未验证 提交 0bf6f0df 编写于 作者: 走神的阿圆's avatar 走神的阿圆 提交者: GitHub

Modify readdocs (#748)

* modify readthedocs

* modify readthdocs
上级 2d46c45a
[**中文**](./README.md)
<p align="center">
<img src="https://raw.githubusercontent.com/PaddlePaddle/VisualDL/develop/frontend/packages/core/public/images/logo-visualdl.svg?sanitize=true" width="70%"/>
</p>
<p align="center">
<a href="https://travis-ci.org/PaddlePaddle/VisualDL"><img src="https://img.shields.io/travis/paddlepaddle/visualdl/develop?style=flat-square" alt="Build Status" /></a>
<a href="https://pypi.org/project/visualdl/"><img src="https://img.shields.io/pypi/v/visualdl?style=flat-square" alt="PyPI" /></a>
<a href="https://pypi.org/project/visualdl/#files"><img src="https://img.shields.io/pypi/dm/visualdl?style=flat-square" alt="Downloads" /></a>
<a href="https://github.com/PaddlePaddle/VisualDL/blob/develop/LICENSE"><img src="https://img.shields.io/github/license/paddlepaddle/visualdl?style=flat-square" alt="License" /></a>
</p>
<p align="center">
<a href="javascript:void(0)"><img src="https://img.shields.io/badge/QQ_Group-1045783368-52B6EF?style=social&logo=tencent-qq&logoColor=000&logoWidth=20" alt="QQ Group" /></a>
</p>
## Introduction
VisualDL, a visualization analysis tool of PaddlePaddle, provides a variety of charts to show the trends of parameters, and visualizes model structures, data samples, histograms of tensors, pr curves and high-dimensional data distributions. It enables users to understand the training process and the model structure more clearly and intuitively so as to optimize models efficiently.
VisualDL provides various visualization functions, including tracking metrics in real-time, visualizing the model structure, displaying the data sample, presenting the changes of distributions of tensors, showing the pr curves, projecting high-dimensional data to a lower dimensional space and more. For specific guidelines of each function, please refer to [**VisualDL User Guide**](./docs/components/UserGuide-en.md). Currently, VisualDL iterates rapidly and new functions will be continously added.
VisualDL natively supports the use of Python. Developers can retrieve plentiful visualization results by simply adding a few lines of Python code into the model before training.
## Contents
* [Key Highlights](#Key-Highlights)
* [Installation](#Installation)
* [Usage Guideline](#Usage-Guideline)
* [Function Preview](#Function-Preview)
* [Contribution](#Contribution)
* [More Details](#More-Details)
* [Technical Communication](#Technical-Communication)
## Key Highlights
### Easy to Use
The high-level design of API makes it easy to use. Only one click can initiate the visualization of model structures.
### Various Functions
The function contains the visualization of training parameters, data samples, graph structures, histograms of tensors, PR curves and high-dimensional data.
### High Compatibility
VisualDL provides the visualization of the mainstream model structures such as Paddle, ONNX, Caffe, widely supporting visual analysis for diverse users.
### Fully Support
By Integrating into PaddlePaddle and related modules, VisualDL allows developers to use different components unobstructed, and thus have the best experience in the PaddlePaddle ecosystem.
## Installation
### Install by PiP
```shell
python -m pip install visualdl -i https://mirror.baidu.com/pypi/simple
```
### Install by Code
```
git clone https://github.com/PaddlePaddle/VisualDL.git
cd VisualDL
python setup.py bdist_wheel
pip install --upgrade dist/visualdl-*.whl
```
Please note that Python 2 is no longer maintained officially since January 1, 2020. VisualDL now only supports Python 3 in order to ensure the usability of codes.
## Usage Guideline
VisualDL stores the data, parameters and other information of the training process in a log file. Users can launch the panel to observe the visualization results.
### 1. Log
The Python SDK is provided at the back end of VisualDL, and a logger can be customized through LogWriter. The interface description is shown as follows:
```python
class LogWriter(logdir=None,
comment='',
max_queue=10,
flush_secs=120,
filename_suffix='',
write_to_disk=True,
**kwargs)
```
#### Interface Parameters
| parameters | type | meaning |
| --------------- | ------- | ------------------------------------------------------------ |
| logdir | string | The path location of log file. VisualDL will create a log file under this path to record information generated by the training process. If not specified, the path will be `runs/${CURRENT_TIME}`as default. |
| comment | string | Add a suffix to the log folder name, which is invalid if logdir is already specified. |
| max_queue | int | The maximum capacity of the data generated before recording in a log file. If the capacity is reached, the data is immediately written into the log file. |
| flush_secs | int | The maximum cache time of the data generated before recording in a log file, when this time is reached, the data is immediately written to the log file. |
| filename_suffix | string | Add a suffix to the default log file name. |
| write_to_disk | boolean | Write into disk or not. |
#### Example
Create a log file and record scalar values:
```python
from visualdl import LogWriter
# create a log file under `./log/scalar_test/train`
with LogWriter(logdir="./log/scalar_test/train") as writer:
# use `add_scalar` to record scalar values
writer.add_scalar(tag="acc", step=1, value=0.5678)
writer.add_scalar(tag="acc", step=2, value=0.6878)
writer.add_scalar(tag="acc", step=3, value=0.9878)
```
### 2. Launch Panel
In the above example, the log has recorded three sets of scalar values. Develpers can view the visualization results of the log file through launching the visualDL panel. There are two ways to launch a log file:
#### Launch by Command Line
Use the command line to launch the VisualDL panel:
```python
visualdl --logdir <dir_1, dir_2, ... , dir_n> --host <host> --port <port> --cache-timeout <cache_timeout> --language <language> --public-path <public_path> --api-only
```
Parameter details:
| parameters | meaning |
| --------------- | ------------------------------------------------------------ |
| --logdir | Set one or more directories of the log. VisualDL will search the log file recursively under this path to display the all experimental results. |
| --host | Specify IP address. The default value is·`127.0.0.1`. |
| --port | Set the port. The default value is`8040`. |
| --cache-timeout | Cache time of the backend. During the cache time, the front end requests the same URL multiple times, and then the returned data is obtained from the cache. The default cache time is 20 seconds. |
| --language | The language of the VisualDL panel. Language can be specified as 'en' or 'zh', and the default is the language used by the browser. |
| --public-path | The URL path of the VisualDL panel. The default path is '/app', meaning that the access address is 'http://&lt;host&gt;:&lt;port&gt;/app'. |
| --api-only | Decide whether or not to provide only API. If this parameter is set, VisualDL will only provides API service without displaying the web page, and the API address is 'http://&lt;host&gt;:&lt;port&gt;/&lt;public_path&gt;/api'. Additionally, If the public_path parameter is not specified, the default address is 'http://&lt;host&gt;:&lt;port&gt;/api'. |
To visualize the log file generated in the previous step, developers can launch the panel through the command:
```
visualdl --logdir ./log
```
#### Launch in Python Script
Developers can start the VisualDL panel in Python script as follows:
```python
visualdl.server.app.run(logdir,
host="127.0.0.1",
port=8080,
cache_timeout=20,
language=None,
public_path=None,
api_only=False,
open_browser=False)
```
Please note: since all parameters are indefinite except `logdir`, developers should specify parameter names when using them.
The interface parameters are as follows:
| parameters | type | meaning |
| ------------- | -------------------------------------------------- | ------------------------------------------------------------ |
| logdir | string or list[string_1, string_2, ... , string_n] | Set one or more directories of the log. VisualDL will search the log file recursively under this path to display the all experimental results. |
| host | string | Specify IP address. The default value is·`127.0.0.1`. |
| port | int | Set the port. The default value is`8040`. |
| cache_timeout | int | Cache time of the backend. During the cache time, the front end requests the same URL multiple times, and then the returned data is obtained from the cache. The default cache time is 20 seconds. |
| language | string | The language of the VisualDL panel. Language can be specified as 'en' or 'zh', and the default is the language used by the browser. |
| public_path | string | The URL path of the VisualDL panel. The default path is '/app', meaning that the access address is 'http://&lt;host&gt;:&lt;port&gt;/app'. |
| api_only | boolean | Decide whether or not to provide only API. If this parameter is set, VisualDL will only provides API service without displaying the web page, and the API address is 'http://&lt;host&gt;:&lt;port&gt;/&lt;public_path&gt;/api'. Additionally, If the parameter public_path is not specified, the default address is 'http://&lt;host&gt;:&lt;port&gt;/api'. |
| open_browser | boolean | Whether or not to open the browser. If this parameter is set as True, the browser will be openned automatically and VisualDL panel will be launched at the same time. If parameter api_only is specified as True, parameter open_browser can be ignored. |
To visualize the log file generated in the previous step, developers can launch the panel through the command:
```python
from visualdl.server import app
app.run(logdir="./log")
```
After launching the panel by one of the above methods, developers can see the visualization results on the browser shown as blow:
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/82786044-67ae9880-9e96-11ea-8a2b-3a0951a6ec19.png" width="60%"/>
</p>
## Function Preview
### Scalar
**Scalar** makes use of various charts to display how the parameters, such as accuracy, loss and learning rate, change during the training process. In this case, developers can observe not only the single but also the multiple groups of parameters in order to understand the training process and thus speed up the process of model tuning.
#### Dynamic Display
After the launchment of VisualDL Board, the LogReader will continuously record the data to display in the front-end. Hence, the changes of parameters can be visualized in real-time, as shown below:
<p align="center">
<img src="https://visualdl.bj.bcebos.com/images/dynamic_display.gif" width="60%"/>
</p>
#### Comparison of Multiple Experiments
Developers can compare with multiple experiments by specifying and uploading the path of each experiment at the same time so as to visualize the same parameters in the same chart.
<p align="center">
<img src="https://visualdl.bj.bcebos.com/images/multi_experiments.gif" width="100%"/>
</p>
### Image
**Image** provides real-time visualizations of the image data during the training process, allowing developers to observe the changes of images in different training stages and to deeply understand the effects of the training process.
<p align="center">
<img src="https://visualdl.bj.bcebos.com/images/image-eye.gif" width="60%"/>
</p>
### Audio
**Audio** aims to allow developers to listen to the audio data in real-time during the training process, helping developers to monitor the process of speech recognition and text-to-speech.
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/88752564-d22ccf00-d18c-11ea-9711-7b5868986ba7.png" width="85%"/>
</p>
### Graph
**Graph** enables developers to visualize model structures by only one click. Moreover, **Graph** allows Developers to explore model attributes, node information, node input and output. aiding them analyze model structure quickly and understand the direction of data flow easily.
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/84483052-5acdd980-accb-11ea-8519-1608da7ee698.png" width="85%"/>
</p>
### Histogram
Histogram displays how the trend of tensors (weight, bias, gradient, etc.) changes during the training process in the form of histogram. Developers can adjust the model structures accurately by having an in-depth understanding of the effect of each layer.
- Offset Mode
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/86551031-86647c80-bf76-11ea-8ec2-8c86826c8137.png" width="85%"/>
</p>
- Overlay Mode
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/86551033-882e4000-bf76-11ea-8e6a-af954c662ced.png" width="85%"/>
</p>
### High Dimensional
**High Dimensional** provides two approaches--T-SNE and PCA--to do the dimensionality reduction, allowing developers to have an in-depth analysis of the relationship between high-dimensional data and to optimize algorithms based on the analysis.
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/82396340-3e4dd100-9a80-11ea-911d-798acdbc9c90.gif" width="85%"/>
</p>
## Contribution
VisualDL, in which Graph is powered by [Netron](https://github.com/lutzroeder/netron), is an open source project supported by [PaddlePaddle](https://www.paddlepaddle.org/) and [ECharts](https://echarts.apache.org/) . Developers are warmly welcomed to use, comment and contribute.
## More Details
For more details related to the use of VisualDL, please refer to [**VisualDL User Guide**](./docs/components/README.md)
## Technical Communication
Welcome to join the official QQ group 104578336 to communicate with PaddlePaddle team and other developers.
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/82522691-c2758680-9b5c-11ea-9aee-fca994aba175.png" width="20%"/>
</p>
[**English**](./README-en.md)
<p align="center">
<img src="https://raw.githubusercontent.com/PaddlePaddle/VisualDL/develop/frontend/packages/core/public/images/logo-visualdl.svg?sanitize=true" width="70%"/>
</p>
[![Build Status](https://img.shields.io/travis/PaddlePaddle/VisualDL/develop?style=flat-square)](https://travis-ci.org/PaddlePaddle/VisualDL)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat-square)](https://github.com/PaddlePaddle/VisualDL/tree/develop/docs)
[![Release](https://img.shields.io/github/release/PaddlePaddle/VisualDL.svg?style=flat-square)](https://github.com/PaddlePaddle/VisualDL/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg?style=flat-square)](LICENSE)
<p align="center">
<a href="https://travis-ci.org/PaddlePaddle/VisualDL"><img src="https://img.shields.io/travis/paddlepaddle/visualdl/develop?style=flat-square" alt="Build Status" /></a>
<a href="https://pypi.org/project/visualdl/"><img src="https://img.shields.io/pypi/v/visualdl?style=flat-square" alt="PyPI" /></a>
<a href="https://pypi.org/project/visualdl/#files"><img src="https://img.shields.io/pypi/dm/visualdl?style=flat-square" alt="Downloads" /></a>
<a href="https://github.com/PaddlePaddle/VisualDL/blob/develop/LICENSE"><img src="https://img.shields.io/github/license/paddlepaddle/visualdl?style=flat-square" alt="License" /></a>
</p>
<p align="center">
<a href="https://jq.qq.com/?_wv=1027&k=TyzyVT4C" target="_blank" rel="noreferrer"><img src="https://img.shields.io/badge/QQ_Group-1045783368-52B6EF?style=social&logo=tencent-qq&logoColor=000&logoWidth=20" alt="QQ Group" /></a>
</p>
## 介绍
VisualDL是深度学习模型可视化分析工具,以丰富的图表呈现训练参数变化趋势、模型结构、数据样本、高维数据分布等。可帮助用户更清晰直观地理解深度学习模型训练过程及模型结构,进而实现高效的模型优化。
VisualDL是飞桨可视化分析工具,以丰富的图表呈现训练参数变化趋势、模型结构、数据样本、高维数据分布等。可帮助用户更清晰直观地理解深度学习模型训练过程及模型结构,进而实现高效的模型优化。
VisualDL提供丰富的可视化功能,支持标量、图结构、数据样本可视化、直方图、PR曲线及高维数据降维呈现等诸多功能。具体功能使用方式,请参见 [**VisualDL使用指南**](./components/README.md)。项目正处于高速迭代中,敬请期待新组件的加入。
VisualDL提供丰富的可视化功能,支持实时训练参数分析、图结构、数据样本可视化及高维数据降维呈现等诸多功能。具体功能使用方式,请参见 [**VisualDL使用指南**](./components/README.md)。项目正处于高速迭代中,敬请期待新组件的加入
VisualDL支持浏览器种类:Chrome(81和83)、Safari 13、FireFox(77和78)、Edge(Chromium版)
VisualDL原生支持python的使用, 通过在模型的Python配置中添加几行代码,便可为训练过程提供丰富的可视化支持。
......@@ -33,19 +44,19 @@ VisualDL原生支持python的使用, 通过在模型的Python配置中添加
## 核心亮点
#### 简单易用
### 简单易用
API设计简洁易懂,使用简单。模型结构一键实现可视化。
#### 功能丰富
### 功能丰富
功能覆盖训练参数、图结构、数据样本及数据降维可视化。
功能覆盖标量、数据样本、图结构、直方图、PR曲线及数据降维可视化。
#### 高兼容性
### 高兼容性
全面支持Paddle、ONNX、Caffe等市面主流模型结构可视化,广泛支持各类用户进行可视化分析。
#### 全面支持
### 全面支持
与飞桨服务平台及工具组件全面打通,为您在飞桨生态系统中提供最佳使用体验。
......@@ -53,13 +64,21 @@ API设计简洁易懂,使用简单。模型结构一键实现可视化。
## 安装方式
使用pip安装 VisualDL 运行范例:
### 使用pip安装
```shell
pip install --upgrade visualdl==2.0.0b4
python -m pip install visualdl -i https://mirror.baidu.com/pypi/simple
```
### 使用代码安装
```
git clone https://github.com/PaddlePaddle/VisualDL.git
cd VisualDL
python setup.py bdist_wheel
pip install --upgrade dist/visualdl-*.whl
```
需要注意,官方自2020年1月1日起不再维护Python2,为了保障代码可用性,VisualDL现仅支持Python3
## 使用方式
......@@ -82,14 +101,13 @@ class LogWriter(logdir=None,
#### 接口参数
| 参数 | 格式 | 含义 |
| --------------- | ------- | ------------------------------------------------------------------------------------------------------ |
| --------------- | ------- | ------------------------------------------------------------ |
| logdir | string | 日志文件所在的路径,VisualDL将在此路径下建立日志文件并进行记录,如果不填则默认为`runs/${CURRENT_TIME}` |
| comment | string | 为日志文件夹名添加后缀,如果制定了logdir则此项无效 |
| max_queue | int | 日志记录消息队列的最大容量,达到此容量则立即写入到日志文件 |
| flush_secs | int | 日志记录消息队列的最大缓存时间,达到此时间则立即写入到日志文件 |
| filename_suffix | string | 为默认的日志文件名添加后缀 |
| write_to_disk | boolean | 是否写入到磁盘 |
| display_name | string | 实际展示在面板中的`runs`名称,可隐藏路径信息 |
#### 示例
......@@ -123,13 +141,13 @@ visualdl --logdir <dir_1, dir_2, ... , dir_n> --host <host> --port <port> --cach
| 参数 | 意义 |
| --------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| --logdir | 设定日志所在目录,可以指定多个目录,VisualDL将遍历并且迭代寻找指定目录的子目录,将所有实验结果进行可视化 |
| --model | 设定模型文件路径(非文件夹路径),VisualDL将在此路径指定的模型文件进行可视化,目前可支持PaddlePaddle、ONNX、Keras、Core ML、Caffe等多种模型结构,详情可查看[graph支持模型种类](./components/README.md#%E5%8A%9F%E8%83%BD%E6%93%8D%E4%BD%9C%E8%AF%B4%E6%98%8E-2) |
| --model | 设定模型文件路径(非文件夹路径),VisualDL将在此路径指定的模型文件进行可视化,目前可支持PaddlePaddle、ONNX、Keras、Core ML、Caffe等多种模型结构,详情可查看[graph支持模型种类](./docs/components/README.md#%E5%8A%9F%E8%83%BD%E6%93%8D%E4%BD%9C%E8%AF%B4%E6%98%8E-2) |
| --host | 设定IP,默认为`127.0.0.1` |
| --port | 设定端口,默认为`8040` |
| --cache-timeout | 后端缓存时间,在缓存时间内前端多次请求同一url,返回的数据从缓存中获取,默认为20秒 |
| --language | VisualDL面板语言,可指定为'en'或'zh',默认为浏览器使用语言 |
| --public-path | VisualDL面板URL路径,默认是'/app',即访问地址为'http://<host>:<port>/app' |
| --api-only | 是否只提供API,如果设置此参数,则VisualDL不提供页面展示,只提供API服务,此时API地址为'http://<host>:<port>/<public_path>/api';若没有设置public_path参数,则默认为'http://<host>:<port>/api' |
| --public-path | VisualDL面板URL路径,默认是'/app',即访问地址为'http://&lt;host&gt;:&lt;port&gt;/app' |
| --api-only | 是否只提供API,如果设置此参数,则VisualDL不提供页面展示,只提供API服务,此时API地址为'http://&lt;host&gt;:&lt;port&gt;/&lt;public_path&gt;/api';若没有设置public_path参数,则默认为'http://&lt;host&gt;:&lt;port&gt;/api' |
针对上一步生成的日志,启动命令为:
......@@ -152,7 +170,9 @@ visualdl.server.app.run(logdir,
open_browser=False)
```
接口参数:
请注意:除`logdir`外,其他参数均为不定参数,传递时请指明参数名。
接口参数具体如下:
| 参数 | 格式 | 含义 |
| ------------- | ------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
......@@ -162,8 +182,8 @@ visualdl.server.app.run(logdir,
| port | int | 启动服务端口,默认为`8040` |
| cache_timeout | int | 后端缓存时间,在缓存时间内前端多次请求同一url,返回的数据从缓存中获取,默认为20秒 |
| language | string | VisualDL面板语言,可指定为'en'或'zh',默认为浏览器使用语言 |
| public_path | string | VisualDL面板URL路径,默认是'/app',即访问地址为'http://<host>:<port>/app' |
| api_only | boolean | 是否只提供API,如果设置此参数,则VisualDL不提供页面展示,只提供API服务,此时API地址为'http://<host>:<port>/<public_path>/api';若没有设置public_path参数,则默认为'http://<host>:<port>/api' |
| public_path | string | VisualDL面板URL路径,默认是'/app',即访问地址为'http://&lt;host&gt;:&lt;port&gt;/app' |
| api_only | boolean | 是否只提供API,如果设置此参数,则VisualDL不提供页面展示,只提供API服务,此时API地址为'http://&lt;host&gt;:&lt;port&gt;/&lt;public_path&gt;/api';若没有设置public_path参数,则默认为'http://&lt;host&gt;:&lt;port&gt;/api' |
| open_browser | boolean | 是否打开浏览器,设置为True则在启动后自动打开浏览器并访问VisualDL面板,若设置api_only,则忽略此参数 |
针对上一步生成的日志,我们的启动脚本为:
......@@ -171,13 +191,13 @@ visualdl.server.app.run(logdir,
```python
from visualdl.server import app
app.run("./log")
app.run(logdir="./log")
```
在使用任意一种方式启动VisualDL面板后,打开浏览器访问VisualDL面板,即可查看日志的可视化结果,如图:
<p align="center">
<img src="https://visualdl.bj.bcebos.com/images/3points_demo.png" width="60%"/>
<img src="https://user-images.githubusercontent.com/48054808/82786044-67ae9880-9e96-11ea-8a2b-3a0951a6ec19.png" width="60%"/>
</p>
......@@ -212,20 +232,67 @@ app.run("./log")
<img src="https://visualdl.bj.bcebos.com/images/image-eye.gif" width="60%"/>
</p>
### Audio
实时查看训练过程中的音频数据,监控语音识别与合成等任务的训练过程。
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/87659138-b4746880-c78f-11ea-965b-c33804e7c296.png" width="85%"/>
</p>
### Graph
一键可视化模型的网络结构。可查看模型属性、节点信息、节点输入输出等,并支持节点搜索,辅助用户快速分析模型结构与了解数据流向。
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/84483052-5acdd980-accb-11ea-8519-1608da7ee698.png" width="85%"/>
</p>
### Histogram
以直方图形式展示Tensor(weight、bias、gradient等)数据在训练过程中的变化趋势。深入了解模型各层效果,帮助开发者精准调整模型结构。
- Offset模式
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/86551031-86647c80-bf76-11ea-8ec2-8c86826c8137.png" width="85%"/>
</p>
- Overlay模式
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/86551033-882e4000-bf76-11ea-8e6a-af954c662ced.png" width="85%"/>
</p>
### PR Curve
精度-召回率曲线,帮助开发者权衡模型精度和召回率之间的平衡,设定最佳阈值。
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/86738774-ee46c000-c067-11ea-90d2-a98aac445cca.png" width="85%"/>
</p>
### High Dimensional
将高维数据进行降维展示,目前支持T-SNE、PCA两种降维方式,用于深入分析高维数据间的关系,方便用户根据数据特征进行算法优化。
<p align="center">
<img src="https://visualdl.bj.bcebos.com/images/high_dimensional_test.png" width="100%"/>
<img src="https://user-images.githubusercontent.com/48054808/82396340-3e4dd100-9a80-11ea-911d-798acdbc9c90.gif" width="85%"/>
</p>
## 开源贡献
VisualDL 是由 [PaddlePaddle](https://www.paddlepaddle.org/)[ECharts](https://echarts.apache.org/) 合作推出的开源项目。欢迎所有人使用,提意见以及贡献代码。
VisualDL 是由 [PaddlePaddle](https://www.paddlepaddle.org/)[ECharts](https://echarts.apache.org/) 合作推出的开源项目。
Graph 相关功能由 [Netron](https://github.com/lutzroeder/netron) 提供技术支持。
欢迎所有人使用,提意见以及贡献代码。
## 更多细节
想了解更多关于VisualDL可视化功能的使用详情介绍,请查看[**VisualDL使用指南**](./components/README.md)
想了解更多关于VisualDL可视化功能的使用详情介绍,请查看[**VisualDL使用指南**](./docs/components/README.md)
## 技术交流
欢迎您加入VisualDL官方QQ群:1045783368 与飞桨团队以及其他用户共同针对VisualDL进行讨论与交流。
<p align="center">
<img src="https://user-images.githubusercontent.com/48054808/82522691-c2758680-9b5c-11ea-9aee-fca994aba175.png" width="20%"/>
</p>
......@@ -71,7 +71,7 @@ add_scalar(tag, value, step, walltime=None)
- 基础使用
下面展示了使用 Scalar 组件记录数据的示例,代码见[Scalar组件](../../demo/components/scalar_test.py)
下面展示了使用 Scalar 组件记录数据的示例,代码见[Scalar组件](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/scalar_test.py)
```python
from visualdl import LogWriter
......@@ -212,7 +212,7 @@ add_image(tag, img, step, walltime=None)
| walltime | int | 记录数据的时间戳,默认为当前时间戳 |
### Demo
下面展示了使用 Image 组件记录数据的示例,代码文件请见[Image组件](../../demo/components/image_test.py)
下面展示了使用 Image 组件记录数据的示例,代码文件请见[Image组件](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/image_test.py)
```python
import numpy as np
from PIL import Image
......@@ -579,7 +579,7 @@ add_pr_curve(tag, labels, predictions, step=None, num_thresholds=10)
### Demo
下面展示了使用 PR Curve 组件记录数据的示例,代码见[PR Curve组件](#https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/pr_curve_test.py)
下面展示了使用 PR Curve 组件记录数据的示例,代码见[PR Curve组件](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/pr_curve_test.py)
```python
from visualdl import LogWriter
......@@ -674,7 +674,7 @@ add_embeddings(tag, labels, hot_vectors, walltime=None)
| walltime | int | 记录数据的时间戳,默认为当前时间戳 |
### Demo
下面展示了使用 High Dimensional 组件记录数据的示例,代码见[High Dimensional组件](../../demo/components/high_dimensional_test.py)
下面展示了使用 High Dimensional 组件记录数据的示例,代码见[High Dimensional组件](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/high_dimensional_test.py)
```python
from visualdl import LogWriter
......
......@@ -13,6 +13,7 @@
from recommonmark.parser import CommonMarkParser
import os
import sys
from visualdl import __version__
sys.path.insert(0, os.path.abspath('../visualdl'))
......@@ -23,7 +24,7 @@ copyright = '2020, PaddlePaddle'
author = 'PaddlePaddle'
# The full version, including alpha/beta/rc tags
release = '2.0.0.beta4'
release = __version__
# -- General configuration ---------------------------------------------------
......
......@@ -10,7 +10,8 @@ Welcome to VisualDL's documentation!
:maxdepth: 2
:caption: Contents:
概述<../README.md>
概述<README.md>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册