diff --git a/demo/demo_en.rst b/demo/demo_en.rst index 36cd75f1ba2ca0c0f714535235315dbdb7c773a0..963e9af6e9b6bf334b351dc2cbaeaffce3ff66f5 100644 --- a/demo/demo_en.rst +++ b/demo/demo_en.rst @@ -7,6 +7,7 @@ here are some examples for different platforms. .. toctree:: :maxdepth: 1 + paddle/TUTORIAL_EN.md keras/TUTORIAL_EN.md mxnet/TUTORIAL_EN.md pytorch/TUTORIAL_EN.md \ No newline at end of file diff --git a/demo/paddle/TUTORIAL_EN.md b/demo/paddle/TUTORIAL_EN.md new file mode 100644 index 0000000000000000000000000000000000000000..704a01d1954530f7c7ac1b651abf9b6260563cd6 --- /dev/null +++ b/demo/paddle/TUTORIAL_EN.md @@ -0,0 +1,171 @@ +# How to use VisualDL in PaddlePaddle + +Here we will show you how to use VisualDL with PaddlePaddle so that you can visualize the training process of PaddlePaddle. +We will use the Paddle Convolution Neural Network to train the [Cifar10](https://www.cs.toronto.edu/~kriz/cifar.html) dataset as an example. + +This example is the modification with fluid PaddlePaddle's API from this official Paddle Book +[Example](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification) + +The full demonstration code can be downloaded in [here](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/paddle/paddle_cifar10.py). + +The script is based on Paddle v2 0.11. You can do ```pip install paddlepaddle``` or ```docker pull paddlepaddle/paddle:0.11.0```. Notice Paddle does not support Python3 yet and protobuf version needs to be 3.5+. For details, please +follow Paddle's installation guide [here](http://paddlepaddle.org/docs/0.11.0/documentation/en/getstarted/build_and_install/index_en.html) + + +First we initialize Loggers for different types of record as follows: + +```python +# create VisualDL logger and directory +logdir = "./tmp" +logwriter = LogWriter(logdir, sync_cycle=10) + +# create 'train' run +with logwriter.mode("train") as writer: + # create 'loss' scalar tag to keep track of loss function + loss_scalar = writer.scalar("loss") + +with logwriter.mode("train") as writer: + acc_scalar = writer.scalar("acc") + +num_samples = 4 +with logwriter.mode("train") as writer: + conv_image = writer.image("conv_image", num_samples, 1) #show 4 samples for every 1 step + input_image = writer.image("input_image", num_samples, 1) + +with logwriter.mode("train") as writer: + param1_histgram = writer.histogram("param1", 100) #100 buckets, e.g 100 data sets in a histograms + +``` + +We use Paddle v2 Fluid APIs to define our VGG CNN model as follows: + +```python +def vgg16_bn_drop(input): + def conv_block(input, num_filter, groups, dropouts): + return fluid.nets.img_conv_group( + input=input, + pool_size=2, + pool_stride=2, + conv_num_filter=[num_filter] * groups, + conv_filter_size=3, + conv_act='relu', + conv_with_batchnorm=True, + conv_batchnorm_drop_rate=dropouts, + pool_type='max') + + conv1 = conv_block(input, 64, 2, [0.3, 0]) + conv2 = conv_block(conv1, 128, 2, [0.4, 0]) + conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) + conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) + conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) + + drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5) + fc1 = fluid.layers.fc(input=drop, size=512, act=None) + bn = fluid.layers.batch_norm(input=fc1, act='relu') + drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5) + fc2 = fluid.layers.fc(input=drop2, size=512, act=None) + return fc2, conv1 + + +classdim = 10 +data_shape = [3, 32, 32] + +images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') +label = fluid.layers.data(name='label', shape=[1], dtype='int64') + +net, conv1 = vgg16_bn_drop(images) + +predict = fluid.layers.fc( + input=net, + size=classdim, + act='softmax', + param_attr=ParamAttr(name="param1", initializer=NormalInitializer())) +cost = fluid.layers.cross_entropy(input=predict, label=label) +avg_cost = fluid.layers.mean(x=cost) + +optimizer = fluid.optimizer.Adam(learning_rate=0.001) +opts = optimizer.minimize(avg_cost) + +accuracy = fluid.evaluator.Accuracy(input=predict, label=label) + +BATCH_SIZE = 16 +PASS_NUM = 1 + +train_reader = paddle.batch( + paddle.reader.shuffle(paddle.dataset.cifar.train10(), buf_size=128 * 10), + batch_size=BATCH_SIZE) + +place = fluid.CPUPlace() +exe = fluid.Executor(place) +feeder = fluid.DataFeeder(place=place, feed_list=[images, label]) +exe.run(fluid.default_startup_program()) +``` + +Then we start to train and use VisualDL to record data at the same time. + + +```python +for pass_id in range(PASS_NUM): + accuracy.reset(exe) + for data in train_reader(): + loss, conv1_out, param1, acc = exe.run( + fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[avg_cost, conv1, param1_var] + accuracy.metrics) + pass_acc = accuracy.eval(exe) + + # all code below is for VisualDL + + # start picking sample from beginning + if sample_num == 0: + input_image.start_sampling() + conv_image.start_sampling() + + idx1 = input_image.is_sample_taken() + idx2 = conv_image.is_sample_taken() + assert idx1 == idx2 + idx = idx1 + if idx != -1: + image_data = data[0][0] + # reshape the image to 32x32 and 3 channels + input_image_data = np.transpose( + image_data.reshape(data_shape), axes=[1, 2, 0]) + # add sample to VisualDL Image Writer to view input image + input_image.set_sample(idx, input_image_data.shape, + input_image_data.flatten()) + + + conv_image_data = conv1_out[0][0] + # add sample to view conv image + conv_image.set_sample(idx, conv_image_data.shape, + conv_image_data.flatten()) + + sample_num += 1 + # when we have enough samples, call finish sampling() + if sample_num % num_samples == 0: + input_image.finish_sampling() + conv_image.finish_sampling() + sample_num = 0 + + # add record for loss and accuracy to scalar + loss_scalar.add_record(step, loss) + acc_scalar.add_record(step, acc) + param1_histgram.add_record(step, param1.flatten()) + + print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str( + pass_acc)) + step += 1 +``` + +After the training, launch VisualDL and here is the results. +The scalar diagram of the accuracy and loss is as follows: + +
+ +
+ +The 4 samples of input image and the convolution layer image after the training are as follows: + ++ +