未验证 提交 59c86e52 编写于 作者: C chenjian 提交者: GitHub

add profiler_test demo code (#1143)

上级 a27a4f25
import numpy as np
import paddle
import paddle.nn.functional as F
import paddle.profiler as profiler
from paddle.vision.transforms import ToTensor
transform = ToTensor()
cifar10_train = paddle.vision.datasets.Cifar10(
mode='train', transform=transform)
cifar10_test = paddle.vision.datasets.Cifar10(mode='test', transform=transform)
class MyNet(paddle.nn.Layer):
def __init__(self, num_classes=1):
super(MyNet, self).__init__()
self.conv1 = paddle.nn.Conv2D(
in_channels=3, out_channels=32, kernel_size=(3, 3))
self.pool1 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
self.conv2 = paddle.nn.Conv2D(
in_channels=32, out_channels=64, kernel_size=(3, 3))
self.pool2 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
self.conv3 = paddle.nn.Conv2D(
in_channels=64, out_channels=64, kernel_size=(3, 3))
self.flatten = paddle.nn.Flatten()
self.linear1 = paddle.nn.Linear(in_features=1024, out_features=64)
self.linear2 = paddle.nn.Linear(
in_features=64, out_features=num_classes)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.pool1(x)
x = self.conv2(x)
x = F.relu(x)
x = self.pool2(x)
x = self.conv3(x)
x = F.relu(x)
x = self.flatten(x)
x = self.linear1(x)
x = F.relu(x)
x = self.linear2(x)
return x
epoch_num = 10
batch_size = 32
learning_rate = 0.001
val_acc_history = []
val_loss_history = []
def train(model):
print('start training ... ')
# turn into training mode
model.train()
opt = paddle.optimizer.Adam(
learning_rate=learning_rate, parameters=model.parameters())
train_loader = paddle.io.DataLoader(
cifar10_train, shuffle=True, batch_size=batch_size, num_workers=1)
valid_loader = paddle.io.DataLoader(cifar10_test, batch_size=batch_size)
# 创建性能分析器相关的代码
def my_on_trace_ready(prof): # 定义回调函数,性能分析器结束采集数据时会被调用
callback = profiler.export_chrome_tracing(
'./profiler_demo') # 创建导出性能数据到 profiler_demo 文件夹的回调函数
callback(prof) # 执行该导出函数
prof.summary(
sorted_by=profiler.SortedKeys.GPUTotal) # 打印表单,按 GPUTotal 排序表单项
p = profiler.Profiler(
scheduler=[3, 14], on_trace_ready=my_on_trace_ready,
timer_only=False) # 初始化 Profiler 对象
p.start() # 性能分析器进入第 0 个 step
for epoch in range(epoch_num):
for batch_id, data in enumerate(train_loader()):
x_data = data[0]
y_data = paddle.to_tensor(data[1])
y_data = paddle.unsqueeze(y_data, 1)
logits = model(x_data)
loss = F.cross_entropy(logits, y_data)
if batch_id % 1000 == 0:
print("epoch: {}, batch_id: {}, loss is: {}".format(
epoch, batch_id, loss.numpy()))
loss.backward()
opt.step()
opt.clear_grad()
p.step() # 指示性能分析器进入下一个 step
if batch_id == 19:
p.stop() # 关闭性能分析器
exit() # 做性能分析时,可以将程序提前退出
# evaluate model after one epoch
model.eval()
accuracies = []
losses = []
for batch_id, data in enumerate(valid_loader()):
x_data = data[0]
y_data = paddle.to_tensor(data[1])
y_data = paddle.unsqueeze(y_data, 1)
logits = model(x_data)
loss = F.cross_entropy(logits, y_data)
acc = paddle.metric.accuracy(logits, y_data)
accuracies.append(acc.numpy())
losses.append(loss.numpy())
avg_acc, avg_loss = np.mean(accuracies), np.mean(losses)
print("[validation] accuracy/loss: {}/{}".format(avg_acc, avg_loss))
val_acc_history.append(avg_acc)
val_loss_history.append(avg_loss)
model.train()
model = MyNet(num_classes=10)
train(model)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册