# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from paddle_serving_client import HttpClient from paddle_serving_app.reader import Sequential, URL2Image, Resize from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize import time client = HttpClient() client.load_client_config(sys.argv[1]) ''' if you want use GRPC-client, set_use_grpc_client(True) or you can directly use client.grpc_client_predict(...) as for HTTP-client,set_use_grpc_client(False)(which is default) or you can directly use client.http_client_predict(...) ''' #client.set_use_grpc_client(True) ''' if you want to enable Encrypt Module,uncommenting the following line ''' #client.use_key("./key") ''' if you want to compress,uncommenting the following line ''' #client.set_response_compress(True) #client.set_request_compress(True) ''' we recommend use Proto data format in HTTP-body, set True(which is default) if you want use JSON data format in HTTP-body, set False ''' #client.set_http_proto(True) client.connect(["127.0.0.1:9696"]) label_dict = {} label_idx = 0 with open("imagenet.label") as fin: for line in fin: label_dict[label_idx] = line.strip() label_idx += 1 seq = Sequential([ URL2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True) ]) start = time.time() image_file = "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg" for i in range(10): img = seq(image_file) fetch_map = client.predict( feed={"image": img}, fetch=["score"], batch=False) print(fetch_map) end = time.time() print(end - start)