# -*- coding: utf-8 -*- """ # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import os import google.protobuf.text_format import numpy as np import argparse import paddle.fluid as fluid from .proto import general_model_config_pb2 as m_config from paddle.fluid.core import PaddleTensor from paddle.fluid.core import AnalysisConfig from paddle.fluid.core import create_paddle_predictor import logging logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) class Debugger(object): def __init__(self): self.feed_names_ = [] self.fetch_names_ = [] self.feed_types_ = {} self.fetch_types_ = {} self.feed_shapes_ = {} self.feed_names_to_idx_ = {} self.fetch_names_to_idx_ = {} self.fetch_names_to_type_ = {} def load_model_config(self, model_path, gpu=False, profile=True, cpu_num=1): client_config = "{}/serving_server_conf.prototxt".format(model_path) model_conf = m_config.GeneralModelConfig() f = open(client_config, 'r') model_conf = google.protobuf.text_format.Merge( str(f.read()), model_conf) config = AnalysisConfig(model_path) self.feed_names_ = [var.alias_name for var in model_conf.feed_var] self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var] self.feed_names_to_idx_ = {} self.fetch_names_to_idx_ = {} for i, var in enumerate(model_conf.feed_var): self.feed_names_to_idx_[var.alias_name] = i self.feed_types_[var.alias_name] = var.feed_type self.feed_shapes_[var.alias_name] = var.shape for i, var in enumerate(model_conf.fetch_var): self.fetch_names_to_idx_[var.alias_name] = i self.fetch_names_to_type_[var.alias_name] = var.fetch_type if not gpu: config.disable_gpu() else: config.enable_use_gpu(100, 0) if profile: config.enable_profile() config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") config.set_cpu_math_library_num_threads(cpu_num) config.switch_ir_optim(False) config.switch_use_feed_fetch_ops(False) self.predictor = create_paddle_predictor(config) def predict(self, feed=None, fetch=None, batch=True): if feed is None or fetch is None: raise ValueError("You should specify feed and fetch for prediction") fetch_list = [] if isinstance(fetch, str): fetch_list = [fetch] elif isinstance(fetch, list): fetch_list = fetch else: raise ValueError("Fetch only accepts string and list of string") feed_batch = [] if isinstance(feed, dict): feed_batch.append(feed) elif isinstance(feed, list): feed_batch = feed else: raise ValueError("Feed only accepts dict and list of dict") int_slot_batch = [] float_slot_batch = [] int_feed_names = [] float_feed_names = [] int_shape = [] float_shape = [] fetch_names = [] counter = 0 batch_size = len(feed_batch) for key in fetch_list: if key in self.fetch_names_: fetch_names.append(key) if len(fetch_names) == 0: raise ValueError( "Fetch names should not be empty or out of saved fetch list.") return {} input_names = self.predictor.get_input_names() for name in input_names: print(feed) if isinstance(feed[name], list): feed[name] = np.array(feed[name]).reshape(self.feed_shapes_[ name]) if self.feed_types_[name] == 0: feed[name] = feed[name].astype("int64") elif self.feed_types_[name] == 1: feed[name] = feed[name].astype("float32") elif self.feed_types_[name] == 2: feed[name] = feed[name].astype("int32") else: raise ValueError("local predictor receives wrong data type") input_tensor = self.predictor.get_input_tensor(name) #TODO:set lods if "{}.lod".format(name) in feed: input_tensor.set_lod(feed["{}.lod".format(name)]) if batch == True: input_tensor.copy_from_cpu(feed[name][np.newaxis,:]) else: input_tensor.copy_from_cpu(feed[name]) output_tensors = [] output_names = self.predictor.get_output_names() for output_name in output_names: output_tensor = self.predictor.get_output_tensor(output_name) output_tensors.append(output_tensor) outputs = [] self.predictor.zero_copy_run() for output_tensor in output_tensors: output = output_tensor.copy_to_cpu() outputs.append(output) fetch_map = {} for i, name in enumerate(fetch): fetch_map[name] = outputs[i] if len(output_tensors[i].lod()) > 0: fetch_map[name + ".lod"] = output_tensors[i].lod()[0] return fetch_map