Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
VisualDL
提交
888f56de
V
VisualDL
项目概览
PaddlePaddle
/
VisualDL
大约 2 年 前同步成功
通知
89
Star
4655
Fork
642
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
10
列表
看板
标记
里程碑
合并请求
2
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
V
VisualDL
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
10
Issue
10
列表
看板
标记
里程碑
合并请求
2
合并请求
2
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
“823c4f87beff04e4029e3f4a183658621ca8f01b”上不存在“paddle/git@gitcode.net:s920243400/PaddleDetection.git”
提交
888f56de
编写于
1月 16, 2018
作者:
D
daminglu
提交者:
abigale Li
1月 16, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
intro english (#162)
上级
c3333b6f
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
107 addition
and
0 deletion
+107
-0
docs/introduction/introduction_en.md
docs/introduction/introduction_en.md
+107
-0
未找到文件。
docs/introduction/introduction_en.md
0 → 100644
浏览文件 @
888f56de
## Visual DL
`Visual DL`
: makes your deep learning jobs more alive via visualization.
At present, most deep learning frameworks are using Python. The status of training process is recorded
by logs. A sample log is as follow:
```
shell
loss:[2.532566] acc:[0.0859375] pass_acc:[0.0859375]
loss:[2.6916795] acc:[0.09375] pass_acc:[0.08984375]
loss:[2.7038598] acc:[0.1171875] pass_acc:[0.09895834]
loss:[2.6405232] acc:[0.125] pass_acc:[0.10546875]
```
This method can show short-term training status. But it can hardly show long-term trends.
Visual DL can help you visualize the whole training process and construct plots as below:
<p
align=
"center"
>
<img
src=
"scalar.png"
/>
</p>
The above is just one of Visual DL's many features. Visual DL has the following advantages:
### Comprehensive Usability
1.
Scalar: support scalar line/dot data visualization, like the figure above.
-
can show metrics such as loss, accuracy, etc via lines and dots and let user see trends easily
-
can draw several curves in one figure so that it is easy to compare various metrics
2.
Image: support image display.
-
display input and intermediate images, easy to check data sample
-
support display for convolutional layer, easy to see results after each layer
<p
align=
"center"
>
<img
src=
"dog.png"
height=
"300"
width=
"300"
/>
</p>
-
support image-generating tasks to preview generated image
<p
align=
"center"
>
<img
src=
"image-gan.png"
height=
"300"
width=
"300"
/>
</p>
3.
Histogram: display of parameter distribution, easy to check distribution curves in each tensor,
show the trend of parameter distribution.
- help users understand the training process and the underneath reason for the change from one parameter distribution to another
- help users judge if the training is on the track. For example, if parameter change rate becomes close to 0 or grows rapidly,
then exploding and vanishing gradients might happen
<p
align=
"center"
>
<img
src=
"histogram.png"
/>
</p>
4.
Graph: visualize the model structure of deep learning networks.
-
Graph supports the preview of
[
ONNX
](
http://onnx.ai/
)
model. Since models of MXNet, Caffe2, PyTorch and CNTK can be converted to ONNX models easily,
Visual DL can also support these models indirectly
-
easy to see wrong configuration of a network
-
help understand network structure
<p
align=
"center"
>
<img
src=
"graph.png"
height=
"250"
width=
"400"
/>
</p>
### Easy to Integrate
Visual DL provides independent Python SDK. If the training task is based on Python, user can simply
use Visual DL by installing the Visual DL wheel package and importing it into her/his own project.
a. Install Visual DL package.
```
shell
pip
install
visualdl
```
b. In your own Python code, add logic for Visual DL to collect logs.
```
python
import
visualdl
```
### Easy to Use
a. Add log collecting logic to your own Python code.
```
python
import
visualdl
log_writer
=
LogWriter
(
"./log"
,
sync_cycle
=
30
)
with
log_writer
.
mode
(
'train'
)
as
logger
:
loss_writer
=
logger
.
scalar
(
"loss"
)
for
step
in
steps
:
loss
=
train_process
()
loss_writer
.
add_record
(
step
,
loss
)
```
b. Launch Visual DL service and you can see the visualization results.
```
shell
visualDL
--logdir
./log
--port
8080
```
### Purely Open Source
As a deep learning visualization tool, Visual DL support most deep learning frameworks. On the SDK perspective,
it is easy to integrate into Python and C++ projects. Through ONNX, Visual DL's Graph component can support
many popular frameworks such as PaddlePaddle, MXNet, PyTorch and Caffe2.
Welcome everyone to comment and contribute to make Visual DL easier to use, with more features.
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录