未验证 提交 2f93fc41 编写于 作者: C chenjian 提交者: GitHub

fix export bug when multiple blocks in graph (#1162) (#1180)

* fix expport bug when multiple blocks in graph

* fix

* refactor code
上级 72fbe8be
......@@ -26,7 +26,8 @@ def translate_graph(model, input_spec, verbose=True):
with tempfile.TemporaryDirectory() as tmp:
model._full_name = '{}[{}]'.format(model.__class__.__name__, "model")
create_opname_scope(model)
paddle.jit.save(model, os.path.join(tmp, 'temp'), input_spec)
model = paddle.jit.to_static(model, input_spec)
paddle.jit.save(model, os.path.join(tmp, 'temp'))
model_data = open(os.path.join(tmp, 'temp.pdmodel'), 'rb').read()
result = analyse_model(model_data)
if verbose:
......
......@@ -19,6 +19,145 @@ import re
_graph_version = '1.0.0'
def post_order_traverse(root, all_ops, post_order_results):
'''
Traversal a tree in post order.
Args:
root: current node of the tree.
all_ops: used to index all nodes.
post_order_results(list): used to store traversal results in place.
'''
for child in all_ops[root]['children_node']:
post_order_traverse(child, all_ops, post_order_results)
post_order_results.append(root)
return
def create_non_leaf_nodes(parent_node_name, child_node_name, all_ops,
general_children_dict):
'''
Create a path from leaf to root, e.g. /a/b/c -> /a/b -> /a -> /. If node in path not exists, \
create one and fill information.
Args:
parent_node_name: name of parent node
child_node_name: name of current node
all_ops: used to store and index all nodes.
general_children_dict: used to store all descendants for each non-leaf node.
'''
if parent_node_name == '/' or parent_node_name == '': # root node
parent_node_name = '/'
if parent_node_name not in all_ops:
all_ops[parent_node_name] = {}
all_ops[parent_node_name]['children_node'] = set()
all_ops[parent_node_name]['name'] = parent_node_name
all_ops[parent_node_name]['show_name'] = os.path.dirname(
all_ops[child_node_name]['show_name'])
all_ops[parent_node_name]['attrs'] = {}
all_ops[parent_node_name]['input_nodes'] = set()
all_ops[parent_node_name]['output_nodes'] = set()
all_ops[parent_node_name]['type'] = os.path.basename(
all_ops[parent_node_name]['show_name'])
all_ops[parent_node_name]['input_vars'] = set()
all_ops[parent_node_name]['output_vars'] = set()
all_ops[parent_node_name]['parent_node'] = ''
all_ops[parent_node_name]['edge_input_nodes'] = []
all_ops[parent_node_name]['edge_output_nodes'] = []
all_ops[parent_node_name]['is_leaf_node'] = False
all_ops[child_node_name]['parent_node'] = parent_node_name
all_ops[parent_node_name]['children_node'].add(child_node_name)
general_children_dict[parent_node_name].add(child_node_name)
general_children_dict[parent_node_name].update(
general_children_dict[child_node_name])
if parent_node_name == '/': # root node
return
else:
create_non_leaf_nodes(
os.path.dirname(parent_node_name), parent_node_name, all_ops,
general_children_dict)
def construct_edges(var_name, all_ops, all_vars, all_edges):
'''
Construct path edges from var's from_node to to_nodes.
Algorithm:
1. Judge if src_node and dst_node have the same parent node, if yes, link them directly
and fill information in all_edges, return.
2. Find the closest common ancestor, repeat link node and its parent until reach the common ancestor.
Every time construct a new edge, fill information in all_edges.
Args:
var_name: name of variable to process
all_ops: used to index all nodes.
all_vars: used to index all variables.
all_edges: used to store and index all edges
'''
from_node = all_vars[var_name]['from_node']
to_nodes = all_vars[var_name]['to_nodes']
def _construct_edge(src_node, dst_node):
if all_ops[src_node]['parent_node'] == all_ops[dst_node][
'parent_node']:
if (src_node, dst_node) not in all_edges:
all_edges[(src_node, dst_node)] = {
'from_node': src_node,
'to_node': dst_node,
'vars': {var_name},
'label': ''
}
else:
all_edges[(src_node, dst_node)]['vars'].add(var_name)
else:
common_ancestor = os.path.commonpath([src_node, dst_node])
src_base_node = src_node
while True:
parent_node = all_ops[src_base_node]['parent_node']
if parent_node == common_ancestor:
break
if (src_base_node, parent_node) not in all_edges:
all_edges[(src_base_node, parent_node)] = {
'from_node': src_base_node,
'to_node': parent_node,
'vars': {var_name},
'label': ''
}
else:
all_edges[(src_base_node,
parent_node)]['vars'].add(var_name)
src_base_node = parent_node
dst_base_node = dst_node
while True:
parent_node = all_ops[dst_base_node]['parent_node']
if parent_node == common_ancestor:
break
if (parent_node, dst_base_node) not in all_edges:
all_edges[(parent_node, dst_base_node)] = {
'from_node': parent_node,
'to_node': dst_base_node,
'vars': {var_name},
'label': ''
}
else:
all_edges[(parent_node,
dst_base_node)]['vars'].add(var_name)
dst_base_node = parent_node
if (src_base_node, dst_base_node) not in all_edges:
all_edges[(src_base_node, dst_base_node)] = {
'from_node': src_base_node,
'to_node': dst_base_node,
'vars': {var_name},
'label': ''
}
else:
all_edges[(src_base_node, dst_base_node)]['vars'].add(var_name)
return
if from_node and to_nodes:
for to_node in to_nodes:
if from_node == to_node:
continue
_construct_edge(from_node, to_node)
def analyse_model(model_pb): # noqa: C901
try:
from paddle.framework import core
......@@ -52,9 +191,11 @@ def analyse_model(model_pb): # noqa: C901
op_inputvars_dict = collections.defaultdict(list)
op_outputvars_dict = collections.defaultdict(list)
for i in range(program_desc.num_blocks()):
if i != 0: # We do not show sub block for clarity now
continue
block_desc = program_desc.block(i)
# vars info
for i, var_desc in enumerate(block_desc.all_vars()):
for var_desc in block_desc.all_vars():
try:
var_name = var_desc.name()
all_vars[var_name] = {}
......@@ -88,9 +229,13 @@ def analyse_model(model_pb): # noqa: C901
all_vars[var_name]['from_node'] = ''
all_vars[var_name]['to_nodes'] = []
for i in range(program_desc.num_blocks()):
if i != 0: # We do not show sub block for clarity now
continue
block_desc = program_desc.block(i)
# ops info
for i in range(block_desc.op_size()):
op_desc = block_desc.op(i)
for j in range(block_desc.op_size()):
op_desc = block_desc.op(j)
op_name = op_desc.attr('op_namescope') + generate(
str(op_desc.type()))
all_ops[op_name] = {}
......@@ -117,11 +262,16 @@ def analyse_model(model_pb): # noqa: C901
attr_dict = {}
attr_type_dict = {}
for attr_name in op_desc.attr_names():
attr_dict[attr_name] = op_desc.attr(attr_name)
attr_type = op_desc.attr_type(attr_name)
attr_type_dict[attr_name] = attr_type_name[
attr_type] if attr_type in attr_type_name else str(
attr_type).split('.')[1]
try:
if attr_name == 'sub_block':
continue
attr_dict[attr_name] = op_desc.attr(attr_name)
attr_type = op_desc.attr_type(attr_name)
attr_type_dict[attr_name] = attr_type_name[
attr_type] if attr_type in attr_type_name else str(
attr_type).split('.')[1]
except Exception:
continue
all_ops[op_name]['attrs'] = attr_dict
all_ops[op_name]['attr_types'] = attr_type_dict
all_ops[op_name]['children_node'] = []
......@@ -129,181 +279,65 @@ def analyse_model(model_pb): # noqa: C901
all_ops[op_name]['output_nodes'] = []
all_ops[op_name]['edge_input_nodes'] = []
all_ops[op_name]['edge_output_nodes'] = []
# second pass, create non-leaf nodes, fill 'parent_node', 'children_nodes' of nodes.
for variable_name in all_vars:
if all_vars[variable_name]['from_node'] == '':
continue
# some variable's input and output node are the same, we should prevent to show this situation as a cycle
from_node_name = all_vars[variable_name]['from_node']
for to_node_name in all_vars[variable_name]['to_nodes']:
if to_node_name != from_node_name:
all_ops[from_node_name]['output_nodes'].append(
to_node_name)
all_ops[to_node_name]['input_nodes'].append(from_node_name)
general_children_dict = collections.defaultdict(set)
def create_non_leaf_nodes(parent_node_name, child_node_name):
if parent_node_name == '/' or parent_node_name == '': # root node
parent_node_name = '/'
if parent_node_name not in all_ops:
all_ops[parent_node_name] = {}
all_ops[parent_node_name]['children_node'] = set()
all_ops[parent_node_name]['name'] = parent_node_name
all_ops[parent_node_name]['show_name'] = os.path.dirname(
all_ops[child_node_name]['show_name'])
all_ops[parent_node_name]['attrs'] = {}
all_ops[parent_node_name]['input_nodes'] = set()
all_ops[parent_node_name]['output_nodes'] = set()
all_ops[parent_node_name]['type'] = os.path.basename(
all_ops[parent_node_name]['show_name'])
all_ops[parent_node_name]['input_vars'] = set()
all_ops[parent_node_name]['output_vars'] = set()
all_ops[parent_node_name]['parent_node'] = ''
all_ops[parent_node_name]['edge_input_nodes'] = []
all_ops[parent_node_name]['edge_output_nodes'] = []
all_ops[parent_node_name]['is_leaf_node'] = False
all_ops[child_node_name]['parent_node'] = parent_node_name
all_ops[parent_node_name]['children_node'].add(child_node_name)
general_children_dict[parent_node_name].add(child_node_name)
general_children_dict[parent_node_name].update(
general_children_dict[child_node_name])
if parent_node_name == '/': # root node
return
else:
create_non_leaf_nodes(
os.path.dirname(parent_node_name), parent_node_name)
def construct_edges(var_name):
'''
Construct path edges from var's from_node to to_nodes.
Algorithm:
1. Judge if src_node and dst_node have the same parent node, if yes, link them directly
and fill information in all_edges, return.
2. Find the closest common ancestor, repeat link node and its parent until reach the common ancestor.
Every time construct a new edge, fill information in all_edges.
'''
from_node = all_vars[var_name]['from_node']
to_nodes = all_vars[var_name]['to_nodes']
def _construct_edge(src_node, dst_node):
if all_ops[src_node]['parent_node'] == all_ops[dst_node][
'parent_node']:
if (src_node, dst_node) not in all_edges:
all_edges[(src_node, dst_node)] = {
'from_node': src_node,
'to_node': dst_node,
'vars': {var_name},
'label': ''
}
else:
all_edges[(src_node, dst_node)]['vars'].add(var_name)
else:
common_ancestor = os.path.commonpath([src_node, dst_node])
src_base_node = src_node
while True:
parent_node = all_ops[src_base_node]['parent_node']
if parent_node == common_ancestor:
break
if (src_base_node, parent_node) not in all_edges:
all_edges[(src_base_node, parent_node)] = {
'from_node': src_base_node,
'to_node': parent_node,
'vars': {var_name},
'label': ''
}
else:
all_edges[(src_base_node,
parent_node)]['vars'].add(var_name)
src_base_node = parent_node
dst_base_node = dst_node
while True:
parent_node = all_ops[dst_base_node]['parent_node']
if parent_node == common_ancestor:
break
if (parent_node, dst_base_node) not in all_edges:
all_edges[(parent_node, dst_base_node)] = {
'from_node': parent_node,
'to_node': dst_base_node,
'vars': {var_name},
'label': ''
}
else:
all_edges[(parent_node,
dst_base_node)]['vars'].add(var_name)
dst_base_node = parent_node
if (src_base_node, dst_base_node) not in all_edges:
all_edges[(src_base_node, dst_base_node)] = {
'from_node': src_base_node,
'to_node': dst_base_node,
'vars': {var_name},
'label': ''
}
else:
all_edges[(src_base_node,
dst_base_node)]['vars'].add(var_name)
return
if from_node and to_nodes:
for to_node in to_nodes:
if from_node == to_node:
continue
_construct_edge(from_node, to_node)
# second pass, create non-leaf nodes, fill 'parent_node', 'children_nodes' of nodes.
for variable_name in all_vars:
if all_vars[variable_name]['from_node'] == '':
continue
# some variable's input and output node are the same, we should prevent to show this situation as a cycle
from_node_name = all_vars[variable_name]['from_node']
for to_node_name in all_vars[variable_name]['to_nodes']:
if to_node_name != from_node_name:
all_ops[from_node_name]['output_nodes'].append(to_node_name)
all_ops[to_node_name]['input_nodes'].append(from_node_name)
all_op_names = list(all_ops.keys())
for op_name in all_op_names:
create_non_leaf_nodes(os.path.dirname(op_name), op_name)
general_children_dict = collections.defaultdict(set)
# fill all non-leaf node's 'output_nodes' 'input_nodes' 'output_vars' 'input_vars'
# post-order traverse tree
post_order_results = []
all_op_names = list(all_ops.keys())
for op_name in all_op_names:
create_non_leaf_nodes(
os.path.dirname(op_name), op_name, all_ops, general_children_dict)
def post_order_traverse(root):
for child in all_ops[root]['children_node']:
post_order_traverse(child)
nonlocal post_order_results
post_order_results.append(root)
return
# fill all non-leaf node's 'output_nodes' 'input_nodes' 'output_vars' 'input_vars'
# post-order traverse tree
post_order_results = []
post_order_traverse('/')
post_order_traverse('/', all_ops, post_order_results)
for op_name in post_order_results:
op = all_ops[op_name]
op['children_node'] = list(op['children_node'])
for op_name in post_order_results:
op = all_ops[op_name]
op['children_node'] = list(op['children_node'])
if op['children_node']:
for child_op in op['children_node']:
for input_node in all_ops[child_op]['input_nodes']:
if input_node in general_children_dict[op_name]:
continue
else:
op['input_nodes'].add(input_node)
for output_node in all_ops[child_op]['output_nodes']:
if output_node in general_children_dict[op_name]:
continue
else:
op['output_nodes'].add(output_node)
for input_var in op_inputvars_dict[child_op]:
if all_vars[input_var][
'from_node'] not in general_children_dict[
op_name]:
op['input_vars'].add(input_var)
for output_var in op_outputvars_dict[child_op]:
for to_node_name in all_vars[output_var]['to_nodes']:
if to_node_name not in general_children_dict[
op_name]:
op['output_vars'].add(output_var)
op['input_nodes'] = list(op['input_nodes'])
op['output_nodes'] = list(op['output_nodes'])
op_inputvars_dict[op_name] = list(op['input_vars'])
op_outputvars_dict[op_name] = list(op['output_vars'])
op['input_vars'] = {'X': list(op['input_vars'])}
op['output_vars'] = {'Y': list(op['output_vars'])}
if op['children_node']:
for child_op in op['children_node']:
for input_node in all_ops[child_op]['input_nodes']:
if input_node in general_children_dict[op_name]:
continue
else:
op['input_nodes'].add(input_node)
for output_node in all_ops[child_op]['output_nodes']:
if output_node in general_children_dict[op_name]:
continue
else:
op['output_nodes'].add(output_node)
for input_var in op_inputvars_dict[child_op]:
if all_vars[input_var][
'from_node'] not in general_children_dict[op_name]:
op['input_vars'].add(input_var)
for output_var in op_outputvars_dict[child_op]:
for to_node_name in all_vars[output_var]['to_nodes']:
if to_node_name not in general_children_dict[op_name]:
op['output_vars'].add(output_var)
op['input_nodes'] = list(op['input_nodes'])
op['output_nodes'] = list(op['output_nodes'])
op_inputvars_dict[op_name] = list(op['input_vars'])
op_outputvars_dict[op_name] = list(op['output_vars'])
op['input_vars'] = {'X': list(op['input_vars'])}
op['output_vars'] = {'Y': list(op['output_vars'])}
# Supplement edges and 'edge_input_nodes', 'edge_output_nodes' in op to help draw in frontend
for var_name in all_vars.keys():
construct_edges(var_name)
construct_edges(var_name, all_ops, all_vars, all_edges)
for src_node, to_node in all_edges.keys():
all_ops[src_node]['edge_output_nodes'].append(to_node)
......
......@@ -665,7 +665,7 @@ class LogWriter(object):
result = translate_graph(model, input_spec, verbose)
except Exception as e:
print("Failed to save model graph, error: {}".format(e))
return
raise e
graph_file_name = bfile.join(
self.logdir,
"vdlgraph.%010d.log%s" % (time.time(), self._filename_suffix))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册