# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_client import Client import cv2 import sys import numpy as np import os from paddle_serving_client import Client from paddle_serving_app.reader import Sequential, ResizeByFactor from paddle_serving_app.reader import Div, Normalize, Transpose from paddle_serving_app.reader import DBPostProcess, FilterBoxes if sys.argv[1] == 'gpu': from paddle_serving_server.web_service import WebService elif sys.argv[1] == 'cpu': from paddle_serving_server.web_service import WebService import time import re import base64 class OCRService(WebService): def init_det(self): self.det_preprocess = Sequential([ ResizeByFactor(32, 960), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose( (2, 0, 1)) ]) self.filter_func = FilterBoxes(10, 10) self.post_func = DBPostProcess({ "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000, "unclip_ratio": 1.5, "min_size": 3 }) def preprocess(self, feed=[], fetch=[]): data = base64.b64decode(feed[0]["image"].encode('utf8')) data = np.fromstring(data, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) self.ori_h, self.ori_w, _ = im.shape det_img = self.det_preprocess(im) _, self.new_h, self.new_w = det_img.shape return { "image": det_img[np.newaxis, :].copy() }, ["concat_1.tmp_0"], True def postprocess(self, feed={}, fetch=[], fetch_map=None): det_out = fetch_map["concat_1.tmp_0"] ratio_list = [ float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w ] dt_boxes_list = self.post_func(det_out, [ratio_list]) dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w]) return {"dt_boxes": dt_boxes.tolist()} ocr_service = OCRService(name="ocr") ocr_service.load_model_config("ocr_det_model") if sys.argv[1] == 'gpu': ocr_service.set_gpus("0") ocr_service.prepare_server(workdir="workdir", port=9292, device="gpu") elif sys.argv[1] == 'cpu': ocr_service.prepare_server(workdir="workdir", port=9292) ocr_service.init_det() ocr_service.run_debugger_service() ocr_service.run_web_service()