# Copyright (c) 2022 VisualDL Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ======================================================================= import base64 import json import os import tempfile from collections import deque from threading import Lock from flask import request from x2paddle.convert import caffe2paddle from x2paddle.convert import onnx2paddle from .xarfile import archive from .xarfile import unarchive from visualdl.server.api import gen_result from visualdl.server.api import result class ModelConvertApi(object): def __init__(self): self.supported_formats = {'onnx', 'caffe'} self.lock = Lock() self.translated_models = deque( maxlen=5) # used to store user's translated model for download self.request_id = 0 # used to store user's request @result() def convert_model(self, format): file_handle = request.files['file'] data = file_handle.stream.read() if format not in self.supported_formats: raise RuntimeError('Model format {} is not supported. \ Only onnx and caffe models are supported now.'.format(format)) result = {} result['from'] = format result['to'] = 'paddle' # call x2paddle to convert models with tempfile.TemporaryDirectory( suffix='x2paddle_translated_models') as tmpdirname: with tempfile.NamedTemporaryFile() as fp: fp.write(data) fp.flush() try: if format == 'onnx': try: import onnx # noqa: F401 except Exception: raise RuntimeError( "[ERROR] onnx is not installed, use \"pip install onnx==1.6.0\"." ) onnx2paddle(fp.name, tmpdirname) elif format == 'caffe': with tempfile.TemporaryDirectory() as unarchivedir: unarchive(fp.name, unarchivedir) prototxt_path = None weight_path = None for dirname, subdirs, filenames in os.walk( unarchivedir): for filename in filenames: if '.prototxt' in filename: prototxt_path = os.path.join( dirname, filename) if '.caffemodel' in filename: weight_path = os.path.join( dirname, filename) if prototxt_path is None or weight_path is None: raise RuntimeError( ".prototxt or .caffemodel file is missing in your archive file, \ please check files uploaded.") caffe2paddle(prototxt_path, weight_path, tmpdirname, None) except Exception as e: raise RuntimeError( "[Convertion error] {}.\n Please open an issue at \ https://github.com/PaddlePaddle/X2Paddle/issues to report your problem." .format(e)) with self.lock: origin_dir = os.getcwd() os.chdir(os.path.dirname(tmpdirname)) archive_path = os.path.join( os.path.dirname(tmpdirname), archive(os.path.basename(tmpdirname))) os.chdir(origin_dir) result['request_id'] = self.request_id self.request_id += 1 with open(archive_path, 'rb') as archive_fp: self.translated_models.append((result['request_id'], archive_fp.read())) with open( os.path.join(tmpdirname, 'inference_model', 'model.pdmodel'), 'rb') as model_fp: model_encoded = base64.b64encode( model_fp.read()).decode('utf-8') result['pdmodel'] = model_encoded if os.path.exists(archive_path): os.remove(archive_path) return result @result('application/octet-stream') def download_model(self, request_id): for stored_request_id, data in self.translated_models: if str(stored_request_id) == request_id: return data def create_model_convert_api_call(): api = ModelConvertApi() routes = { 'convert': (api.convert_model, ['format']), 'download': (api.download_model, ['request_id']) } def call(path: str, args): route = routes.get(path) if not route: return json.dumps(gen_result( status=1, msg='api not found')), 'application/json', None method, call_arg_names = route call_args = [args.get(name) for name in call_arg_names] return method(*call_args) return call