    }
   ],
   "source": [
    "import urllib\n",
    "import sys\n",
    "def schedule(a, b, c):\n",
    "    per = 100.0 * a * b / c\n",
    "    per = int(per)\n",
    "    sys.stderr.write(\"\\rDownload percentage %.2f%%\" % per)\n",
    "    sys.stderr.flush()\n",
    "\n",
    "url = \"http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz\"\n",
    "fetch = urllib.urlretrieve(url, \"./vgg_16.tar.gz\", schedule)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 解压下载的压缩文件"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import tarfile\n",
    "with tarfile.open(\"./vgg_16.tar.gz\", \"r:gz\") as f:\n",
    "    file_names = f.getnames()\n",
    "    for file_name in file_names:\n",
    "        f.extract(file_name, \"./\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 保存模型为checkpoint格式\n",
    "\n",
    "tensorflow2fluid目前支持checkpoint格式的模型或者是将网络结构和参数序列化的pb格式模型,上面下载的`vgg_16.ckpt`仅仅存储了模型参数,因此我们需要重新加载参数,并将网络结构和参数一起保存为checkpoint模型"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO:tensorflow:Restoring parameters from vgg_16.ckpt\n"
     ]
    }
   ],
   "source": [
    "import tensorflow.contrib.slim as slim\n",
    "from tensorflow.contrib.slim.nets import vgg\n",
    "import tensorflow as tf\n",
    "import numpy\n",
    "\n",
    "with tf.Session() as sess:\n",
    "    inputs = tf.placeholder(dtype=tf.float32, shape=[None, 224, 224, 3], name=\"inputs\")\n",
    "    logits, endpoint = vgg.vgg_16(inputs, num_classes=1000, is_training=False)\n",
    "    load_model = slim.assign_from_checkpoint_fn(\"vgg_16.ckpt\", slim.get_model_variables(\"vgg_16\"))\n",
    "    load_model(sess)\n",
    "    \n",
    "    numpy.random.seed(13)\n",
    "    data = numpy.random.rand(5, 224, 224, 3)\n",
    "    input_tensor = sess.graph.get_tensor_by_name(\"inputs:0\")\n",
    "    output_tensor = sess.graph.get_tensor_by_name(\"vgg_16/fc8/squeezed:0\")\n",
    "    result = sess.run([output_tensor], {input_tensor:data})\n",
    "    numpy.save(\"tensorflow.npy\", numpy.array(result))\n",
    "    \n",
    "    saver = tf.train.Saver()\n",
    "    saver.save(sess, \"./checkpoint/model\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 将模型转换为PaddlePaddle模型\n",
    "\n",
    "注意:部分OP在转换时,需要将参数写入文件;或者是运行tensorflow模型进行infer,获取tensor值。两种情况下均会消耗一定的时间用于IO或计算,对于后一种情况,建议转换模型时将`use_cuda`参数设为`True`,加快infer速度"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:root:Loading tensorflow model...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO:tensorflow:Restoring parameters from checkpoint/model\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:tensorflow:Restoring parameters from checkpoint/model\n",
      "INFO:root:Tensorflow model loaded!\n",
      "INFO:root:TotalNum:86,TraslatedNum:1,CurrentNode:inputs\n",
      "INFO:root:TotalNum:86,TraslatedNum:2,CurrentNode:vgg_16/conv1/conv1_1/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:3,CurrentNode:vgg_16/conv1/conv1_1/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:4,CurrentNode:vgg_16/conv1/conv1_2/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:5,CurrentNode:vgg_16/conv1/conv1_2/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:6,CurrentNode:vgg_16/conv2/conv2_1/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:7,CurrentNode:vgg_16/conv2/conv2_1/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:8,CurrentNode:vgg_16/conv2/conv2_2/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:9,CurrentNode:vgg_16/conv2/conv2_2/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:10,CurrentNode:vgg_16/conv3/conv3_1/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:11,CurrentNode:vgg_16/conv3/conv3_1/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:12,CurrentNode:vgg_16/conv3/conv3_2/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:13,CurrentNode:vgg_16/conv3/conv3_2/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:14,CurrentNode:vgg_16/conv3/conv3_3/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:15,CurrentNode:vgg_16/conv3/conv3_3/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:16,CurrentNode:vgg_16/conv4/conv4_1/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:17,CurrentNode:vgg_16/conv4/conv4_1/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:18,CurrentNode:vgg_16/conv4/conv4_2/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:19,CurrentNode:vgg_16/conv4/conv4_2/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:20,CurrentNode:vgg_16/conv4/conv4_3/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:21,CurrentNode:vgg_16/conv4/conv4_3/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:22,CurrentNode:vgg_16/conv5/conv5_1/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:23,CurrentNode:vgg_16/conv5/conv5_1/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:24,CurrentNode:vgg_16/conv5/conv5_2/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:25,CurrentNode:vgg_16/conv5/conv5_2/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:26,CurrentNode:vgg_16/conv5/conv5_3/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:27,CurrentNode:vgg_16/conv5/conv5_3/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:28,CurrentNode:vgg_16/fc6/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:29,CurrentNode:vgg_16/fc6/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:30,CurrentNode:vgg_16/fc7/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:31,CurrentNode:vgg_16/fc7/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:32,CurrentNode:vgg_16/fc8/weights\n",
      "INFO:root:TotalNum:86,TraslatedNum:33,CurrentNode:vgg_16/fc8/biases\n",
      "INFO:root:TotalNum:86,TraslatedNum:34,CurrentNode:vgg_16/conv1/conv1_1/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:35,CurrentNode:vgg_16/conv1/conv1_1/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:36,CurrentNode:vgg_16/conv1/conv1_1/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:37,CurrentNode:vgg_16/conv1/conv1_2/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:38,CurrentNode:vgg_16/conv1/conv1_2/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:39,CurrentNode:vgg_16/conv1/conv1_2/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:40,CurrentNode:vgg_16/pool1/MaxPool\n",
      "INFO:root:TotalNum:86,TraslatedNum:41,CurrentNode:vgg_16/conv2/conv2_1/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:42,CurrentNode:vgg_16/conv2/conv2_1/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:43,CurrentNode:vgg_16/conv2/conv2_1/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:44,CurrentNode:vgg_16/conv2/conv2_2/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:45,CurrentNode:vgg_16/conv2/conv2_2/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:46,CurrentNode:vgg_16/conv2/conv2_2/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:47,CurrentNode:vgg_16/pool2/MaxPool\n",
      "INFO:root:TotalNum:86,TraslatedNum:48,CurrentNode:vgg_16/conv3/conv3_1/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:49,CurrentNode:vgg_16/conv3/conv3_1/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:50,CurrentNode:vgg_16/conv3/conv3_1/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:51,CurrentNode:vgg_16/conv3/conv3_2/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:52,CurrentNode:vgg_16/conv3/conv3_2/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:53,CurrentNode:vgg_16/conv3/conv3_2/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:54,CurrentNode:vgg_16/conv3/conv3_3/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:55,CurrentNode:vgg_16/conv3/conv3_3/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:56,CurrentNode:vgg_16/conv3/conv3_3/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:57,CurrentNode:vgg_16/pool3/MaxPool\n",
      "INFO:root:TotalNum:86,TraslatedNum:58,CurrentNode:vgg_16/conv4/conv4_1/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:59,CurrentNode:vgg_16/conv4/conv4_1/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:60,CurrentNode:vgg_16/conv4/conv4_1/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:61,CurrentNode:vgg_16/conv4/conv4_2/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:62,CurrentNode:vgg_16/conv4/conv4_2/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:63,CurrentNode:vgg_16/conv4/conv4_2/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:64,CurrentNode:vgg_16/conv4/conv4_3/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:65,CurrentNode:vgg_16/conv4/conv4_3/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:66,CurrentNode:vgg_16/conv4/conv4_3/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:67,CurrentNode:vgg_16/pool4/MaxPool\n",
      "INFO:root:TotalNum:86,TraslatedNum:68,CurrentNode:vgg_16/conv5/conv5_1/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:69,CurrentNode:vgg_16/conv5/conv5_1/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:70,CurrentNode:vgg_16/conv5/conv5_1/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:71,CurrentNode:vgg_16/conv5/conv5_2/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:72,CurrentNode:vgg_16/conv5/conv5_2/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:73,CurrentNode:vgg_16/conv5/conv5_2/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:74,CurrentNode:vgg_16/conv5/conv5_3/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:75,CurrentNode:vgg_16/conv5/conv5_3/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:76,CurrentNode:vgg_16/conv5/conv5_3/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:77,CurrentNode:vgg_16/pool5/MaxPool\n",
      "INFO:root:TotalNum:86,TraslatedNum:78,CurrentNode:vgg_16/fc6/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:79,CurrentNode:vgg_16/fc6/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:80,CurrentNode:vgg_16/fc6/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:81,CurrentNode:vgg_16/fc7/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:82,CurrentNode:vgg_16/fc7/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:83,CurrentNode:vgg_16/fc7/Relu\n",
      "INFO:root:TotalNum:86,TraslatedNum:84,CurrentNode:vgg_16/fc8/Conv2D\n",
      "INFO:root:TotalNum:86,TraslatedNum:85,CurrentNode:vgg_16/fc8/BiasAdd\n",
      "INFO:root:TotalNum:86,TraslatedNum:86,CurrentNode:vgg_16/fc8/squeezed\n",
      "INFO:root:Model translated!\n"
     ]
    }
   ],
   "source": [
    "import tf2fluid.convert as convert\n",
    "import argparse\n",
    "parser = convert._get_parser()\n",
    "parser.meta_file = \"checkpoint/model.meta\"\n",
    "parser.ckpt_dir = \"checkpoint\"\n",
    "parser.in_nodes = [\"inputs\"]\n",
    "parser.input_shape = [\"None,224,224,3\"]\n",
    "parser.output_nodes = [\"vgg_16/fc8/squeezed\"]\n",
    "parser.use_cuda = \"True\"\n",
    "parser.input_format = \"NHWC\"\n",
    "parser.save_dir = \"paddle_model\"\n",
    "\n",
    "convert.run(parser)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 加载转换后的PaddlePaddle模型,并进行预测\n",
    "**需要注意,转换后的PaddlePaddle CV模型输入格式为NCHW**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2019-03-14T10:18:46.124339Z",
     "start_time": "2019-03-14T10:18:40.858372Z"
    }
   },
   "outputs": [],
   "source": [
    "import numpy\n",
    "import tf2fluid.model_loader as ml\n",
    "\n",
    "model = ml.ModelLoader(\"paddle_model\", use_cuda=True)\n",
    "\n",
    "numpy.random.seed(13)\n",
    "data = numpy.random.rand(5, 224, 224, 3).astype(\"float32\")\n",
    "# NHWC -> NCHW\n",
    "data = numpy.transpose(data, (0, 3, 1, 2))\n",
    "\n",
    "results = model.inference(feed_dict={model.inputs[0]:data})\n",
    "\n",
    "numpy.save(\"paddle.npy\", numpy.array(results))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 对比转换前后模型之前的预测结果diff"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2019-03-14T10:20:13.611132Z",
     "start_time": "2019-03-14T10:20:13.598874Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "3.33786e-06\n"
     ]
    }
   ],
   "source": [
    "import numpy\n",
    "paddle_result = numpy.load(\"paddle.npy\")\n",
    "tensorflow_result = numpy.load(\"tensorflow.npy\")\n",
    "diff = numpy.fabs(paddle_result - tensorflow_result)\n",
    "print(numpy.max(diff))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python [conda env:CPU-Paddle]",
   "language": "python",
   "name": "conda-env-CPU-Paddle-py"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.15"
  },
  "varInspector": {
   "cols": {
    "lenName": 16,
    "lenType": 16,
    "lenVar": 40
   },
   "kernels_config": {
    "python": {
     "delete_cmd_postfix": "",
     "delete_cmd_prefix": "del ",
     "library": "var_list.py",
     "varRefreshCmd": "print(var_dic_list())"
    },
    "r": {
     "delete_cmd_postfix": ") ",
     "delete_cmd_prefix": "rm(",
     "library": "var_list.r",
     "varRefreshCmd": "cat(var_dic_list()) "
    }
   },
   "types_to_exclude": [
    "module",
    "function",
    "builtin_function_or_method",
    "instance",
    "_Feature"
   ],
   "window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}