# coding=utf-8 import paddle.fluid as fluid # 定义神经网络结构 def lenet_5(img): conv1 = fluid.nets.simple_img_conv_pool( input=img, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, act="relu") conv1_bn = fluid.layers.batch_norm(input=conv1) conv2 = fluid.nets.simple_img_conv_pool( input=conv1_bn, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, act="relu") predition = fluid.layers.fc(input=conv2, size=10, act="softmax") return predition # 变量赋值 image = fluid.layers.data(name="img", shape=[1, 28, 28], dtype="float32") predition = lenet_5(image) place = fluid.CPUPlace() exe = fluid.Executor(place=place) exe.run(fluid.default_startup_program()) # 将结果保存到./paddle_lenet_5_model fluid.io.save_inference_model( "./paddle_lenet_5_model", feeded_var_names=[image.name], target_vars=[predition], executor=exe)